Beispiel #1
0
def test_neg():
    # setup
    net = Network()
    c0 = Has('$x', 'on', '$y')
    c1 = Has('$y', 'left-of', '$z')
    c2 = Neg('$z', 'color', 'red')
    p0 = net.add_production(Rule(c0, c1, c2))
    # end

    wmes = [
        WME('B1', 'on', 'B2'),
        WME('B1', 'on', 'B3'),
        WME('B1', 'color', 'red'),
        WME('B2', 'on', 'table'),
        WME('B2', 'left-of', 'B3'),
        WME('B2', 'color', 'blue'),
        WME('B3', 'left-of', 'B4'),
        WME('B3', 'on', 'table'),
        WME('B3', 'color', 'red'),
        # WME('B4', 'color', 'blue'),
    ]
    for wme in wmes:
        net.add_wme(wme)
    assert p0.items[0].wmes == [
        WME('B1', 'on', 'B3'),
        WME('B3', 'left-of', 'B4'), None
    ]
Beispiel #2
0
def test_ncc():
    net = Network()
    c0 = Has('$x', 'on', '$y')
    c1 = Has('$y', 'left-of', '$z')
    c2 = Neg('$z', 'color', 'red')  # YKY: allowed to have Neg inside Ncc
    c3 = Has('$z', 'on', '$w')

    p0 = net.add_production(Rule(c0, c1, Ncc(c2, c3)))
    save_Rete_graph(net, 'rete-0')
    wmes = [
        WME('B1', 'on', 'B2'),
        WME('B1', 'on', 'B3'),
        WME('B1', 'color', 'red'),
        WME('B2', 'on', 'table'),
        WME('B2', 'left-of', 'B3'),
        WME('B2', 'color', 'blue'),
        WME('B3', 'left-of', 'B4'),
        WME('B3', 'on', 'table'),
    ]
    for wme in wmes:
        net.add_wme(wme)
    print("# of results [2] = ", len(p0.items))
    # assert len(p0.items) == 2
    net.add_wme(WME('B3', 'color', 'red'))
    print("# of results [1] = ", len(p0.items))
Beispiel #3
0
def init_network():
    net = Network()
    c0 = Has('$x', 'on', '$y')
    c1 = Has('$y', 'left-of', '$z')
    c2 = Has('$z', 'color', 'red')
    net.add_production(Rule(c0, c1, c2))
    return net
Beispiel #4
0
    def test__integration(self):
        for i, (rule, wmes, exp_len, var, exp_val) in enumerate([
            (Rule(Has('spu:1', 'price', '$x'), Filter('$x>100'), Filter('$x<200')),
             [WME('spu:1', 'price', '100'), WME('spu:1', 'price', '150'), WME('spu:1', 'price', '300')],
             1,
             '$x',
             '150'),
            (Rule(Has('spu:1', 'price', '$x'), Filter('$x>200 and $x<400')),
             [WME('spu:1', 'price', '100'), WME('spu:1', 'price', '150'), WME('spu:1', 'price', '300')],
             1,
             '$x',
             '300'),
            (Rule(Has('spu:1', 'price', '$x'), Filter('$x>300')),
             [WME('spu:1', 'price', '100'), WME('spu:1', 'price', '150'), WME('spu:1', 'price', '300')],
             0,
             None,
             None),
        ]):
            with self.subTest(i=i, exp_len=exp_len, var=var, exp_val=exp_val):
                network = Network()
                production = network.add_production(rule)
                for wme in wmes:
                    network.add_wme(wme)

                assert_that(production.memory, 'filter').is_length(exp_len)
                if production.memory:
                    token = production.memory[0]
                    assert_that(token.get_binding(var), 'filter').is_equal_to(exp_val)
def test_recurring_vars_should_not_match():

    net = Network()
    c0 = Has('foo', '$x', '$x')
    p0 = net.add_production(Rule(c0))
    net.add_wme(WME('foo', 'bar', 'baz'))

    assert len(p0.items) == 0
def test_all_constants_the_same_should_not_match():

    net = Network()
    c0 = Has('foo', 'foo', 'foo')
    p0 = net.add_production(Rule(c0))
    net.add_wme(WME('bar', 'foo', 'foo'))

    assert len(p0.items) == 0
def test_multiple_conditions_should_not_match():

