Beispiel #1
0
def _select_function(sort, typ):
    if typ in ['F', 'D']:
        if callable(sort):
            # assume the user knows what they're doing
            sfunction = sort
        elif sort == 'lhp':
            sfunction = lambda x, y: (np.real(x/y) < 0.0)
        elif sort == 'rhp':
            sfunction = lambda x, y: (np.real(x/y) >= 0.0)
        elif sort == 'iuc':
            sfunction = lambda x, y: (abs(x/y) <= 1.0)
        elif sort == 'ouc':
            sfunction = lambda x, y: (abs(x/y) > 1.0)
        else:
            raise ValueError("sort parameter must be None, a callable, or "
                "one of ('lhp','rhp','iuc','ouc')")
    elif typ in ['f', 'd']:
        if callable(sort):
            # assume the user knows what they're doing
            sfunction = sort
        elif sort == 'lhp':
            sfunction = lambda x, y, z: (np.real((x+y*1j)/z) < 0.0)
        elif sort == 'rhp':
            sfunction = lambda x, y, z: (np.real((x+y*1j)/z) >= 0.0)
        elif sort == 'iuc':
            sfunction = lambda x, y, z: (abs((x+y*1j)/z) <= 1.0)
        elif sort == 'ouc':
            sfunction = lambda x, y, z: (abs((x+y*1j)/z) > 1.0)
        else:
            raise ValueError("sort parameter must be None, a callable, or "
                "one of ('lhp','rhp','iuc','ouc')")
    else:  # to avoid an error later
        raise ValueError("dtype %s not understood" % typ)
    return sfunction
Beispiel #2
0
def _select_function(sort, typ):
    if typ in ['F', 'D']:
        if callable(sort):
            # assume the user knows what they're doing
            sfunction = sort
        elif sort == 'lhp':
            sfunction = lambda x, y: (np.real(x / y) < 0.0)
        elif sort == 'rhp':
            sfunction = lambda x, y: (np.real(x / y) >= 0.0)
        elif sort == 'iuc':
            sfunction = lambda x, y: (abs(x / y) <= 1.0)
        elif sort == 'ouc':
            sfunction = lambda x, y: (abs(x / y) > 1.0)
        else:
            raise ValueError("sort parameter must be None, a callable, or "
                             "one of ('lhp','rhp','iuc','ouc')")
    elif typ in ['f', 'd']:
        if callable(sort):
            # assume the user knows what they're doing
            sfunction = sort
        elif sort == 'lhp':
            sfunction = lambda x, y, z: (np.real((x + y * 1j) / z) < 0.0)
        elif sort == 'rhp':
            sfunction = lambda x, y, z: (np.real((x + y * 1j) / z) >= 0.0)
        elif sort == 'iuc':
            sfunction = lambda x, y, z: (abs((x + y * 1j) / z) <= 1.0)
        elif sort == 'ouc':
            sfunction = lambda x, y, z: (abs((x + y * 1j) / z) > 1.0)
        else:
            raise ValueError("sort parameter must be None, a callable, or "
                             "one of ('lhp','rhp','iuc','ouc')")
    else:  # to avoid an error later
        raise ValueError("dtype %s not understood" % typ)
    return sfunction
Beispiel #3
0
    def set_bandwidth(self, bw_method=None):
        """Compute the estimator bandwidth with given method.

        The new bandwidth calculated after a call to `set_bandwidth` is used
        for subsequent evaluations of the estimated density.

        Parameters
        ----------
        bw_method : str, scalar or callable, optional
            The method used to calculate the estimator bandwidth.  This can be
            'scott', 'silverman', a scalar constant or a callable.  If a
            scalar, this will be used directly as `kde.factor`.  If a callable,
            it should take a `gaussian_kde` instance as only parameter and
            return a scalar.  If None (default), nothing happens; the current
            `kde.covariance_factor` method is kept.

        Notes
        -----
        .. versionadded:: 0.11

        Examples
        --------
        >>> x1 = np.array([-7, -5, 1, 4, 5.])
        >>> kde = stats.gaussian_kde(x1)
        >>> xs = np.linspace(-10, 10, num=50)
        >>> y1 = kde(xs)
        >>> kde.set_bandwidth(bw_method='silverman')
        >>> y2 = kde(xs)
        >>> kde.set_bandwidth(bw_method=kde.factor / 3.)
        >>> y3 = kde(xs)

        >>> fig = plt.figure()
        >>> ax = fig.add_subplot(111)
        >>> ax.plot(x1, np.ones(x1.shape) / (4. * x1.size), 'bo',
        ...         label='Data points (rescaled)')
        >>> ax.plot(xs, y1, label='Scott (default)')
        >>> ax.plot(xs, y2, label='Silverman')
        >>> ax.plot(xs, y3, label='Const (1/3 * Silverman)')
        >>> ax.legend()
        >>> plt.show()

        """
        if bw_method is None:
            pass
        elif bw_method == 'scott':
            self.covariance_factor = self.scotts_factor
        elif bw_method == 'silverman':
            self.covariance_factor = self.silverman_factor
        elif np.isscalar(bw_method) and not isinstance(bw_method, string_types):
            self._bw_method = 'use constant'
            self.covariance_factor = lambda: bw_method
        elif callable(bw_method):
            self._bw_method = bw_method
            self.covariance_factor = lambda: self._bw_method(self)
        else:
            msg = "`bw_method` should be 'scott', 'silverman', a scalar " \
                  "or a callable."
            raise ValueError(msg)

        self._compute_covariance()
Beispiel #4
0
    def set_bandwidth(self, bw_method=None):
        """Compute the estimator bandwidth with given method.

        The new bandwidth calculated after a call to `set_bandwidth` is used
        for subsequent evaluations of the estimated density.

        Parameters
        ----------
        bw_method : str, scalar or callable, optional
            The method used to calculate the estimator bandwidth.  This can be
            'scott', 'silverman', a scalar constant or a callable.  If a
            scalar, this will be used directly as `kde.factor`.  If a callable,
            it should take a `gaussian_kde` instance as only parameter and
            return a scalar.  If None (default), nothing happens; the current
            `kde.covariance_factor` method is kept.

        Notes
        -----
        .. versionadded:: 0.11

        Examples
        --------
        >>> import scipy.stats as stats
        >>> x1 = np.array([-7, -5, 1, 4, 5.])
        >>> kde = stats.gaussian_kde(x1)
        >>> xs = np.linspace(-10, 10, num=50)
        >>> y1 = kde(xs)
        >>> kde.set_bandwidth(bw_method='silverman')
        >>> y2 = kde(xs)
        >>> kde.set_bandwidth(bw_method=kde.factor / 3.)
        >>> y3 = kde(xs)
        >>> import matplotlib.pyplot as plt
        >>> fig, ax = plt.subplots()
        >>> ax.plot(x1, np.ones(x1.shape) / (4. * x1.size), 'bo',
        ...         label='Data points (rescaled)')
        >>> ax.plot(xs, y1, label='Scott (default)')
        >>> ax.plot(xs, y2, label='Silverman')
        >>> ax.plot(xs, y3, label='Const (1/3 * Silverman)')
        >>> ax.legend()
        >>> plt.show()
        """
        if bw_method is None:
            pass
        elif bw_method == 'scott':
            self.covariance_factor = self.scotts_factor
        elif bw_method == 'silverman':
            self.covariance_factor = self.silverman_factor
        elif np.isscalar(bw_method) and not isinstance(bw_method, string_types):
            self._bw_method = 'use constant'
            self.covariance_factor = lambda: bw_method
        elif callable(bw_method):
            self._bw_method = bw_method
            self.covariance_factor = lambda: self._bw_method(self)
        else:
            msg = "`bw_method` should be 'scott', 'silverman', a scalar " \
                  "or a callable."
            raise ValueError(msg)

        self._compute_covariance()
Beispiel #5
0
    def _init_function(self, r):
        if isinstance(self.function, str):
            self.function = self.function.lower()
            _mapped = {
                'inverse': 'inverse_multiquadric',
                'inverse multiquadric': 'inverse_multiquadric',
                'thin-plate': 'thin_plate'
            }
            if self.function in _mapped:
                self.function = _mapped[self.function]

            func_name = "_h_" + self.function
            if hasattr(self, func_name):
                self._function = getattr(self, func_name)
            else:
                functionlist = [
                    x[3:] for x in dir(self) if x.startswith('_h_')
                ]
                raise ValueError("function must be a callable or one of " +
                                 ", ".join(functionlist))
            self._function = getattr(self, "_h_" + self.function)
        elif callable(self.function):
            allow_one = False
            if hasattr(self.function, 'func_code') or \
                   hasattr(self.function, '__code__'):
                val = self.function
                allow_one = True
            elif hasattr(self.function, "im_func"):
                val = get_method_function(self.function)
            elif hasattr(self.function, "__call__"):
                val = get_method_function(self.function.__call__)
            else:
                raise ValueError(
                    "Cannot determine number of arguments to function")

            argcount = get_function_code(val).co_argcount
            if allow_one and argcount == 1:
                self._function = self.function
            elif argcount == 2:
                if sys.version_info[0] >= 3:
                    self._function = self.function.__get__(self, Rbf_poly_bias)
                else:
                    import new
                    self._function = new.instancemethod(
                        self.function, self, Rbf_poly_bias)
            else:
                raise ValueError(
                    "Function argument must take 1 or 2 arguments.")

        a0 = self._function(r)
        if a0.shape != r.shape:
            raise ValueError(
                "Callable must take array and return array of the same shape")
        return a0
Beispiel #6
0
    def _init_function(self, r):
        if isinstance(self.function, str):
            self.function = self.function.lower()
            _mapped = {'inverse': 'inverse_multiquadric',
                       'inverse multiquadric': 'inverse_multiquadric',
                       'thin-plate': 'thin_plate'}
            if self.function in _mapped:
                self.function = _mapped[self.function]

            func_name = "_h_" + self.function
            if hasattr(self, func_name):
                self._function = getattr(self, func_name)
            else:
                functionlist = [x[3:] for x in dir(self)
                                if x.startswith('_h_')]
                raise ValueError("function must be a callable or one of " +
                                 ", ".join(functionlist))
            self._function = getattr(self, "_h_"+self.function)
        elif callable(self.function):
            allow_one = False
            if hasattr(self.function, 'func_code') or \
               hasattr(self.function, '__code__'):
                val = self.function
                allow_one = True
            elif hasattr(self.function, "im_func"):
                val = get_method_function(self.function)
            elif hasattr(self.function, "__call__"):
                val = get_method_function(self.function.__call__)
            else:
                raise ValueError("Cannot determine number of arguments to "
                                 "function")

            argcount = get_function_code(val).co_argcount
            if allow_one and argcount == 1:
                self._function = self.function
            elif argcount == 2:
                if sys.version_info[0] >= 3:
                    self._function = self.function.__get__(self, Rbf)
                else:
                    import new
                    self._function = new.instancemethod(self.function, self,
                                                        Rbf)
            else:
                raise ValueError("Function argument must take 1 or 2 "
                                 "arguments.")

