Beispiel #1
0
    def coproduct_on_basis(self, mu):
        r"""
        Returns the coproduct of ``self(mu)``.

        Here ``self`` is the basis of Schur functions in the ring of symmetric functions.

        INPUT:

        - ``self`` -- a Schur symmetric function basis
        - ``mu`` -- a partition

        OUTPUT:

        - an element of the tensor square of the Schur basis

        EXAMPLES::

            sage: Sym = SymmetricFunctions(QQ)
            sage: s = Sym.schur()
            sage: s.coproduct_on_basis([2])
            s[] # s[2] + s[1] # s[1] + s[2] # s[]
        """
        import sage.libs.lrcalc.lrcalc as lrcalc
        T = self.tensor_square()
        return T._from_dict(lrcalc.coprod(mu, all=1))
Beispiel #2
0
    def coproduct_on_basis(self, mu):
        r"""
        Returns the coproduct of ``self(mu)``.

        Here ``self`` is the basis of Schur functions in the ring of symmetric functions.

        INPUT:

        - ``self`` -- a Schur symmetric function basis
        - ``mu`` -- a partition

        OUTPUT:

        - the image of the ``mu``-th Schur function under the comultiplication of
          the Hopf algebra of symmetric functions; this is an element of the
          tensor square of the Schur basis

        EXAMPLES::

            sage: Sym = SymmetricFunctions(QQ)
            sage: s = Sym.schur()
            sage: s.coproduct_on_basis([2])
            s[] # s[2] + s[1] # s[1] + s[2] # s[]
        """
        T = self.tensor_square()
        return T._from_dict( lrcalc.coprod(mu, all=1) )
Beispiel #3
0
    def coproduct_on_basis(self, mu):
        r"""
        Returns the coproduct of ``self(mu)``.

        Here ``self`` is the basis of Schur functions in the ring of symmetric functions.

        INPUT:

        - ``self`` -- a Schur symmetric function basis
        - ``mu`` -- a partition

        OUTPUT:

        - an element of the tensor square of the Schur basis

        EXAMPLES::

            sage: Sym = SymmetricFunctions(QQ)
            sage: s = Sym.schur()
            sage: s.coproduct_on_basis([2])
            s[] # s[2] + s[1] # s[1] + s[2] # s[]
        """
        import sage.libs.lrcalc.lrcalc as lrcalc
        T = self.tensor_square()
        return T._from_dict( lrcalc.coprod(mu, all=1) )