    net = Network()
    c0 = Has('foo', '$x', '$y')
    c1 = Has('foo', '$x', '$x')
    c2 = Has('$x', '$y', 'baz')
    p0 = net.add_production(Rule(c0, c1, c2))
    net.add_wme(WME('foo', 'bar', 'baz'))

    assert len(p0.items) == 0
def test_multiple_conditions_all_variables_should_match_one():

    net = Network()
    c0 = Has('foo', 'foo', 'foo')
    c1 = Has('$x', '$x', '$x')
    c2 = Has('$x', 'foo', 'foo')
    c3 = Has('foo', '$x', 'foo')
    c4 = Has('$x', 'foo', '$x')
    p0 = net.add_production(Rule(c0, c1, c2, c3, c4))
    net.add_wme(WME('foo', 'foo', 'foo'))

    assert len(p0.items) == 1
Beispiel #9
0
    def test__case_1(self):
        for i, (rule, wmes, exp) in enumerate([(Rule(
                Has('$x', 'on', '$y'),
                Has('$y', 'left-of', '$z'),
                Has('$z', 'color', 'red'),
        ), [
                WME('B1', 'on', 'B2'),
                WME('B1', 'on', 'B3'),
                WME('B1', 'color', 'red'),
                WME('B2', 'on', 'table'),
                WME('B2', 'left-of', 'B3'),
                WME('B2', 'color', 'blue'),
                WME('B3', 'left-of', 'B4'),
                WME('B3', 'on', 'table'),
                WME('B3', 'color', 'red')
        ], [])]):
            with self.subTest(i=i, rule=rule, wmes=wmes, exp=exp):
                network = Network()
                production = network.add_production(rule)

                am0 = network.build_or_share_alpha_memory(rule[0])
                am1 = network.build_or_share_alpha_memory(rule[1])
                am2 = network.build_or_share_alpha_memory(rule[2])

                dummy_join = am0.children[0]

                join_on_value_y = am1.children[0]
                join_on_value_z = am2.children[0]

                match_c0 = dummy_join.children[0]
                match_c0c1 = join_on_value_y.children[0]
                match_c0c1c2 = join_on_value_z.children[0]

                for wme in wmes:
                    network.add_wme(wme)

                assert am0.memory == [wmes[0], wmes[1], wmes[3], wmes[7]]
                assert am1.memory == [wmes[4], wmes[6]]
                assert am2.memory == [wmes[2], wmes[8]]
                assert len(match_c0.memory) == 4
                assert len(match_c0c1.memory) == 2
                assert len(match_c0c1c2.memory) == 1

                t0 = Token(Token(None, None), wmes[0])
                t1 = Token(t0, wmes[4])
                t2 = Token(t1, wmes[8])
                assert match_c0c1c2.memory[0] == t2

                network.remove_wme(wmes[0])
                assert am0.memory == [wmes[1], wmes[3], wmes[7]]
                assert len(match_c0.memory) == 3
                assert len(match_c0c1.memory) == 1
                assert len(match_c0c1c2.memory) == 0
Beispiel #10
0
def test_network_case1():
    # setup
    net = Network()
    c0 = Has('$x', 'on', '$y')
    c1 = Has('$y', 'left-of', '$z')
    c2 = Has('$z', 'color', 'red')
    net.add_production(Rule(c0, c1, c2))
    # end

    am0 = net.build_or_share_alpha_memory(c0)
    am1 = net.build_or_share_alpha_memory(c1)
    am2 = net.build_or_share_alpha_memory(c2)
    dummy_join = am0.successors[0]
    join_on_value_y = am1.successors[0]
    join_on_value_z = am2.successors[0]
    match_c0 = dummy_join.children[0]
    match_c0c1 = join_on_value_y.children[0]
    match_c0c1c2 = join_on_value_z.children[0]

    wmes = [
        WME('B1', 'on', 'B2'),
        WME('B1', 'on', 'B3'),
        WME('B1', 'color', 'red'),
        WME('B2', 'on', 'table'),
        WME('B2', 'left-of', 'B3'),
        WME('B2', 'color', 'blue'),
        WME('B3', 'left-of', 'B4'),
        WME('B3', 'on', 'table'),
        WME('B3', 'color', 'red')
    ]
    for wme in wmes:
        net.add_wme(wme)

    assert am0.items == [wmes[0], wmes[1], wmes[3], wmes[7]]
    assert am1.items == [wmes[4], wmes[6]]
    assert am2.items == [wmes[2], wmes[8]]
    assert len(match_c0.items) == 4
    assert len(match_c0c1.items) == 2
    assert len(match_c0c1c2.items) == 1