        a0 = self._function(r)
        if a0.shape != r.shape:
            raise ValueError("Callable must take array and return array of "
                             "the same shape")
        return a0
Beispiel #7
0
def _select_function(sort):
    if callable(sort):
        # assume the user knows what they're doing
        sfunction = sort
    elif sort == 'lhp':
        sfunction = lambda x, y: (np.real(x/y) < 0.0)
    elif sort == 'rhp':
        sfunction = lambda x, y: (np.real(x/y) > 0.0)
    elif sort == 'iuc':
        sfunction = lambda x, y: (abs(x/y) < 1.0)
    elif sort == 'ouc':
        sfunction = lambda x, y: (abs(x/y) > 1.0)
    else:
        raise ValueError("sort parameter must be None, a callable, or "
                         "one of ('lhp','rhp','iuc','ouc')")

    return sfunction
Beispiel #8
0
def _select_function(sort):
    if callable(sort):
        # assume the user knows what they're doing
        sfunction = sort
    elif sort == 'lhp':
        sfunction = lambda x, y: (np.real(x / y) < 0.0)
    elif sort == 'rhp':
        sfunction = lambda x, y: (np.real(x / y) > 0.0)
    elif sort == 'iuc':
        sfunction = lambda x, y: (abs(x / y) < 1.0)
    elif sort == 'ouc':
        sfunction = lambda x, y: (abs(x / y) > 1.0)
    else:
        raise ValueError("sort parameter must be None, a callable, or "
                         "one of ('lhp','rhp','iuc','ouc')")

    return sfunction
Beispiel #9
0
def _select_function(sort):
    if callable(sort):
        # assume the user knows what they're doing
        sfunction = sort
    elif sort == 'lhp':
        sfunction = _lhp
    elif sort == 'rhp':
        sfunction = _rhp
    elif sort == 'iuc':
        sfunction = _iuc
    elif sort == 'ouc':
        sfunction = _ouc
    else:
        raise ValueError("sort parameter must be None, a callable, or "
                         "one of ('lhp','rhp','iuc','ouc')")

    return sfunction
Beispiel #10
0
def _select_function(sort):
    if callable(sort):
        # assume the user knows what they're doing
        sfunction = sort
    elif sort == 'lhp':
        sfunction = _lhp
    elif sort == 'rhp':
        sfunction = _rhp
    elif sort == 'iuc':
        sfunction = _iuc
    elif sort == 'ouc':
        sfunction = _ouc
    else:
        raise ValueError("sort parameter must be None, a callable, or "
                         "one of ('lhp','rhp','iuc','ouc')")

    return sfunction
Beispiel #11
0
    def set_bandwidth(self, bw_method=None):
        """Compute the estimator bandwidth with given method.

        The new bandwidth calculated after a call to `set_bandwidth` is used
        for subsequent evaluations of the estimated density.

        Parameters
        ----------
        bw_method : str, scalar or callable, optional
            The method used to calculate the estimator bandwidth.  This can be
            'scott', 'silverman', a scalar constant or a callable.  If a
            scalar, this will be used directly as `kde.factor`.  If a callable,
            it should take a `gaussian_kde` instance as only parameter and
            return a scalar.  If None (default), nothing happens; the current
            `kde.covariance_factor` method is kept.
        
        """
        if bw_method is None:
            pass
        elif bw_method == 'scott':
            self.covariance_factor = self.scotts_factor
        elif bw_method == 'silverman':
            self.covariance_factor = self.silverman_factor
        elif np.isscalar(bw_method) and not isinstance(bw_method,
                                                       string_types):
            self._bw_method = 'use constant'
            self.covariance_factor = lambda: bw_method
        elif callable(bw_method):
            self._bw_method = bw_method
            self.covariance_factor = lambda: self._bw_method(self)
        else:
            msg = "`bw_method` should be 'scott', 'silverman', a scalar " \
                  "or a callable."
            raise ValueError(msg)

        self._compute_covariance()
Beispiel #12
0
def root_scalar(f,
                args=(),
                method=None,
                bracket=None,
                fprime=None,
                fprime2=None,
                x0=None,
                x1=None,
                xtol=None,
                rtol=None,
                maxiter=None,
                options=None):
    """
    Find a root of a scalar function.

    Parameters
    ----------
    f : callable
        A function to find a root of.
    args : tuple, optional
        Extra arguments passed to the objective function and its derivative(s).
    method : str, optional
        Type of solver.  Should be one of

            - 'bisect'    :ref:`(see here) <optimize.root_scalar-bisect>`
            - 'brentq'    :ref:`(see here) <optimize.root_scalar-brentq>`
            - 'brenth'    :ref:`(see here) <optimize.root_scalar-brenth>`
            - 'ridder'    :ref:`(see here) <optimize.root_scalar-ridder>`
            - 'toms748'    :ref:`(see here) <optimize.root_scalar-toms748>`
            - 'newton'    :ref:`(see here) <optimize.root_scalar-newton>`
            - 'secant'    :ref:`(see here) <optimize.root_scalar-secant>`
            - 'halley'    :ref:`(see here) <optimize.root_scalar-halley>`

    bracket: A sequence of 2 floats, optional
        An interval bracketing a root.  `f(x, *args)` must have different
        signs at the two endpoints.
    x0 : float, optional
        Initial guess.
    x1 : float, optional
        A second guess.
    fprime : bool or callable, optional
        If `fprime` is a boolean and is True, `f` is assumed to return the
        value of derivative along with the objective function.
        `fprime` can also be a callable returning the derivative of `f`. In
        this case, it must accept the same arguments as `f`.
    fprime2 : bool or callable, optional
        If `fprime2` is a boolean and is True, `f` is assumed to return the
        value of 1st and 2nd derivatives along with the objective function.
        `fprime2` can also be a callable returning the 2nd derivative of `f`.
        In this case, it must accept the same arguments as `f`.
    xtol : float, optional
        Tolerance (absolute) for termination.
    rtol : float, optional
        Tolerance (relative) for termination.
    maxiter : int, optional
        Maximum number of iterations.
    options : dict, optional
        A dictionary of solver options. E.g. ``k``, see
        :obj:`show_options()` for details.

    Returns
    -------
    sol : RootResults
        The solution represented as a ``RootResults`` object.
        Important attributes are: ``root`` the solution , ``converged`` a
        boolean flag indicating if the algorithm exited successfully and
        ``flag`` which describes the cause of the termination. See
        `RootResults` for a description of other attributes.

    See also
    --------
    show_options : Additional options accepted by the solvers
    root : Find a root of a vector function.

    Notes
    -----
    This section describes the available solvers that can be selected by the
    'method' parameter.

    The default is to use the best method available for the situation
    presented.
    If a bracket is provided, it may use one of the bracketing methods.
    If a derivative and an initial value are specified, it may
    select one of the derivative-based methods.
    If no method is judged applicable, it will raise an Exception.


    Examples
    --------

    Find the root of a simple cubic

    >>> from scipy import optimize
    >>> def f(x):
    ...     return (x**3 - 1)  # only one real root at x = 1

    >>> def fprime(x):
    ...     return 3*x**2

    The `brentq` method takes as input a bracket

    >>> sol = optimize.root_scalar(f, bracket=[0, 3], method='brentq')
    >>> sol.root, sol.iterations, sol.function_calls
    (1.0, 10, 11)

    The `newton` method takes as input a single point and uses the derivative(s)

    >>> sol = optimize.root_scalar(f, x0=0.2, fprime=fprime, method='newton')
    >>> sol.root, sol.iterations, sol.function_calls
    (1.0, 11, 22)

    The function can provide the value and derivative(s) in a single call.

    >>> def f_p_pp(x):
    ...     return (x**3 - 1), 3*x**2, 6*x

    >>> sol = optimize.root_scalar(f_p_pp, x0=0.2, fprime=True, method='newton')
    >>> sol.root, sol.iterations, sol.function_calls
    (1.0, 11, 11)

    >>> sol = optimize.root_scalar(f_p_pp, x0=0.2, fprime=True, fprime2=True, method='halley')
    >>> sol.root, sol.iterations, sol.function_calls
    (1.0, 7, 8)


    """
    if not isinstance(args, tuple):
        args = (args, )

    if options is None:
        options = {}

    # fun also returns the derivative(s)
    is_memoized = False
    if fprime2 is not None and not callable(fprime2):
        if bool(fprime2):
            f = MemoizeDer(f)
            is_memoized = True
            fprime2 = f.fprime2
            fprime = f.fprime
        else:
            fprime2 = None
    if fprime is not None and not callable(fprime):
        if bool(fprime):
            f = MemoizeDer(f)
            is_memoized = True
            fprime = f.fprime
        else:
            fprime = None

    # respect solver-specific default tolerances - only pass in if actually set
    kwargs = {}
    for k in ['xtol', 'rtol', 'maxiter']:
        v = locals().get(k)
        if v is not None:
            kwargs[k] = v

    # Set any solver-specific options
    if options:
        kwargs.update(options)
    # Always request full_output from the underlying method as _root_scalar
    # always returns a RootResults object
    kwargs.update(full_output=True, disp=False)

    # Pick a method if not specified.
    # Use the "best" method available for the situation.
    if not method:
        if bracket:
            method = 'brentq'
        elif x0 is not None:
            if fprime:
                if fprime2:
                    method = 'halley'
                else:
                    method = 'newton'
            else:
                method = 'secant'
    if not method:
        raise ValueError('Unable to select a solver as neither bracket '
                         'nor starting point provided.')

