def coproduct_on_basis(self, mu): r""" Returns the coproduct of ``self(mu)``. Here ``self`` is the basis of Schur functions in the ring of symmetric functions. INPUT: - ``self`` -- a Schur symmetric function basis - ``mu`` -- a partition OUTPUT: - an element of the tensor square of the Schur basis EXAMPLES:: sage: Sym = SymmetricFunctions(QQ) sage: s = Sym.schur() sage: s.coproduct_on_basis([2]) s[] # s[2] + s[1] # s[1] + s[2] # s[] """ import sage.libs.lrcalc.lrcalc as lrcalc T = self.tensor_square() return T._from_dict(lrcalc.coprod(mu, all=1))
def coproduct_on_basis(self, mu): r""" Returns the coproduct of ``self(mu)``. Here ``self`` is the basis of Schur functions in the ring of symmetric functions. INPUT: - ``self`` -- a Schur symmetric function basis - ``mu`` -- a partition OUTPUT: - the image of the ``mu``-th Schur function under the comultiplication of the Hopf algebra of symmetric functions; this is an element of the tensor square of the Schur basis EXAMPLES:: sage: Sym = SymmetricFunctions(QQ) sage: s = Sym.schur() sage: s.coproduct_on_basis([2]) s[] # s[2] + s[1] # s[1] + s[2] # s[] """ T = self.tensor_square() return T._from_dict( lrcalc.coprod(mu, all=1) )
def coproduct_on_basis(self, mu): r""" Returns the coproduct of ``self(mu)``. Here ``self`` is the basis of Schur functions in the ring of symmetric functions. INPUT: - ``self`` -- a Schur symmetric function basis - ``mu`` -- a partition OUTPUT: - an element of the tensor square of the Schur basis EXAMPLES:: sage: Sym = SymmetricFunctions(QQ) sage: s = Sym.schur() sage: s.coproduct_on_basis([2]) s[] # s[2] + s[1] # s[1] + s[2] # s[] """ import sage.libs.lrcalc.lrcalc as lrcalc T = self.tensor_square() return T._from_dict( lrcalc.coprod(mu, all=1) )