    t0 = Token(Token(None, None), wmes[0])
    t1 = Token(t0, wmes[4])
    t2 = Token(t1, wmes[8])
    assert match_c0c1c2.items[0] == t2

    net.remove_wme(wmes[0])
    assert am0.items == [wmes[1], wmes[3], wmes[7]]
    assert len(match_c0.items) == 3
    assert len(match_c0c1.items) == 1
    assert len(match_c0c1c2.items) == 0
Beispiel #11
0
    def test__integration(self):
        for i, (rule, wmes, exp_len, var, exp_val) in enumerate([
            (Rule(Has('spu:1', 'sales', '$x'), Bind('len(set($x) & set(range(1, 100)))', '$num'), Filter('$num > 0')),[WME('spu:1', 'sales', 'range(50, 110)')], 1, '$num', 50),
            (Rule(Has('spu:1', 'sales', '$x'), Bind('len(set($x) & set(range(100, 200)))', '$num'), Filter('$num > 0')),[WME('spu:1', 'sales', 'range(50, 110)')], 1, '$num', 10),
            (Rule(Has('spu:1', 'sales', '$x'), Bind('len(set($x) & set(range(300, 400)))', '$num'), Filter('$num > 0')),[WME('spu:1', 'sales', 'range(50, 110)')], 0, None, None),
        ]):
            with self.subTest(i=i, exp_len=exp_len, var=var, exp_val=exp_val):
                network = Network()
                production = network.add_production(rule)
                for wme in wmes:
                    network.add_wme(wme)

                assert_that(production.memory, 'filter').is_length(exp_len)
                if production.memory:
                    token = production.memory[0]
                    assert_that(token.get_binding(var), 'filter').is_equal_to(exp_val)
Beispiel #12
0
def test_network_case0():
    net = Network()
    c0 = Has('x', 'id', '1')
    c1 = Has('x', 'kind', '8')
    p0 = net.add_production(Rule(c0, c1))

    w0 = WME('x', 'id', '1')
    w1 = WME('x', 'kind', '8')

    net.add_wme(w0)
    assert not p0.items

    net.remove_wme(w0)
    net.add_wme(w1)
    assert not p0.items

    net.add_wme(w0)
    net.add_wme(w1)
    assert p0.items
Beispiel #13
0
    def test__case_0(self):
        for i, (rule, wmes, exp) in enumerate([
            (Rule(Has('x', 'id', '1'), Has('x', 'kind',
                                           '8')), [WME('x', 'id', '1')], 0),
            (Rule(Has('x', 'id', '1'), Has('x', 'kind',
                                           '8')), [WME('x', 'kind', '8')], 0),
            (Rule(Has('x', 'id', '1'),
                  Has('x', 'kind',
                      '8')), [WME('x', 'id', '1'),
                              WME('x', 'kind', '8')], 1),
        ]):
            with self.subTest(i=i, rule=rule, wmes=wmes, exp=exp):
                network = Network()
                production = network.add_production(rule)
                for wme in wmes:
                    network.add_wme(wme)
                result = len(production.memory)

                assert_that(result, 'case 0').is_equal_to(exp)
Beispiel #14
0
def test_dup():
    # setup
    net = Network()
    c0 = Has('$x', 'self', '$y')
    c1 = Has('$x', 'color', 'red')
    c2 = Has('$y', 'color', 'red')
    net.add_production(Rule(c0, c1, c2))

    wmes = [
        WME('B1', 'self', 'B1'),
        WME('B1', 'color', 'red'),
    ]
    for wme in wmes:
        net.add_wme(wme)
    # end

    am = net.build_or_share_alpha_memory(c2)
    join_on_value_y = am.successors[1]
    match_for_all = join_on_value_y.children[0]

    assert len(match_for_all.items) == 1
Beispiel #15
0
def test_bind():
    net = Network()
    c0 = Has('spu:1', 'sales', '$x')
    b0 = Bind('len(set($x) & set(range(1, 100)))', '$num')
    f0 = Filter('$num > 0')
    p0 = net.add_production(Rule(c0, b0, f0))

    b1 = Bind('len(set($x) & set(range(100, 200)))', '$num')
    p1 = net.add_production(Rule(c0, b1, f0))