    meth = method.lower()
    map2underlying = {'halley': 'newton', 'secant': 'newton'}

    try:
        methodc = getattr(optzeros, map2underlying.get(meth, meth))
    except AttributeError:
        raise ValueError('Unknown solver %s' % meth)

    if meth in ['bisect', 'ridder', 'brentq', 'brenth', 'toms748']:
        if not isinstance(bracket, (list, tuple, np.ndarray)):
            raise ValueError('Bracket needed for %s' % method)

        a, b = bracket[:2]
        r, sol = methodc(f, a, b, args=args, **kwargs)
    elif meth in ['secant']:
        if x0 is None:
            raise ValueError('x0 must not be None for %s' % method)
        if x1 is None:
            raise ValueError('x1 must not be None for %s' % method)
        if 'xtol' in kwargs:
            kwargs['tol'] = kwargs.pop('xtol')
        r, sol = methodc(f,
                         x0,
                         args=args,
                         fprime=None,
                         fprime2=None,
                         x1=x1,
                         **kwargs)
    elif meth in ['newton']:
        if x0 is None:
            raise ValueError('x0 must not be None for %s' % method)
        if not fprime:
            raise ValueError('fprime must be specified for %s' % method)
        if 'xtol' in kwargs:
            kwargs['tol'] = kwargs.pop('xtol')
        r, sol = methodc(f,
                         x0,
                         args=args,
                         fprime=fprime,
                         fprime2=None,
                         **kwargs)
    elif meth in ['halley']:
        if x0 is None:
            raise ValueError('x0 must not be None for %s' % method)
        if not fprime:
            raise ValueError('fprime must be specified for %s' % method)
        if not fprime2:
            raise ValueError('fprime2 must be specified for %s' % method)
        if 'xtol' in kwargs:
            kwargs['tol'] = kwargs.pop('xtol')
        r, sol = methodc(f,
                         x0,
                         args=args,
                         fprime=fprime,
                         fprime2=fprime2,
                         **kwargs)
    else:
        raise ValueError('Unknown solver %s' % method)

    if is_memoized:
        # Replace the function_calls count with the memoized count.
        # Avoids double and triple-counting.
        n_calls = f.n_calls
        sol.function_calls = n_calls

    return sol
Beispiel #13
0
def cdist(XA, XB, metric='euclidean', *args, **kwargs):
    """
    """
    kwargs = _args_to_kwargs_xdist(args, kwargs, metric, "cdist")

    XA = np.asarray(XA, order='c')
    XB = np.asarray(XB, order='c')

    # The C code doesn't do striding.
    XA = _copy_array_if_base_present(XA)
    XB = _copy_array_if_base_present(XB)

    s = XA.shape
    sB = XB.shape

    if len(s) != 2:
        raise ValueError('XA must be a 2-dimensional array.')
    if len(sB) != 2:
        raise ValueError('XB must be a 2-dimensional array.')
    if s[1] != sB[1]:
        raise ValueError('XA and XB must have the same number of columns '
                         '(i.e. feature dimension.)')

    mA = s[0]
    mB = sB[0]
    n = s[1]
    out = kwargs.pop("out", None)
    if out is None:
        dm = np.empty((mA, mB), dtype=np.double)
    else:
        if out.shape != (mA, mB):
            raise ValueError("Output array has incorrect shape.")
        if not out.flags.c_contiguous:
            raise ValueError("Output array must be C-contiguous.")
        if out.dtype != np.double:
            raise ValueError("Output array must be double type.")
        dm = out

    # compute blacklist for deprecated kwargs
    if(metric in _METRICS['minkowski'].aka or
       metric in _METRICS['wminkowski'].aka or
       metric in ['test_minkowski'] or
       metric in [minkowski]):
        kwargs_blacklist = ["V", "VI"]
    elif(metric in _METRICS['seuclidean'].aka or
         metric == 'test_seuclidean' or metric == seuclidean):
        kwargs_blacklist = ["p", "w", "VI"]
    elif(metric in _METRICS['mahalanobis'].aka or
         metric == 'test_mahalanobis' or metric == mahalanobis):
        kwargs_blacklist = ["p", "w", "V"]
    else:
        kwargs_blacklist = ["p", "V", "VI"]

    _filter_deprecated_kwargs(kwargs, kwargs_blacklist)

    if callable(metric):

        mstr = getattr(metric, '__name__', 'Unknown')
        metric_name = _METRIC_ALIAS.get(mstr, None)

        XA, XB, typ, kwargs = _validate_cdist_input(XA, XB, mA, mB, n,
                                                    metric_name, **kwargs)

        for i in xrange(0, mA):
            for j in xrange(0, mB):
                dm[i, j] = metric(XA[i], XB[j], **kwargs)

    elif isinstance(metric, string_types):
        mstr = metric.lower()

        # NOTE: C-version still does not support weights
        if "w" in kwargs and not mstr.startswith("test_"):
            if(mstr in _METRICS['seuclidean'].aka or
               mstr in _METRICS['mahalanobis'].aka):
                raise ValueError("metric %s incompatible with weights" % mstr)
            # need to use python version for weighting
            kwargs['out'] = out
            mstr = "test_%s" % mstr

        metric_name = _METRIC_ALIAS.get(mstr, None)
        if metric_name is not None:
            XA, XB, typ, kwargs = _validate_cdist_input(XA, XB, mA, mB, n,
                                                        metric_name, **kwargs)
            # get cdist wrapper
            cdist_fn = getattr(_distance_wrap,
                               "cdist_%s_%s_wrap" % (metric_name, typ))
            cdist_fn(XA, XB, dm, **kwargs)
            return dm

        elif mstr.startswith("test_"):
            if mstr in _TEST_METRICS:
                dm = cdist(XA, XB, _TEST_METRICS[mstr], **kwargs)
            else:
                raise ValueError('Unknown "Test" Distance Metric: %s' % mstr[5:])
        else:
            raise ValueError('Unknown Distance Metric: %s' % mstr)
    else:
        raise TypeError('2nd argument metric must be a string identifier '
                        'or a function.')
    return dm
Beispiel #14
0
def cdist(XA,
          XB,
          metric='euclidean',
          p=None,
          V=None,
          VI=None,
          w=None,
          out=None):
    """
    Computes distance between each pair of the two collections of inputs.

    See Notes for common calling conventions.

    Parameters
    ----------
    XA : ndarray
        An :math:`m_A` by :math:`n` array of :math:`m_A`
        original observations in an :math:`n`-dimensional space.
        Inputs are converted to float type.
    XB : ndarray
        An :math:`m_B` by :math:`n` array of :math:`m_B`
        original observations in an :math:`n`-dimensional space.
        Inputs are converted to float type.
    metric : str or callable, optional
        The distance metric to use.  If a string, the distance function can be
        'braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation',
        'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'kulsinski',
        'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao',
        'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean',
        'wminkowski', 'yule'.
    p : double, optional
        The p-norm to apply
        Only for Minkowski, weighted and unweighted. Default: 2.
    w : ndarray, optional
        The weight vector.
        Only for weighted Minkowski. Mandatory
    V : ndarray, optional
        The variance vector
        Only for standardized Euclidean. Default: var(vstack([XA, XB]), axis=0, ddof=1)
    VI : ndarray, optional
        The inverse of the covariance matrix
        Only for Mahalanobis. Default: inv(cov(vstack([XA, XB]).T)).T
    out : ndarray, optional
        If not None, the distance matrix Y is stored in this array

    Returns
    -------
    Y : ndarray
        A :math:`m_A` by :math:`m_B` distance matrix is returned.
        For each :math:`i` and :math:`j`, the metric
        ``dist(u=XA[i], v=XB[j])`` is computed and stored in the
        :math:`ij` th entry.

    Raises
    ------
    ValueError
        An exception is thrown if `XA` and `XB` do not have
        the same number of columns.

    Notes
    -----
    The following are common calling conventions:

    1. ``Y = cdist(XA, XB, 'euclidean')``

       Computes the distance between :math:`m` points using
       Euclidean distance (2-norm) as the distance metric between the
       points. The points are arranged as :math:`m`
       :math:`n`-dimensional row vectors in the matrix X.

    2. ``Y = cdist(XA, XB, 'minkowski', p)``

       Computes the distances using the Minkowski distance
       :math:`||u-v||_p` (:math:`p`-norm) where :math:`p \\geq 1`.

    3. ``Y = cdist(XA, XB, 'cityblock')``

       Computes the city block or Manhattan distance between the
       points.

    4. ``Y = cdist(XA, XB, 'seuclidean', V=None)``

       Computes the standardized Euclidean distance. The standardized
       Euclidean distance between two n-vectors ``u`` and ``v`` is

       .. math::

          \\sqrt{\\sum {(u_i-v_i)^2 / V[x_i]}}.

       V is the variance vector; V[i] is the variance computed over all
       the i'th components of the points. If not passed, it is
       automatically computed.

    5. ``Y = cdist(XA, XB, 'sqeuclidean')``

       Computes the squared Euclidean distance :math:`||u-v||_2^2` between
       the vectors.

    6. ``Y = cdist(XA, XB, 'cosine')``

       Computes the cosine distance between vectors u and v,

       .. math::

          1 - \\frac{u \\cdot v}
                   {{||u||}_2 {||v||}_2}

       where :math:`||*||_2` is the 2-norm of its argument ``*``, and
       :math:`u \\cdot v` is the dot product of :math:`u` and :math:`v`.

    7. ``Y = cdist(XA, XB, 'correlation')``

       Computes the correlation distance between vectors u and v. This is

       .. math::

          1 - \\frac{(u - \\bar{u}) \\cdot (v - \\bar{v})}
                   {{||(u - \\bar{u})||}_2 {||(v - \\bar{v})||}_2}

       where :math:`\\bar{v}` is the mean of the elements of vector v,
       and :math:`x \\cdot y` is the dot product of :math:`x` and :math:`y`.


    8. ``Y = cdist(XA, XB, 'hamming')``

       Computes the normalized Hamming distance, or the proportion of
       those vector elements between two n-vectors ``u`` and ``v``
       which disagree. To save memory, the matrix ``X`` can be of type
       boolean.

    9. ``Y = cdist(XA, XB, 'jaccard')``

       Computes the Jaccard distance between the points. Given two
       vectors, ``u`` and ``v``, the Jaccard distance is the
       proportion of those elements ``u[i]`` and ``v[i]`` that
       disagree where at least one of them is non-zero.

