Beispiel #1
0
    def key_gen(cls, seed=None):
        """Generate a new public/secret key pair

        :param cls: Kyber class, inherit and change constants to change defaults
        :param seed: seed used for random sampling if provided

        .. note :: Resembles Algorithm 1 of the Kyber paper.

        """
        n, q, eta, k, D = cls.n, cls.q, cls.eta, cls.k, cls.D

        if seed is not None:
            set_random_seed(seed)

        R, x = PolynomialRing(ZZ, "x").objgen()
        Rq = PolynomialRing(GF(q), "x")
        f = R(cls.f)

        A = matrix(Rq, k, k,
                   [Rq.random_element(degree=n - 1) for _ in range(k * k)])
        s = vector(R, k, [R([(D(eta)) for _ in range(n)]) for _ in range(k)])
        e = vector(R, k, [R([(D(eta)) for _ in range(n)]) for _ in range(k)])
        t = (A * s + e) % f  # NOTE ignoring compression

        return (A, t), s
Beispiel #2
0
def test_karatsuba_multiplication(base_ring, maxdeg1, maxdeg2,
        ref_mul=lambda f, g: f._mul_generic(g), base_ring_random_elt_args=[],
        numtests=10, verbose=False):
    """
    Test univariate karatsuba multiplication against other multiplication algorithms.

    EXAMPLES:

    First check that random tests are reproducible::

        sage: import sage.rings.tests
        sage: sage.rings.tests.test_karatsuba_multiplication(ZZ, 6, 5, verbose=True, seed=42)
        test_karatsuba_multiplication: ring=Univariate Polynomial Ring in x over Integer Ring, threshold=2
          (2*x^6 - x^5 - x^4 - 3*x^3 + 4*x^2 + 4*x + 1)*(4*x^4 + x^3 - 2*x^2 - 20*x + 3)
          (16*x^2)*(x^2 - 41*x + 1)
          (-x + 1)*(x^2 + 2*x + 8)
          (-x^6 - x^4 - 8*x^3 - x^2 - 4*x + 3)*(-x^3 - x^2)
          (2*x^2 + x + 1)*(x^4 - x^3 + 3*x^2 - x)
          (-x^3 + x^2 + x + 1)*(4*x^2 + 76*x - 1)
          (6*x + 1)*(-5*x - 1)
          (-x^3 + 4*x^2 + x)*(-x^5 + 3*x^4 - 2*x + 5)
          (-x^5 + 4*x^4 + x^3 + 21*x^2 + x)*(14*x^3)
          (2*x + 1)*(12*x^3 - 12)

    Test Karatsuba multiplication of polynomials of small degree over some common rings::

        sage: for C in [QQ, ZZ[I], ZZ[I, sqrt(2)], GF(49, 'a'), MatrixSpace(GF(17), 3)]:
        ....:     sage.rings.tests.test_karatsuba_multiplication(C, 10, 10)

    Zero-tests over ``QQbar`` are currently very slow, so we test only very small examples::

        sage.rings.tests.test_karatsuba_multiplication(QQbar, 3, 3, numtests=2)

    Larger degrees (over ``ZZ``, using FLINT)::

        sage: sage.rings.tests.test_karatsuba_multiplication(ZZ, 1000, 1000, ref_mul=lambda f,g: f*g, base_ring_random_elt_args=[1000])

    Some more aggressive tests::

        sage: for C in [QQ, ZZ[I], ZZ[I, sqrt(2)], GF(49, 'a'), MatrixSpace(GF(17), 3)]:
        ....:     sage.rings.tests.test_karatsuba_multiplication(C, 10, 10) # long time
        sage: sage.rings.tests.test_karatsuba_multiplication(ZZ, 10000, 10000, ref_mul=lambda f,g: f*g, base_ring_random_elt_args=[100000])

    """
    from sage.all import randint, PolynomialRing
    threshold = randint(0, min(maxdeg1,maxdeg2))
    R = PolynomialRing(base_ring, 'x')
    if verbose:
        print "test_karatsuba_multiplication: ring={}, threshold={}".format(R, threshold)
    for i in range(numtests):
        f = R.random_element(randint(0, maxdeg1), *base_ring_random_elt_args)
        g = R.random_element(randint(0, maxdeg2), *base_ring_random_elt_args)
        if verbose:
            print "  ({})*({})".format(f, g)
        if ref_mul(f, g) -  f._mul_karatsuba(g, threshold) != 0:
            raise ValueError("Multiplication failed")
    return
Beispiel #3
0
def test_nose(cls=Kyber,
              l=None,
              t=128,
              seed=0xdeadbeef,
              proof=False,
              worst_case=True):
    """
    Test correctness of the Sneeze/Snort gadget for normal form MLWE parameters.

    TESTS::

        sage: test_nose(MiniKyber)
        sage: test_nose(MiniPseudoLima, seed=1, worst_case=False)
        sage: test_nose(MiniKyber, l = Nose.prec(MiniKyber)-1)
        Traceback (most recent call last):
        ...
        AssertionError
        sage: test_nose(MiniPseudoLima, l = Nose.prec(MiniPseudoLima)-1, seed=1, worst_case=False)
        Traceback (most recent call last):
        ...
        AssertionError

    .. note :: An ``AssertionError`` if final key does not match original.

    """
    if seed is not None:
        set_random_seed(seed)

    R, x = PolynomialRing(ZZ, "x").objgen()
    D = BinomialDistribution
    # TODO ce
    n, q, eta, k, f = cls.n, cls.q, cls.eta, cls.k, R(cls.f)
    Rq = PolynomialRing(GF(q), "x")

    if not l:
        l = Nose.prec(cls)
    l = ceil(l)

    for _ in range(t):
        if worst_case:
            a = vector(Rq, k, [[q // 2 + randint(0, 1) for _ in range(n)]
                               for i in range(k)])  # noqa
            s = vector(R, k, [[((-1)**randint(0, 1)) * eta for _ in range(n)]
                              for i in range(k)])
            e = R([((-1)**randint(0, 1)) * eta for _ in range(n)])
        else:
            a = vector(Rq, k,
                       [Rq.random_element(degree=n - 1) for i in range(k)])
            s = vector(R, k, [[D(eta) for _ in range(n)] for i in range(k)])
            e = R([D(eta) for _ in range(n)])
        b = (a * s + e) % f

        bb = Rq(Nose.muladd(cls, a, s, e, l=l))

        assert (b == bb)
digits = 150
prec = ceil(log(10) / log(2) * digits)
SetPariPrec(digits + 50)
PariIntNumInit(3)
power = 6
threshold = 2**(prec * .5)
ncurves = 8
#i = 8 needs more precision
for i in range(ncurves):
    print "i = %s of %s" % (i + 1, ncurves)
    smoothQ = False
    ZT = PolynomialRing(ZZ, "T")
    T = ZT.gen()

    while not smoothQ:
        g = ZT.random_element(degree=6)  # ZT([-4, 12, 0, -20, 0, 8, 1])#
        dg = g.derivative()
        smoothQ = gcd(g, dg) == 1
    print "C: y^2 = %s" % g
    verbose = False
    prec = ceil(log(10) / log(2) * digits)
    iaj = InvertAJglobal(g, prec, verbose)
    CCap = iaj.C
    Pic = iaj.Pic

    y0 = 0
    while y0 == 0:
        x0 = 1  #ZZ.random_element()
        y0 = sqrt(g(x0))
    print "\tPi = (%s, -/+%s)" % (x0, y0)
    P0, P1 = vector(CCap, (x0, y0)), vector(CCap, (x0, -y0))