    b2 = Bind('len(set($x) & set(range(300, 400)))', '$num')
    p2 = net.add_production(Rule(c0, b2, f0))

    net.add_wme(WME('spu:1', 'sales', 'range(50, 110)'))

    assert len(p0.items) == 1
    assert len(p1.items) == 1
    assert len(p2.items) == 0
    t0 = p0.items[0]
    t1 = p1.items[0]
    assert t0.get_binding('$num') == 50
    assert t1.get_binding('$num') == 10
Beispiel #16
0
def test_ncc():
    net = Network()
    c0 = Has('$x', 'on', '$y')
    c1 = Has('$y', 'left-of', '$z')
    c2 = Has('$z', 'color', 'red')
    c3 = Has('$z', 'on', '$w')

    p0 = net.add_production(Rule(c0, c1, Ncc(c2, c3)))
    wmes = [
        WME('B1', 'on', 'B2'),
        WME('B1', 'on', 'B3'),
        WME('B1', 'color', 'red'),
        WME('B2', 'on', 'table'),
        WME('B2', 'left-of', 'B3'),
        WME('B2', 'color', 'blue'),
        WME('B3', 'left-of', 'B4'),
        WME('B3', 'on', 'table'),
    ]
    for wme in wmes:
        net.add_wme(wme)
    assert len(p0.items) == 2
    net.add_wme(WME('B3', 'color', 'red'))
    assert len(p0.items) == 1
Beispiel #17
0
def test_multi_productions():
    net = Network()
    c0 = Has('$x', 'on', '$y')
    c1 = Has('$y', 'left-of', '$z')
    c2 = Has('$z', 'color', 'red')
    c3 = Has('$z', 'on', 'table')
    c4 = Has('$z', 'left-of', 'B4')

    p0 = net.add_production(Rule(c0, c1, c2))
    p1 = net.add_production(Rule(c0, c1, c3, c4))

    wmes = [
        WME('B1', 'on', 'B2'),
        WME('B1', 'on', 'B3'),
        WME('B1', 'color', 'red'),
        WME('B2', 'on', 'table'),
        WME('B2', 'left-of', 'B3'),
        WME('B2', 'color', 'blue'),
        WME('B3', 'left-of', 'B4'),
        WME('B3', 'on', 'table'),
        WME('B3', 'color', 'red'),
    ]
    for wme in wmes:
        net.add_wme(wme)

    # add product on the fly
    p2 = net.add_production(Rule(c0, c1, c3, c2))

    assert len(p0.items) == 1
    assert len(p1.items) == 1
    assert len(p2.items) == 1
    assert p0.items[0].wmes == [wmes[0], wmes[4], wmes[8]]
    assert p1.items[0].wmes == [wmes[0], wmes[4], wmes[7], wmes[6]]
    assert p2.items[0].wmes == [wmes[0], wmes[4], wmes[7], wmes[8]]

    net.remove_production(p2)
    assert len(p2.items) == 0
Beispiel #18
0
def test_filter_compare():
    net = Network()
    c0 = Has('spu:1', 'price', '$x')
    f0 = Filter('$x>100')
    f1 = Filter('$x<200')
    f2 = Filter('$x>200 and $x<400')
    f3 = Filter('$x>300')

    p0 = net.add_production(Rule(c0, f0, f1))
    p1 = net.add_production(Rule(c0, f2))
    p2 = net.add_production(Rule(c0, f3))
    net.add_wme(WME('spu:1', 'price', '100'))
    net.add_wme(WME('spu:1', 'price', '150'))
    net.add_wme(WME('spu:1', 'price', '300'))

    assert len(p0.items) == 1
    token = p0.items.pop()
    assert token.get_binding('$x') == '150'

    assert len(p1.items) == 1
    token = p1.items.pop()
    assert token.get_binding('$x') == '300'

    assert not p2.items
Beispiel #19
0
def test_black_white():
    net = Network()
    c1 = Has('$item', 'cat', '$cid')
    c2 = Has('$item', 'shop', '$sid')
    white = Ncc(
        Has('$item', 'cat', '100'),
        Neg('$item', 'cat', '101'),
        Neg('$item', 'cat', '102'),
    )
    n1 = Neg('$item', 'shop', '1')
    n2 = Neg('$item', 'shop', '2')
    n3 = Neg('$item', 'shop', '3')
    p0 = net.add_production(Rule(c1, c2, white, n1, n2, n3))
    wmes = [
        WME('item:1', 'cat', '101'),
        WME('item:1', 'shop', '4'),
        WME('item:2', 'cat', '100'),
        WME('item:2', 'shop', '1'),
    ]
    for wme in wmes:
        net.add_wme(wme)

    assert len(p0.items) == 1
    assert p0.items[0].get_binding('$item') == 'item:1'
Beispiel #20
0
# **** This is a second (improved) representation of the logic of Tic Tac Toe.
# We seek to find a representation that is most "natural" and close to human thinking.