    10. ``Y = cdist(XA, XB, 'chebyshev')``

       Computes the Chebyshev distance between the points. The
       Chebyshev distance between two n-vectors ``u`` and ``v`` is the
       maximum norm-1 distance between their respective elements. More
       precisely, the distance is given by

       .. math::

          d(u,v) = \\max_i {|u_i-v_i|}.

    11. ``Y = cdist(XA, XB, 'canberra')``

       Computes the Canberra distance between the points. The
       Canberra distance between two points ``u`` and ``v`` is

       .. math::

         d(u,v) = \\sum_i \\frac{|u_i-v_i|}
                              {|u_i|+|v_i|}.

    12. ``Y = cdist(XA, XB, 'braycurtis')``

       Computes the Bray-Curtis distance between the points. The
       Bray-Curtis distance between two points ``u`` and ``v`` is


       .. math::

            d(u,v) = \\frac{\\sum_i (|u_i-v_i|)}
                          {\\sum_i (|u_i+v_i|)}

    13. ``Y = cdist(XA, XB, 'mahalanobis', VI=None)``

       Computes the Mahalanobis distance between the points. The
       Mahalanobis distance between two points ``u`` and ``v`` is
       :math:`\\sqrt{(u-v)(1/V)(u-v)^T}` where :math:`(1/V)` (the ``VI``
       variable) is the inverse covariance. If ``VI`` is not None,
       ``VI`` will be used as the inverse covariance matrix.

    14. ``Y = cdist(XA, XB, 'yule')``

       Computes the Yule distance between the boolean
       vectors. (see `yule` function documentation)

    15. ``Y = cdist(XA, XB, 'matching')``

       Synonym for 'hamming'.

    16. ``Y = cdist(XA, XB, 'dice')``

       Computes the Dice distance between the boolean vectors. (see
       `dice` function documentation)

    17. ``Y = cdist(XA, XB, 'kulsinski')``

       Computes the Kulsinski distance between the boolean
       vectors. (see `kulsinski` function documentation)

    18. ``Y = cdist(XA, XB, 'rogerstanimoto')``

       Computes the Rogers-Tanimoto distance between the boolean
       vectors. (see `rogerstanimoto` function documentation)

    19. ``Y = cdist(XA, XB, 'russellrao')``

       Computes the Russell-Rao distance between the boolean
       vectors. (see `russellrao` function documentation)

    20. ``Y = cdist(XA, XB, 'sokalmichener')``

       Computes the Sokal-Michener distance between the boolean
       vectors. (see `sokalmichener` function documentation)

    21. ``Y = cdist(XA, XB, 'sokalsneath')``

       Computes the Sokal-Sneath distance between the vectors. (see
       `sokalsneath` function documentation)


    22. ``Y = cdist(XA, XB, 'wminkowski')``

       Computes the weighted Minkowski distance between the
       vectors. (see `wminkowski` function documentation)

    23. ``Y = cdist(XA, XB, f)``

       Computes the distance between all pairs of vectors in X
       using the user supplied 2-arity function f. For example,
       Euclidean distance between the vectors could be computed
       as follows::

         dm = cdist(XA, XB, lambda u, v: np.sqrt(((u-v)**2).sum()))

       Note that you should avoid passing a reference to one of
       the distance functions defined in this library. For example,::

         dm = cdist(XA, XB, sokalsneath)

       would calculate the pair-wise distances between the vectors in
       X using the Python function `sokalsneath`. This would result in
       sokalsneath being called :math:`{n \\choose 2}` times, which
       is inefficient. Instead, the optimized C version is more
       efficient, and we call it using the following syntax::

         dm = cdist(XA, XB, 'sokalsneath')

    Examples
    --------
    Find the Euclidean distances between four 2-D coordinates:

    >>> from scipy.spatial import distance
    >>> coords = [(35.0456, -85.2672),
    ...           (35.1174, -89.9711),
    ...           (35.9728, -83.9422),
    ...           (36.1667, -86.7833)]
    >>> distance.cdist(coords, coords, 'euclidean')
    array([[ 0.    ,  4.7044,  1.6172,  1.8856],
           [ 4.7044,  0.    ,  6.0893,  3.3561],
           [ 1.6172,  6.0893,  0.    ,  2.8477],
           [ 1.8856,  3.3561,  2.8477,  0.    ]])


    Find the Manhattan distance from a 3-D point to the corners of the unit
    cube:

    >>> a = np.array([[0, 0, 0],
    ...               [0, 0, 1],
    ...               [0, 1, 0],
    ...               [0, 1, 1],
    ...               [1, 0, 0],
    ...               [1, 0, 1],
    ...               [1, 1, 0],
    ...               [1, 1, 1]])
    >>> b = np.array([[ 0.1,  0.2,  0.4]])
    >>> distance.cdist(a, b, 'cityblock')
    array([[ 0.7],
           [ 0.9],
           [ 1.3],
           [ 1.5],
           [ 1.5],
           [ 1.7],
           [ 2.1],
           [ 2.3]])

    """
    # You can also call this as:
    #     Y = cdist(XA, XB, 'test_abc')
    # where 'abc' is the metric being tested.  This computes the distance
    # between all pairs of vectors in XA and XB using the distance metric 'abc'
    # but with a more succinct, verifiable, but less efficient implementation.

    # Store input arguments to check whether we can modify later.
    input_XA, input_XB = XA, XB

    XA = np.asarray(XA, order='c')
    XB = np.asarray(XB, order='c')

    # The C code doesn't do striding.
    XA = _copy_array_if_base_present(XA)
    XB = _copy_array_if_base_present(XB)

    s = XA.shape
    sB = XB.shape

    if len(s) != 2:
        raise ValueError('XA must be a 2-dimensional array.')
    if len(sB) != 2:
        raise ValueError('XB must be a 2-dimensional array.')
    if s[1] != sB[1]:
        raise ValueError('XA and XB must have the same number of columns '
                         '(i.e. feature dimension.)')

    mA = s[0]
    mB = sB[0]
    n = s[1]
    if out is None:
        dm = np.zeros((mA, mB), dtype=np.double)
    else:
        if out.shape != (mA, mB):
            raise ValueError("Output array has wrong dimension.")
        if not out.flags.c_contiguous:
            raise ValueError("Output array must be C-contiguous.")
        if out.dtype != np.double:
            raise ValueError("Output array must be double type.")
        dm = out

    # validate input for multi-args metrics
    if (metric in ['minkowski', 'mi', 'm', 'pnorm', 'test_minkowski']
            or metric == minkowski):
        p = _validate_minkowski_args(p)
        _filter_deprecated_kwargs(w=w, V=V, VI=VI)
    elif (metric in ['wminkowski', 'wmi', 'wm', 'wpnorm', 'test_wminkowski']
          or metric == wminkowski):
        p, w = _validate_wminkowski_args(p, w)
        _filter_deprecated_kwargs(V=V, VI=VI)
    elif (metric in ['seuclidean', 'se', 's', 'test_seuclidean']
          or metric == seuclidean):
        V = _validate_seuclidean_args(np.vstack([XA, XB]), n, V)
        _filter_deprecated_kwargs(p=p, w=w, VI=VI)
    elif (metric in ['mahalanobis', 'mahal', 'mah', 'test_mahalanobis']
          or metric == mahalanobis):
        VI = _validate_mahalanobis_args(np.vstack([XA, XB]), mA + mB, n, VI)
        _filter_deprecated_kwargs(p=p, w=w, V=V)
    else:
        _filter_deprecated_kwargs(p=p, w=w, V=V, VI=VI)

    if callable(metric):
        # metrics that expects only doubles:
        if metric in [
                braycurtis, canberra, chebyshev, cityblock, correlation,
                cosine, euclidean, mahalanobis, minkowski, sqeuclidean,
                seuclidean, wminkowski
        ]:
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
        # metrics that expects only bools:
        elif metric in [
                dice, kulsinski, rogerstanimoto, russellrao, sokalmichener,
                sokalsneath, yule
        ]:
            XA = _convert_to_bool(XA)
            XB = _convert_to_bool(XB)
        # metrics that may receive multiple types:
        elif metric in [matching, hamming, jaccard]:
            if XA.dtype == bool:
                XA = _convert_to_bool(XA)
                XB = _convert_to_bool(XB)
            else:
                XA = _convert_to_double(XA)
                XB = _convert_to_double(XB)

        # metrics that expects multiple args
        if metric == minkowski:
            metric = partial(minkowski, p=p)
        elif metric == wminkowski:
            metric = partial(wminkowski, p=p, w=w)
        elif metric == seuclidean:
            metric = partial(seuclidean, V=V)
        elif metric == mahalanobis:
            metric = partial(mahalanobis, VI=VI)

        for i in xrange(0, mA):
            for j in xrange(0, mB):
                dm[i, j] = metric(XA[i, :], XB[j, :])

    elif isinstance(metric, string_types):
        mstr = metric.lower()

        try:
            validate, cdist_fn = _SIMPLE_CDIST[mstr]
            XA = validate(XA)
            XB = validate(XB)
            cdist_fn(XA, XB, dm)
            return dm
        except KeyError:
            pass

        if mstr in ['matching', 'hamming', 'hamm', 'ha', 'h']:
            if XA.dtype == bool:
                XA = _convert_to_bool(XA)
                XB = _convert_to_bool(XB)
                _distance_wrap.cdist_hamming_bool_wrap(XA, XB, dm)
            else:
                XA = _convert_to_double(XA)
                XB = _convert_to_double(XB)
                _distance_wrap.cdist_hamming_wrap(XA, XB, dm)
        elif mstr in ['jaccard', 'jacc', 'ja', 'j']:
            if XA.dtype == bool:
                XA = _convert_to_bool(XA)
                XB = _convert_to_bool(XB)
                _distance_wrap.cdist_jaccard_bool_wrap(XA, XB, dm)
            else:
                XA = _convert_to_double(XA)
                XB = _convert_to_double(XB)
                _distance_wrap.cdist_jaccard_wrap(XA, XB, dm)
        elif mstr in ['minkowski', 'mi', 'm', 'pnorm']:
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
            _distance_wrap.cdist_minkowski_wrap(XA, XB, dm, p=p)
        elif mstr in ['wminkowski', 'wmi', 'wm', 'wpnorm']:
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
            _distance_wrap.cdist_weighted_minkowski_wrap(XA, XB, dm, p=p, w=w)
        elif mstr in ['seuclidean', 'se', 's']:
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
            _distance_wrap.cdist_seuclidean_wrap(XA, XB, dm, V=V)
        elif mstr in ['cosine', 'cos']:
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
            _cosine_cdist(XA, XB, dm)
        elif mstr in ['correlation', 'co']:
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
            XA = XA.copy() if XA is input_XA else XA
            XB = XB.copy() if XB is input_XB else XB
            XA -= XA.mean(axis=1)[:, np.newaxis]
            XB -= XB.mean(axis=1)[:, np.newaxis]
            _cosine_cdist(XA, XB, dm)
        elif mstr in ['mahalanobis', 'mahal', 'mah']:
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
            # sqrt((u-v)V^(-1)(u-v)^T)
            _distance_wrap.cdist_mahalanobis_wrap(XA, XB, dm, VI=VI)
        elif mstr.startswith("test_"):
            if mstr in _TEST_METRICS:
                kwargs = {"p": p, "w": w, "V": V, "VI": VI}
                dm = cdist(XA, XB, _TEST_METRICS[mstr], **kwargs)
            else:
                raise ValueError('Unknown "Test" Distance Metric: %s' %
                                 mstr[5:])
        else:
            raise ValueError('Unknown Distance Metric: %s' % mstr)
    else:
        raise TypeError('2nd argument metric must be a string identifier '
                        'or a function.')
    return dm
Beispiel #15
0
def asjacobian(J):
    """
    Convert given object to one suitable for use as a Jacobian.
    """
    spsolve = scipy.sparse.linalg.spsolve
    if isinstance(J, Jacobian):
        return J
    elif inspect.isclass(J) and issubclass(J, Jacobian):
        return J()
    elif isinstance(J, np.ndarray):
        if J.ndim > 2:
            raise ValueError('array must have rank <= 2')
        J = np.atleast_2d(np.asarray(J))
        if J.shape[0] != J.shape[1]:
            raise ValueError('array must be square')

        return Jacobian(matvec=lambda v: dot(J, v),
                        rmatvec=lambda v: dot(J.conj().T, v),
                        solve=lambda v: solve(J, v),
                        rsolve=lambda v: solve(J.conj().T, v),
                        dtype=J.dtype,
                        shape=J.shape)
    elif scipy.sparse.isspmatrix(J):
        if J.shape[0] != J.shape[1]:
            raise ValueError('matrix must be square')
        return Jacobian(matvec=lambda v: J * v,
                        rmatvec=lambda v: J.conj().T * v,
                        solve=lambda v: spsolve(J, v),
                        rsolve=lambda v: spsolve(J.conj().T, v),
                        dtype=J.dtype,
                        shape=J.shape)
    elif hasattr(J, 'shape') and hasattr(J, 'dtype') and hasattr(J, 'solve'):
        return Jacobian(matvec=getattr(J, 'matvec'),
                        rmatvec=getattr(J, 'rmatvec'),
                        solve=J.solve,
                        rsolve=getattr(J, 'rsolve'),
                        update=getattr(J, 'update'),
                        setup=getattr(J, 'setup'),
                        dtype=J.dtype,
                        shape=J.shape)
    elif callable(J):
        # Assume it's a function J(x) that returns the Jacobian
        class Jac(Jacobian):
            def update(self, x, F):
                self.x = x

            def solve(self, v, tol=0):
                m = J(self.x)
                if isinstance(m, np.ndarray):
                    return solve(m, v)
                elif scipy.sparse.isspmatrix(m):
                    return spsolve(m, v)
                else:
                    raise ValueError("Unknown matrix type")

            def matvec(self, v):
                m = J(self.x)
                if isinstance(m, np.ndarray):
                    return dot(m, v)
                elif scipy.sparse.isspmatrix(m):
                    return m * v
                else:
                    raise ValueError("Unknown matrix type")

            def rsolve(self, v, tol=0):
                m = J(self.x)
                if isinstance(m, np.ndarray):
                    return solve(m.conj().T, v)
                elif scipy.sparse.isspmatrix(m):
                    return spsolve(m.conj().T, v)
                else:
                    raise ValueError("Unknown matrix type")

            def rmatvec(self, v):
                m = J(self.x)
                if isinstance(m, np.ndarray):
                    return dot(m.conj().T, v)
                elif scipy.sparse.isspmatrix(m):
                    return m.conj().T * v
                else:
                    raise ValueError("Unknown matrix type")

        return Jac()
    elif isinstance(J, str):
        return dict(broyden1=BroydenFirst,
                    broyden2=BroydenSecond,
                    anderson=Anderson,
                    diagbroyden=DiagBroyden,
                    linearmixing=LinearMixing,
                    excitingmixing=ExcitingMixing,
                    krylov=KrylovJacobian)[J]()
    else:
        raise TypeError('Cannot convert object to a Jacobian')
Beispiel #16
0
def minimize(fun, x0, args=(), method=None, jac=None, hess=None,
             hessp=None, bounds=None, constraints=(), tol=None,
             callback=None, options=None):
    """Minimization of scalar function of one or more variables.

    Parameters
    ----------
    fun : callable
        The objective function to be minimized.

            ``fun(x, *args) -> float``

        where x is an 1-D array with shape (n,) and `args`
        is a tuple of the fixed parameters needed to completely
        specify the function.
    x0 : ndarray, shape (n,)
        Initial guess. Array of real elements of size (n,),
        where 'n' is the number of independent variables.
    args : tuple, optional
        Extra arguments passed to the objective function and its
        derivatives (`fun`, `jac` and `hess` functions).
    method : str or callable, optional
        Type of solver.  Should be one of

            - 'Nelder-Mead' :ref:`(see here) <optimize.minimize-neldermead>`
            - 'Powell'      :ref:`(see here) <optimize.minimize-powell>`
            - 'CG'          :ref:`(see here) <optimize.minimize-cg>`
            - 'BFGS'        :ref:`(see here) <optimize.minimize-bfgs>`
            - 'Newton-CG'   :ref:`(see here) <optimize.minimize-newtoncg>`
            - 'L-BFGS-B'    :ref:`(see here) <optimize.minimize-lbfgsb>`
            - 'TNC'         :ref:`(see here) <optimize.minimize-tnc>`
            - 'COBYLA'      :ref:`(see here) <optimize.minimize-cobyla>`
            - 'SLSQP'       :ref:`(see here) <optimize.minimize-slsqp>`
            - 'trust-constr':ref:`(see here) <optimize.minimize-trustconstr>`
            - 'dogleg'      :ref:`(see here) <optimize.minimize-dogleg>`
            - 'trust-ncg'   :ref:`(see here) <optimize.minimize-trustncg>`
            - 'trust-exact' :ref:`(see here) <optimize.minimize-trustexact>`
            - 'trust-krylov' :ref:`(see here) <optimize.minimize-trustkrylov>`
            - custom - a callable object (added in version 0.14.0),
              see below for description.

        If not given, chosen to be one of ``BFGS``, ``L-BFGS-B``, ``SLSQP``,
        depending if the problem has constraints or bounds.
    jac : {callable,  '2-point', '3-point', 'cs', bool}, optional
        Method for computing the gradient vector. Only for CG, BFGS,
        Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg, trust-krylov,
        trust-exact and trust-constr. If it is a callable, it should be a
        function that returns the gradient vector:

            ``jac(x, *args) -> array_like, shape (n,)``

        where x is an array with shape (n,) and `args` is a tuple with
        the fixed parameters. Alternatively, the keywords
        {'2-point', '3-point', 'cs'} select a finite
        difference scheme for numerical estimation of the gradient. Options
        '3-point' and 'cs' are available only to 'trust-constr'.
        If `jac` is a Boolean and is True, `fun` is assumed to return the
        gradient along with the objective function. If False, the gradient
        will be estimated using '2-point' finite difference estimation.
    hess : {callable, '2-point', '3-point', 'cs', HessianUpdateStrategy},  optional
        Method for computing the Hessian matrix. Only for Newton-CG, dogleg,
        trust-ncg,  trust-krylov, trust-exact and trust-constr. If it is
        callable, it should return the  Hessian matrix:

            ``hess(x, *args) -> {LinearOperator, spmatrix, array}, (n, n)``

        where x is a (n,) ndarray and `args` is a tuple with the fixed
        parameters. LinearOperator and sparse matrix returns are
        allowed only for 'trust-constr' method. Alternatively, the keywords
        {'2-point', '3-point', 'cs'} select a finite difference scheme
        for numerical estimation. Or, objects implementing
        `HessianUpdateStrategy` interface can be used to approximate
        the Hessian. Available quasi-Newton methods implementing
        this interface are:

            - `BFGS`;
            - `SR1`.

        Whenever the gradient is estimated via finite-differences,
        the Hessian cannot be estimated with options
        {'2-point', '3-point', 'cs'} and needs to be
        estimated using one of the quasi-Newton strategies.
        Finite-difference options {'2-point', '3-point', 'cs'} and
        `HessianUpdateStrategy` are available only for 'trust-constr' method.
    hessp : callable, optional
        Hessian of objective function times an arbitrary vector p. Only for
        Newton-CG, trust-ncg, trust-krylov, trust-constr.
        Only one of `hessp` or `hess` needs to be given.  If `hess` is
        provided, then `hessp` will be ignored.  `hessp` must compute the
        Hessian times an arbitrary vector:

            ``hessp(x, p, *args) ->  ndarray shape (n,)``

        where x is a (n,) ndarray, p is an arbitrary vector with
        dimension (n,) and `args` is a tuple with the fixed
        parameters.
    bounds : sequence or `Bounds`, optional
        Bounds on variables for L-BFGS-B, TNC, SLSQP and
        trust-constr methods. There are two ways to specify the bounds:

            1. Instance of `Bounds` class.
            2. Sequence of ``(min, max)`` pairs for each element in `x`. None
               is used to specify no bound.

    constraints : {Constraint, dict} or List of {Constraint, dict}, optional
        Constraints definition (only for COBYLA, SLSQP and trust-constr).
        Constraints for 'trust-constr' are defined as a single object or a
        list of objects specifying constraints to the optimization problem.
        Available constraints are:

            - `LinearConstraint`
            - `NonlinearConstraint`

        Constraints for COBYLA, SLSQP are defined as a list of dictionaries.
        Each dictionary with fields:

            type : str
                Constraint type: 'eq' for equality, 'ineq' for inequality.
            fun : callable
                The function defining the constraint.
            jac : callable, optional
                The Jacobian of `fun` (only for SLSQP).
            args : sequence, optional
                Extra arguments to be passed to the function and Jacobian.