# TO-DO:
# * need ability to make logic assumptions (how?)
# * need fuzzy or probabilistic truth values (to generate stochastic actions)

import sys
import os

from rete.common import DEBUG, Has, Rule, WME, Neg, Ncc, Token
from rete.network import Network

print("\n\x1b[32m——`—,—{\x1b[31;1m@\x1b[0m\n")  # Genifer logo ——`—,—{@

net = Network()
p = []  # list of p-Nodes

# **** General strategy ****
# - if can win, play it
# - about to lose, play it
# - if center not occupied, play it
# - if able to 'double-fork', play it
# - play randomly

# row 0 win:
q = net.add_production(
    Rule(
        Has('□', '$x'),
        Has('X', '$y'),
        Has('X', '$z'),
def playGames(population):
	from GUI import draw_board
	global board
	win = draw = stall = lose = 0

	# Add rules to Rete
	rete_net = Network()
	for candidate in population:
		p = add_rule_to_Rete(rete_net, candidate['rule'])
		if p:
			print('●', print_rule(candidate['rule']), end='\n')
			# print(' (%d)' % length_of_rule(candidate['rule']))
			candidate['p_node'] = p
	# save_Rete_graph(rete_net, 'rete_0')

	for n in range(1000):		# play game N times
		print("\t\tGame ", n, end='\r')
		# Initialize board
		for i in [0, 1, 2]:
			for j in [0, 1, 2]:
				if board[i][j] != ' ':
					rete_net.remove_wme(WME(board[i][i], str(i), str(j)))
				rete_net.add_wme(WME(' ', str(i), str(j)))
				board[i][j] = ' '

		CurrentPlayer = 'X'					# In the future, may play against self
		moves = []							# for recording played moves
		for move in range(9):				# Repeat playing moves in single game
			# print("    move", move, end='; ')

			if CurrentPlayer == 'X':
				# collect all playable rules
				playable = []
				for candidate in population:
					p0 = candidate['p_node']
					if not p0:
						continue
					if p0.items:
						DEBUG(len(p0.items), " instances")
					for item in p0.items:
						# item = random.choice(p0.items)		# choose an instantiation randomly
						# Question: are all instances the same?
						# apply binding to rule's action (ie, post-condition)
						if is_var(p0.postcondition.F2):
							p0.postcondition.F2 = item.get_binding(p0.postcondition.F2)
							if p0.postcondition.F2 is None:
								p0.postcondition.F2 = str(random.randint(0,2))
						if is_var(p0.postcondition.F3):
							p0.postcondition.F3 = item.get_binding(p0.postcondition.F3)
							if p0.postcondition.F3 is None:
								p0.postcondition.F3 = str(random.randint(0,2))
						DEBUG("production rule = ", print_rule(candidate['rule']))
						DEBUG("chosen item = ", item)
						DEBUG("postcond = ", p0.postcondition)

						# Check if the square is empty
						x = int(p0.postcondition.F2)
						y = int(p0.postcondition.F3)
						if board[x][y] == ' ':
							playable.append(candidate)
							candidate['fitness'] += 1.0
						else:
							candidate['fitness'] -= 1.0

				# print(len(playable), "playable rules ", end='')
				uniques = []
				for candidate in playable:
					if not uniques:
						uniques.append(candidate)
						continue
					exists = False
					for u in uniques:
						if candidate['p_node'].postcondition == u['p_node'].postcondition:
							exists = True
					if not exists:
						uniques.append(candidate)
				# print("; unique moves =\x1b[31;1m", len(uniques), end='\x1b[0m\n')

				if not uniques:
					# print("No rules playable")
					stall += 1
					break		# next game
				# Choose a playable rule randomly
				candidate = random.choice(uniques)
				p0 = candidate['p_node']