        Equality constraint means that the constraint function result is to
        be zero whereas inequality means that it is to be non-negative.
        Note that COBYLA only supports inequality constraints.
    tol : float, optional
        Tolerance for termination. For detailed control, use solver-specific
        options.
    options : dict, optional
        A dictionary of solver options. All methods accept the following
        generic options:

            maxiter : int
                Maximum number of iterations to perform.
            disp : bool
                Set to True to print convergence messages.

        For method-specific options, see :func:`show_options()`.
    callback : callable, optional
        Called after each iteration. For 'trust-constr' it is a callable with
        the signature:

            ``callback(xk, OptimizeResult state) -> bool``

        where ``xk`` is the current parameter vector. and ``state``
        is an `OptimizeResult` object, with the same fields
        as the ones from the return.  If callback returns True
        the algorithm execution is terminated.
        For all the other methods, the signature is:

            ``callback(xk)``

        where ``xk`` is the current parameter vector.

    Returns
    -------
    res : OptimizeResult
        The optimization result represented as a ``OptimizeResult`` object.
        Important attributes are: ``x`` the solution array, ``success`` a
        Boolean flag indicating if the optimizer exited successfully and
        ``message`` which describes the cause of the termination. See
        `OptimizeResult` for a description of other attributes.

    See also
    --------
    minimize_scalar : Interface to minimization algorithms for scalar
        univariate functions
    show_options : Additional options accepted by the solvers

    Notes
    -----
    This section describes the available solvers that can be selected by the
    'method' parameter. The default method is *BFGS*.

    **Unconstrained minimization**

    Method :ref:`Nelder-Mead <optimize.minimize-neldermead>` uses the
    Simplex algorithm [1]_, [2]_. This algorithm is robust in many
    applications. However, if numerical computation of derivative can be
    trusted, other algorithms using the first and/or second derivatives
    information might be preferred for their better performance in
    general.

    Method :ref:`Powell <optimize.minimize-powell>` is a modification
    of Powell's method [3]_, [4]_ which is a conjugate direction
    method. It performs sequential one-dimensional minimizations along
    each vector of the directions set (`direc` field in `options` and
    `info`), which is updated at each iteration of the main
    minimization loop. The function need not be differentiable, and no
    derivatives are taken.

    Method :ref:`CG <optimize.minimize-cg>` uses a nonlinear conjugate
    gradient algorithm by Polak and Ribiere, a variant of the
    Fletcher-Reeves method described in [5]_ pp.  120-122. Only the
    first derivatives are used.

    Method :ref:`BFGS <optimize.minimize-bfgs>` uses the quasi-Newton
    method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) [5]_
    pp. 136. It uses the first derivatives only. BFGS has proven good
    performance even for non-smooth optimizations. This method also
    returns an approximation of the Hessian inverse, stored as
    `hess_inv` in the OptimizeResult object.

    Method :ref:`Newton-CG <optimize.minimize-newtoncg>` uses a
    Newton-CG algorithm [5]_ pp. 168 (also known as the truncated
    Newton method). It uses a CG method to the compute the search
    direction. See also *TNC* method for a box-constrained
    minimization with a similar algorithm. Suitable for large-scale
    problems.

    Method :ref:`dogleg <optimize.minimize-dogleg>` uses the dog-leg
    trust-region algorithm [5]_ for unconstrained minimization. This
    algorithm requires the gradient and Hessian; furthermore the
    Hessian is required to be positive definite.

    Method :ref:`trust-ncg <optimize.minimize-trustncg>` uses the
    Newton conjugate gradient trust-region algorithm [5]_ for
    unconstrained minimization. This algorithm requires the gradient
    and either the Hessian or a function that computes the product of
    the Hessian with a given vector. Suitable for large-scale problems.

    Method :ref:`trust-krylov <optimize.minimize-trustkrylov>` uses
    the Newton GLTR trust-region algorithm [14]_, [15]_ for unconstrained
    minimization. This algorithm requires the gradient
    and either the Hessian or a function that computes the product of
    the Hessian with a given vector. Suitable for large-scale problems.
    On indefinite problems it requires usually less iterations than the
    `trust-ncg` method and is recommended for medium and large-scale problems.

    Method :ref:`trust-exact <optimize.minimize-trustexact>`
    is a trust-region method for unconstrained minimization in which
    quadratic subproblems are solved almost exactly [13]_. This
    algorithm requires the gradient and the Hessian (which is
    *not* required to be positive definite). It is, in many
    situations, the Newton method to converge in fewer iteraction
    and the most recommended for small and medium-size problems.

    **Bound-Constrained minimization**

    Method :ref:`L-BFGS-B <optimize.minimize-lbfgsb>` uses the L-BFGS-B
    algorithm [6]_, [7]_ for bound constrained minimization.

    Method :ref:`TNC <optimize.minimize-tnc>` uses a truncated Newton
    algorithm [5]_, [8]_ to minimize a function with variables subject
    to bounds. This algorithm uses gradient information; it is also
    called Newton Conjugate-Gradient. It differs from the *Newton-CG*
    method described above as it wraps a C implementation and allows
    each variable to be given upper and lower bounds.

    **Constrained Minimization**

    Method :ref:`COBYLA <optimize.minimize-cobyla>` uses the
    Constrained Optimization BY Linear Approximation (COBYLA) method
    [9]_, [10]_, [11]_. The algorithm is based on linear
    approximations to the objective function and each constraint. The
    method wraps a FORTRAN implementation of the algorithm. The
    constraints functions 'fun' may return either a single number
    or an array or list of numbers.

    Method :ref:`SLSQP <optimize.minimize-slsqp>` uses Sequential
    Least SQuares Programming to minimize a function of several
    variables with any combination of bounds, equality and inequality
    constraints. The method wraps the SLSQP Optimization subroutine
    originally implemented by Dieter Kraft [12]_. Note that the
    wrapper handles infinite values in bounds by converting them into
    large floating values.

    Method :ref:`trust-constr <optimize.minimize-trustconstr>` is a
    trust-region algorithm for constrained optimization. It swiches
    between two implementations depending on the problem definition.
    It is the most versatile constrained minimization algorithm
    implemented in SciPy and the most appropriate for large-scale problems.
    For equality constrained problems it is an implementation of Byrd-Omojokun
    Trust-Region SQP method described in [17]_ and in [5]_, p. 549. When
    inequality constraints  are imposed as well, it swiches to the trust-region
    interior point  method described in [16]_. This interior point algorithm,
    in turn, solves inequality constraints by introducing slack variables
    and solving a sequence of equality-constrained barrier problems
    for progressively smaller values of the barrier parameter.
    The previously described equality constrained SQP method is
    used to solve the subproblems with increasing levels of accuracy
    as the iterate gets closer to a solution.

    **Finite-Difference Options**

    For Method :ref:`trust-constr <optimize.minimize-trustconstr>`
    the gradient and the Hessian may be approximated using
    three finite-difference schemes: {'2-point', '3-point', 'cs'}.
    The scheme 'cs' is, potentially, the most accurate but it
    requires the function to correctly handles complex inputs and to
    be differentiable in the complex plane. The scheme '3-point' is more
    accurate than '2-point' but requires twice as much operations.

    **Custom minimizers**

    It may be useful to pass a custom minimization method, for example
    when using a frontend to this method such as `scipy.optimize.basinhopping`
    or a different library.  You can simply pass a callable as the ``method``
    parameter.

    The callable is called as ``method(fun, x0, args, **kwargs, **options)``
    where ``kwargs`` corresponds to any other parameters passed to `minimize`
    (such as `callback`, `hess`, etc.), except the `options` dict, which has
    its contents also passed as `method` parameters pair by pair.  Also, if
    `jac` has been passed as a bool type, `jac` and `fun` are mangled so that
    `fun` returns just the function values and `jac` is converted to a function
    returning the Jacobian.  The method shall return an `OptimizeResult`
    object.

    The provided `method` callable must be able to accept (and possibly ignore)
    arbitrary parameters; the set of parameters accepted by `minimize` may
    expand in future versions and then these parameters will be passed to
    the method.  You can find an example in the scipy.optimize tutorial.

    .. versionadded:: 0.11.0

    References
    ----------
    .. [1] Nelder, J A, and R Mead. 1965. A Simplex Method for Function
        Minimization. The Computer Journal 7: 308-13.
    .. [2] Wright M H. 1996. Direct search methods: Once scorned, now
        respectable, in Numerical Analysis 1995: Proceedings of the 1995
        Dundee Biennial Conference in Numerical Analysis (Eds. D F
        Griffiths and G A Watson). Addison Wesley Longman, Harlow, UK.
        191-208.
    .. [3] Powell, M J D. 1964. An efficient method for finding the minimum of
       a function of several variables without calculating derivatives. The
       Computer Journal 7: 155-162.
    .. [4] Press W, S A Teukolsky, W T Vetterling and B P Flannery.
       Numerical Recipes (any edition), Cambridge University Press.
    .. [5] Nocedal, J, and S J Wright. 2006. Numerical Optimization.
       Springer New York.
    .. [6] Byrd, R H and P Lu and J. Nocedal. 1995. A Limited Memory
       Algorithm for Bound Constrained Optimization. SIAM Journal on
       Scientific and Statistical Computing 16 (5): 1190-1208.
    .. [7] Zhu, C and R H Byrd and J Nocedal. 1997. L-BFGS-B: Algorithm
       778: L-BFGS-B, FORTRAN routines for large scale bound constrained
       optimization. ACM Transactions on Mathematical Software 23 (4):
       550-560.
    .. [8] Nash, S G. Newton-Type Minimization Via the Lanczos Method.
       1984. SIAM Journal of Numerical Analysis 21: 770-778.
    .. [9] Powell, M J D. A direct search optimization method that models
       the objective and constraint functions by linear interpolation.
       1994. Advances in Optimization and Numerical Analysis, eds. S. Gomez
       and J-P Hennart, Kluwer Academic (Dordrecht), 51-67.
    .. [10] Powell M J D. Direct search algorithms for optimization
       calculations. 1998. Acta Numerica 7: 287-336.
    .. [11] Powell M J D. A view of algorithms for optimization without
       derivatives. 2007.Cambridge University Technical Report DAMTP
       2007/NA03
    .. [12] Kraft, D. A software package for sequential quadratic
       programming. 1988. Tech. Rep. DFVLR-FB 88-28, DLR German Aerospace
       Center -- Institute for Flight Mechanics, Koln, Germany.
    .. [13] Conn, A. R., Gould, N. I., and Toint, P. L.
       Trust region methods. 2000. Siam. pp. 169-200.
    .. [14] F. Lenders, C. Kirches, A. Potschka: "trlib: A vector-free
       implementation of the GLTR method for iterative solution of
       the trust region problem", https://arxiv.org/abs/1611.04718
    .. [15] N. Gould, S. Lucidi, M. Roma, P. Toint: "Solving the
       Trust-Region Subproblem using the Lanczos Method",
       SIAM J. Optim., 9(2), 504--525, (1999).
    .. [16] Byrd, Richard H., Mary E. Hribar, and Jorge Nocedal. 1999.
        An interior point algorithm for large-scale nonlinear  programming.
        SIAM Journal on Optimization 9.4: 877-900.
    .. [17] Lalee, Marucha, Jorge Nocedal, and Todd Plantega. 1998. On the
        implementation of an algorithm for large-scale equality constrained
        optimization. SIAM Journal on Optimization 8.3: 682-706.

    Examples
    --------
    Let us consider the problem of minimizing the Rosenbrock function. This
    function (and its respective derivatives) is implemented in `rosen`
    (resp. `rosen_der`, `rosen_hess`) in the `scipy.optimize`.

    >>> from scipy.optimize import minimize, rosen, rosen_der

    A simple application of the *Nelder-Mead* method is:

    >>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
    >>> res = minimize(rosen, x0, method='Nelder-Mead', tol=1e-6)
    >>> res.x
    array([ 1.,  1.,  1.,  1.,  1.])

    Now using the *BFGS* algorithm, using the first derivative and a few
    options:

    >>> res = minimize(rosen, x0, method='BFGS', jac=rosen_der,
    ...                options={'gtol': 1e-6, 'disp': True})
    Optimization terminated successfully.
             Current function value: 0.000000
             Iterations: 26
             Function evaluations: 31
             Gradient evaluations: 31
    >>> res.x
    array([ 1.,  1.,  1.,  1.,  1.])
    >>> print(res.message)
    Optimization terminated successfully.
    >>> res.hess_inv
    array([[ 0.00749589,  0.01255155,  0.02396251,  0.04750988,  0.09495377],  # may vary
           [ 0.01255155,  0.02510441,  0.04794055,  0.09502834,  0.18996269],
           [ 0.02396251,  0.04794055,  0.09631614,  0.19092151,  0.38165151],
           [ 0.04750988,  0.09502834,  0.19092151,  0.38341252,  0.7664427 ],
           [ 0.09495377,  0.18996269,  0.38165151,  0.7664427,   1.53713523]])


    Next, consider a minimization problem with several constraints (namely
    Example 16.4 from [5]_). The objective function is:

    >>> fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2

    There are three constraints defined as:

    >>> cons = ({'type': 'ineq', 'fun': lambda x:  x[0] - 2 * x[1] + 2},
    ...         {'type': 'ineq', 'fun': lambda x: -x[0] - 2 * x[1] + 6},
    ...         {'type': 'ineq', 'fun': lambda x: -x[0] + 2 * x[1] + 2})

    And variables must be positive, hence the following bounds:

    >>> bnds = ((0, None), (0, None))

    The optimization problem is solved using the SLSQP method as:

    >>> res = minimize(fun, (2, 0), method='SLSQP', bounds=bnds,
    ...                constraints=cons)

    It should converge to the theoretical solution (1.4 ,1.7).

    """
    x0 = np.asarray(x0)
    if x0.dtype.kind in np.typecodes["AllInteger"]:
        x0 = np.asarray(x0, dtype=float)

    if not isinstance(args, tuple):
        args = (args,)

    if method is None:
        # Select automatically
        if constraints:
            method = 'SLSQP'
        elif bounds is not None:
            method = 'L-BFGS-B'
        else:
            method = 'BFGS'

    if callable(method):
        meth = "_custom"
    else:
        meth = method.lower()

    if options is None:
        options = {}
    # check if optional parameters are supported by the selected method
    # - jac
    if meth in ('nelder-mead', 'powell', 'cobyla') and bool(jac):
        warn('Method %s does not use gradient information (jac).' % method,
             RuntimeWarning)
    # - hess
    if meth not in ('newton-cg', 'dogleg', 'trust-ncg', 'trust-constr',
                    'trust-krylov', 'trust-exact', '_custom') and hess is not None:
        warn('Method %s does not use Hessian information (hess).' % method,
             RuntimeWarning)
    # - hessp
    if meth not in ('newton-cg', 'dogleg', 'trust-ncg', 'trust-constr',
                    'trust-krylov', '_custom') \
       and hessp is not None:
        warn('Method %s does not use Hessian-vector product '
             'information (hessp).' % method, RuntimeWarning)
    # - constraints or bounds
    if (meth in ('nelder-mead', 'powell', 'cg', 'bfgs', 'newton-cg', 'dogleg',
                 'trust-ncg') and (bounds is not None or np.any(constraints))):
        warn('Method %s cannot handle constraints nor bounds.' % method,
             RuntimeWarning)
    if meth in ('l-bfgs-b', 'tnc') and np.any(constraints):
        warn('Method %s cannot handle constraints.' % method,
             RuntimeWarning)
    if meth == 'cobyla' and bounds is not None:
        warn('Method %s cannot handle bounds.' % method,
             RuntimeWarning)
    # - callback
    if (meth in ('cobyla',) and callback is not None):
        warn('Method %s does not support callback.' % method, RuntimeWarning)
    # - return_all
    if (meth in ('l-bfgs-b', 'tnc', 'cobyla', 'slsqp') and
            options.get('return_all', False)):
        warn('Method %s does not support the return_all option.' % method,
             RuntimeWarning)

    # check gradient vector
    if meth == 'trust-constr':
        if type(jac) is bool:
            if jac:
                fun = MemoizeJac(fun)
                jac = fun.derivative
            else:
                jac = '2-point'
        elif jac is None:
            jac = '2-point'
        elif not callable(jac) and jac not in ('2-point', '3-point', 'cs'):
            raise ValueError("Unsupported jac definition.")
    else:
        if jac in ('2-point', '3-point', 'cs'):
            if jac in ('3-point', 'cs'):
                warn("Only 'trust-constr' method accept %s "
                     "options for 'jac'. Using '2-point' instead." % jac)
            jac = None
        elif not callable(jac):
            if bool(jac):
                fun = MemoizeJac(fun)
                jac = fun.derivative
            else:
                jac = None

    # set default tolerances
    if tol is not None:
        options = dict(options)
        if meth == 'nelder-mead':
            options.setdefault('xatol', tol)
            options.setdefault('fatol', tol)
        if meth in ('newton-cg', 'powell', 'tnc'):
            options.setdefault('xtol', tol)
        if meth in ('powell', 'l-bfgs-b', 'tnc', 'slsqp'):
            options.setdefault('ftol', tol)
        if meth in ('bfgs', 'cg', 'l-bfgs-b', 'tnc', 'dogleg',
                    'trust-ncg', 'trust-exact', 'trust-krylov'):
            options.setdefault('gtol', tol)
        if meth in ('cobyla', '_custom'):
            options.setdefault('tol', tol)
        if meth == 'trust-constr':
            options.setdefault('xtol', tol)
            options.setdefault('gtol', tol)
            options.setdefault('barrier_tol', tol)

    if bounds is not None:
        bounds = standardize_bounds(bounds, x0, meth)

    if constraints is not None:
        constraints = standardize_constraints(constraints, x0, meth)

    if meth == '_custom':
        return method(fun, x0, args=args, jac=jac, hess=hess, hessp=hessp,
                      bounds=bounds, constraints=constraints,
                      callback=callback, **options)
    elif meth == 'nelder-mead':
        return _minimize_neldermead(fun, x0, args, callback, **options)
    elif meth == 'powell':
        return _minimize_powell(fun, x0, args, callback, **options)
    elif meth == 'cg':
        return _minimize_cg(fun, x0, args, jac, callback, **options)
    elif meth == 'bfgs':
        return _minimize_bfgs(fun, x0, args, jac, callback, **options)
    elif meth == 'newton-cg':
        return _minimize_newtoncg(fun, x0, args, jac, hess, hessp, callback,
                                  **options)
    elif meth == 'l-bfgs-b':
        return _minimize_lbfgsb(fun, x0, args, jac, bounds,
                                callback=callback, **options)
    elif meth == 'tnc':
        return _minimize_tnc(fun, x0, args, jac, bounds, callback=callback,
                             **options)
    elif meth == 'cobyla':
        return _minimize_cobyla(fun, x0, args, constraints, **options)
    elif meth == 'slsqp':
        return _minimize_slsqp(fun, x0, args, jac, bounds,
                               constraints, callback=callback, **options)
    elif meth == 'trust-constr':
        return _minimize_trustregion_constr(fun, x0, args, jac, hess, hessp,
                                            bounds, constraints,
                                            callback=callback, **options)
    elif meth == 'dogleg':
        return _minimize_dogleg(fun, x0, args, jac, hess,
                                callback=callback, **options)
    elif meth == 'trust-ncg':
        return _minimize_trust_ncg(fun, x0, args, jac, hess, hessp,
                                   callback=callback, **options)
    elif meth == 'trust-krylov':
        return _minimize_trust_krylov(fun, x0, args, jac, hess, hessp,
                                      callback=callback, **options)
    elif meth == 'trust-exact':
        return _minimize_trustregion_exact(fun, x0, args, jac, hess,
                                           callback=callback, **options)
    else:
        raise ValueError('Unknown solver %s' % method)
Beispiel #17
0
def ssdist(XA,
           XB,
           indicesB,
           indptr,
           indicesA=None,
           metric="euclidean",
           p=None,
           V=None,
           VI=None,
           w=None,
           gap_open=None,
           gap_ext=None,
           mat=None,
           normalized=None,
           out=None):
    """
    Computes sparse submatrix of distances between within/between collections
    of observations

    See Notes for common calling conventions.