				x = int(p0.postcondition.F2)
				y = int(p0.postcondition.F3)
				board[x][y] = CurrentPlayer
				# print("    played move: X(%d,%d)" % (x,y))
				# remove old WME
				rete_net.remove_wme(WME(' ', p0.postcondition.F2, p0.postcondition.F3))
				# add new WME
				rete_net.add_wme(WME(CurrentPlayer, p0.postcondition.F2, p0.postcondition.F3))
				# **** record move: record the rule that is fired
				moves.append(candidate)

			else:			# Player = 'O'
				i,j = opponentPlay()
				board[i][j] = 'O'
				# print("Opponent move: O(%d,%d)" % (i,j))
				# remove old WME
				rete_net.remove_wme(WME(' ', str(i), str(j)))
				# add new WME
				rete_net.add_wme(WME('O', str(i), str(j)))

			# printBoard()		# this is text mode
			draw_board(board)	# graphics mode
			# check if win / lose, assign rewards accordingly
			winner = hasWinner()
			if winner == ' ':
				# let the same set of rules play again
				# let opponent play (opponent = self? this may be implemented later)
				CurrentPlayer = 'O' if CurrentPlayer == 'X' else 'X'
			elif winner == '-':
				# increase the scores of all played moves by 3.0
				for candidate in moves:
					candidate['fitness'] += 3.0
				# print("Draw")
				draw += 1
				break			# next game
			elif winner == 'X':
				# increase the scores of all played moves by 10.0
				for candidate in moves:
					candidate['fitness'] += 10.0
				# print("X wins")
				win += 1
				break			# next game
			elif winner == 'O':
				# decrease the scores of all played moves by 8.0
				for candidate in moves:
					candidate['fitness'] -= 8.0
				# print("O wins")
				lose += 1
				break			# next game
	return win, draw, stall, lose
Beispiel #22
0
def playGames(population):
    global board, moves, rete_net
    win = draw = stall = lose = 0

    # Add rules to Rete
    rete_net = Network()
    # print("\x1b[43m-----------------------------------------------\x1b[0m")
    for candidate in population:
        p = add_rule_to_Rete(rete_net, candidate['rule'])
        if p:
            print('●', print_rule(candidate['rule']), end='\n')
            # print(' (%d)' % length_of_rule(candidate['rule']))
            candidate['p_node'] = p
    # save_Rete_graph(rete_net, 'rete_0')

    for n in range(1000):  # play game N times
        print("\r\t\tGame ", n, end='\r')
        # Initialize board
        for i in [0, 1, 2]:
            for j in [0, 1, 2]:
                if board[i][j] != ' ':
                    rete_net.remove_wme(WME(board[i][i], str(i), str(j)))
                rete_net.add_wme(WME(' ', str(i), str(j)))
                board[i][j] = ' '

        CurrentPlayer = 'X'  # In the future, may play against self
        moves = []  # for recording played moves
        for move in range(9):  # Repeat playing moves in single game
            # print("    move", move, end='; ')

            if CurrentPlayer == 'X':
                if play_1_move(population, CurrentPlayer):  # Stalled?
                    stall += 1
                    break  # game-over, next game

            else:  # Player = 'O'
                i, j = opponentPlay()
                board[i][j] = 'O'
                # print("Opponent move: O(%d,%d)" % (i,j))
                # remove old WME
                rete_net.remove_wme(WME(' ', str(i), str(j)))
                # add new WME
                rete_net.add_wme(WME('O', str(i), str(j)))

            # printBoard()				# this is text mode
            # new_GUI.draw_board()		# graphics mode
            # check if win / lose, assign rewards accordingly
            winner = hasWinner()
            if winner == ' ':
                # let the same set of rules play again
                # let opponent play (opponent = self? this may be implemented later)
                CurrentPlayer = 'O' if CurrentPlayer == 'X' else 'X'
            elif winner == '-':
                # increase the scores of all played moves by 3.0
                for candidate in moves:
                    candidate['fitness'] += 3.0
                # print("Draw")
                draw += 1
                break  # next game
            elif winner == 'X':
                # increase the scores of all played moves by 10.0
                for candidate in moves:
                    candidate['fitness'] += 10.0
                # print("X wins")
                win += 1
                break  # next game
            elif winner == 'O':
                # decrease the scores of all played moves by 8.0
                for candidate in moves:
                    candidate['fitness'] -= 8.0
                # print("O wins")
                lose += 1
                break  # next game
    return win, draw, stall, lose
def Evolve():
	global maxGens, popSize, maxDepth, bouts, p_repro, crossRate, mutationRate
	population = []

	print("Generating population...")
	for c in cache:
		population.append({
			'target' : c['target'],
			'fitness' : fitness(c['target'])
		})
	print("Adding from cache:", len(cache))
	for i in range(0, popSize - len(cache)):
		print(i, '..', end='')
		sys.stdout.flush()
		# print "\tGenerating formula..."
		target = generate_random_formula(maxDepth)
		population.append({
			'target' : target, \
			'fitness' : fitness(target)})
	print()
	pop2 = sorted(population, key = lambda x : x['fitness'], reverse = False)
	best = pop2[0]
	rule = best.get('target')
	print("\nExample logic rule:\n", print_tree(rule))
	export_tree_as_graph(rule, "logic-rule")
	print("Example rule written to file: logic-rule.png")
	# plot_population(screen, pop2)

	print("\n\x1b[32m——`—,—{\x1b[31;1m@\x1b[0m\n")   # Genifer logo ——`—,—{@

	# Feed logic formulas into Rete
	rete_net = Network()
	add_tree_to_Rete(rete_net, rule)

	input("**** This program works till here....")

	for gen in range(0, maxGens):
		children = []
		# print "\nGenerating children..."
		while len(children) < popSize:
			operation = random.uniform(0.0, 1.0)
			p1 = tournament_selection(population, bouts)
			c1 = {}
			if operation < p_repro:
				c1['target'] = copy_tree(p1['target'])
				# c1['cond'] = copy_tree(p1['cond'])
			elif operation < p_repro + crossRate:
				p2 = tournament_selection(population, bouts)
				c2 = {}
				c1['target'],c2['target'] = crossover(p1['target'], p2['target'], maxDepth, terms)
				# c1['cond'],  c2['cond']   = crossover_cond(p1['cond'],   p2['cond'],   maxDepth, terms)
				# print "***** crossed condition = ", print_tree(c1['cond'])
				children.append(c2)
			elif operation < p_repro + crossRate + mutationRate:
				c1['target'] = mutation(p1['target'], maxDepth, arith_ops, terms)
				# c1['cond']   = mutation_cond(p1['cond'],   maxDepth, arith_ops, terms)
				# print "***** mutated condition = ", print_tree(c1['cond'])
			if len(children) < popSize:
				children.append(c1)

		# print "Evaluating children..."
		for c in children:
			# print "c's Condition = ", print_tree(c['cond'])
			c['fitness'] = fitness(c['target'])
		best['fitness'] = fitness(best['target'], None, 500)
		# population = children
		population = sorted(children, key = lambda x : x['fitness'], reverse = False)
		# plot_population(screen, population)
		quitting = False
		pausing = False
		for event in pygame.event.get():
			if event.type == pygame.QUIT:
				quitting = True
			elif event.type == pygame.KEYDOWN:
				pausing = True
			elif event.type == pygame.KEYUP:
				pausing = False
		while pausing:
			for event in pygame.event.get():
				if event.type == pygame.QUIT:
					quitting = True
					pausing = False
				elif event.type == pygame.KEYUP:
					pausing = False

		print("[", gen, "]", end=' ')
		print("best in pop =", round(population[0]['fitness'],2), "\tprevious best =", round(best['fitness'],2))
		if population[0]['fitness'] <= best['fitness']:
			best = population[0]
		else:
			population = [best] + population[:-1]
		# if best['fitness'] == 0:
		#	break
	return best
Beispiel #24
0
#!/usr/bin/python3
# -*- coding: utf-8 -*-

import sys
import os

from rete.common import Has, Rule, WME, Neg, Ncc, Token
from rete.network import Network

rete_net = Network()

c01 = Has('O', '$x', '$x')
c02 = Has('□', '$y', '$z')
c03 = Has('>', '$y', '$z')
p0 = rete_net.add_production(Rule(c01, c02, c03))

wmes = [
    WME('X', '0', '2'),
    WME('X', '1', '1'),
    WME('X', '2', '1'),
    WME('O', '0', '0'),
    WME('O', '1', '0'),
    WME('O', '1', '2'),
    WME('O', '2', '2'),
    WME('□', '0', '1'),
    WME('□', '2', '0'),
]
for wme in wmes:
    rete_net.add_wme(wme)

print("# of results = ", len(p0.items))