    Parameters
    ----------
    XA : ndarray
        An :math:`m_A` by :math:`n` array of :math:`m_A`
        original observations in an :math:`n`-dimensional space.
        Inputs are converted to float type.
    XB : ndarray
        An :math:`m_B` by :math:`n` array of :math:`m_B`
        original observations in an :math:`n`-dimensional space.
        Inputs are converted to float type.
    indices: ndarray
        An array of index pointers to rows in XB
    indptr: ndarray
        An array of length :math:`m_A + 1`
    metric : str or callable, optional
        The distance metric to use.  If a string, the distance function can be
        "braycurtis", "canberra", "chebyshev", "cityblock", "correlation",
        "cosine", "dice", "euclidean", "hamming", "jaccard", "kulsinski",
        "mahalanobis", "matching", "minkowski", "rogerstanimoto", "russellrao",
        "seuclidean", "sokalmichener", "sokalsneath", "sqeuclidean",
        "wminkowski", "yule".
    p : double, optional
        The p-norm to apply
        Only for Minkowski, weighted and unweighted. Default: 2.
    w : ndarray, optional
        The weight vector.
        Only for weighted Minkowski. Mandatory
    V : ndarray, optional
        The variance vector
        Only for standardized Euclidean. Default: var(vstack([XA, XB]), axis=0, ddof=1)
    VI : ndarray, optional
        The inverse of the covariance matrix
        Only for Mahalanobis. Default: inv(cov(vstack([XA, XB]).T)).T

    Returns
    -------
    Y : sparse matrix
        Sparse submatrix of distance matrix in csr format.

    Raises
    ------
    ValueError
        An exception is thrown if `XA` and `XB` do not have
        the same number of columns.

    Notes
    -----
    The following are common calling conventions:

    1. ``Y = cdist(XA, XB, indptr, "euclidean")``

       Computes the distance between points using Euclidean distance (2-norm) as the distance metric between the
       points.

    2. ``Y = cdist(XA, XB, "minkowski", p)``

       Computes the distances using the Minkowski distance
       :math:`||u-v||_p` (:math:`p`-norm) where :math:`p \\geq 1`.

    3. ``Y = cdist(XA, XB, "cityblock")``

       Computes the city block or Manhattan distance between the
       points.

    4. ``Y = cdist(XA, XB, "seuclidean", V=None)``

       Computes the standardized Euclidean  The standardized
       Euclidean distance between two n-vectors ``u`` and ``v`` is

       .. math::

          \\sqrt{\\sum {(u_i-v_i)^2 / V[x_i]}}.

       V is the variance vector; V[i] is the variance computed over all
       the i"th components of the points. If not passed, it is
       automatically computed.

    5. ``Y = cdist(XA, XB, "sqeuclidean")``

       Computes the squared Euclidean distance :math:`||u-v||_2^2` between
       the vectors.

    6. ``Y = cdist(XA, XB, "cosine")``

       Computes the cosine distance between vectors u and v,

       .. math::

          1 - \\frac{u \\cdot v}
                   {{||u||}_2 {||v||}_2}

       where :math:`||*||_2` is the 2-norm of its argument ``*``, and
       :math:`u \\cdot v` is the dot product of :math:`u` and :math:`v`.

    7. ``Y = cdist(XA, XB, indptr, indptr, "correlation")``

       Computes the correlation distance between vectors u and v. This is

       .. math::

          1 - \\frac{(u - \\bar{u}) \\cdot (v - \\bar{v})}
                   {{||(u - \\bar{u})||}_2 {||(v - \\bar{v})||}_2}

       where :math:`\\bar{v}` is the mean of the elements of vector v,
       and :math:`x \\cdot y` is the dot product of :math:`x` and :math:`y`.


    8. ``Y = cdist(XA, XB, indptr, indptr, "hamming")``

       Computes the normalized Hamming distance, or the proportion of
       those vector elements between two n-vectors ``u`` and ``v``
       which disagree. To save memory, the matrix ``X`` can be of type
       boolean.

    9. ``Y = cdist(XA, XB, indptr, "jaccard")``

       Computes the Jaccard distance between the points. Given two
       vectors, ``u`` and ``v``, the Jaccard distance is the
       proportion of those elements ``u[i]`` and ``v[i]`` that
       disagree where at least one of them is non-zero.

    10. ``Y = cdist(XA, XB, indptr, "chebyshev")``

       Computes the Chebyshev distance between the points. The
       Chebyshev distance between two n-vectors ``u`` and ``v`` is the
       maximum norm-1 distance between their respective elements. More
       precisely, the distance is given by

       .. math::

          d(u,v) = \\max_i {|u_i-v_i|}.

    11. ``Y = cdist(XA, XB, indptr, "canberra")``

       Computes the Canberra distance between the points. The
       Canberra distance between two points ``u`` and ``v`` is

       .. math::

         d(u,v) = \\sum_i \\frac{|u_i-v_i|}
                              {|u_i|+|v_i|}.

    12. ``Y = cdist(XA, XB, indptr, "braycurtis")``

       Computes the Bray-Curtis distance between the points. The
       Bray-Curtis distance between two points ``u`` and ``v`` is


       .. math::

            d(u,v) = \\frac{\\sum_i (|u_i-v_i|)}
                          {\\sum_i (|u_i+v_i|)}

    13. ``Y = cdist(XA, XB, indptr, "mahalanobis", VI=None)``

       Computes the Mahalanobis distance between the points. The
       Mahalanobis distance between two points ``u`` and ``v`` is
       :math:`\\sqrt{(u-v)(1/V)(u-v)^T}` where :math:`(1/V)` (the ``VI``
       variable) is the inverse covariance. If ``VI`` is not None,
       ``VI`` will be used as the inverse covariance matrix.

    14. ``Y = cdist(XA, XB, indptr, "yule")``

       Computes the Yule distance between the boolean
       vectors. (see `yule` function documentation)

    15. ``Y = cdist(XA, XB, indptr, "matching")``

       Synonym for "hamming".

    16. ``Y = cdist(XA, XB, indptr, "dice")``

       Computes the Dice distance between the boolean vectors. (see
       `dice` function documentation)

    17. ``Y = cdist(XA, XB, indptr, "kulsinski")``

       Computes the Kulsinski distance between the boolean
       vectors. (see `kulsinski` function documentation)

    18. ``Y = cdist(XA, XB, indptr, "rogerstanimoto")``

       Computes the Rogers-Tanimoto distance between the boolean
       vectors. (see `rogerstanimoto` function documentation)

    19. ``Y = cdist(XA, XB, indptr, "russellrao")``

       Computes the Russell-Rao distance between the boolean
       vectors. (see `russellrao` function documentation)

    20. ``Y = cdist(XA, XB, indptr, "sokalmichener")``

       Computes the Sokal-Michener distance between the boolean
       vectors. (see `sokalmichener` function documentation)

    21. ``Y = cdist(XA, XB, indptr, "sokalsneath")``

       Computes the Sokal-Sneath distance between the vectors. (see
       `sokalsneath` function documentation)


    22. ``Y = cdist(XA, XB, indptr, "wminkowski")``

       Computes the weighted Minkowski distance between the
       vectors. (see `wminkowski` function documentation)

    22. ``Y = cdist(..., "edit")``

       Computes the edit distance between the strings.
       (see `edit` function documentation)

    22. ``Y = ssdist(..., "blosum")``

       Computes a positive alignment distance between the strings
       based on the blosum62 matrix.(see `blosum` function documentation)

    22. ``Y = ssdist(..., "pam250")``

       Computes a positive alignment distance between the strings
       based on the pam250 matrix. (see `pam250` function documentation)

    22. ``Y = ssdist(..., "align")``

       Computes a positive alignment distance between the strings
       using a user specified align matrix. (see `align` function documentation)

    23. ``Y = cdist(XA, XB, indptr, f)``

       Computes the distance between all pairs of vectors in X
       using the user supplied 2-arity function f. For example,
       Euclidean distance between the vectors could be computed
       as follows::

         dm = cdist(XA, XB, indptr, lambda u, v: np.sqrt(((u-v)**2).sum()))

       Note that you should avoid passing a reference to one of
       the distance functions defined in this library. For example,::

         dm = cdist(XA, XB, indptr, sokalsneath)

       would calculate the pair-wise distances between the vectors in
       X using the Python function `sokalsneath`. This would result in
       sokalsneath being called :math:`{n \\choose 2}` times, which
       is inefficient. Instead, the optimized C version is more
       efficient, and we call it using the following syntax::

         dm = cdist(XA, XB, indptr, "sokalsneath")

    Examples
    --------
    Find the Euclidean distances between four 2-D coordinates:

    >>> from scipy.spatial import distance
    >>> coords = [(35.0456, -85.2672),
    ...           (35.1174, -89.9711),
    ...           (35.9728, -83.9422),
    ...           (36.1667, -86.7833)]
    >>> cdist(coords, coords, "euclidean")
    array([[ 0.    ,  4.7044,  1.6172,  1.8856],
           [ 4.7044,  0.    ,  6.0893,  3.3561],
           [ 1.6172,  6.0893,  0.    ,  2.8477],
           [ 1.8856,  3.3561,  2.8477,  0.    ]])


    Find the Manhattan distance from a 3-D point to the corners of the unit
    cube:

    >>> a = np.array([[0, 0, 0],
    ...               [0, 0, 1],
    ...               [0, 1, 0],
    ...               [0, 1, 1],
    ...               [1, 0, 0],
    ...               [1, 0, 1],
    ...               [1, 1, 0],
    ...               [1, 1, 1]])
    >>> b = np.array([[ 0.1,  0.2,  0.4]])
    >>> cdist(a, b, "cityblock")
    array([[ 0.7],
           [ 0.9],
           [ 1.3],
           [ 1.5],
           [ 1.5],
           [ 1.7],
           [ 2.1],
           [ 2.3]])

    """
    # You can also call this as:
    #     Y = cdist(XA, XB, indptr, "test_abc")
    # where "abc" is the metric being tested.  This computes the distance
    # between all pairs of vectors in XA and XB using the distance metric "abc"
    # but with a more succinct, verifiable, but less efficient implementation.

    # Store input arguments to check whether we can modify later.
    input_XA, input_XB = XA, XB
    input_indicesB = indicesB

    if indicesA is None:
        indicesA = np.arange(XA.shape[0])
    if not isinstance(XA, np.ndarray):
        XA = np.asarray(XA, order="C")
    if not isinstance(XB, np.ndarray):
        XB = np.asarray(XB, order="C")
    if not isinstance(indicesB, np.ndarray):
        indicesB = np.asarray(indicesB)
    if not isinstance(indicesA, np.ndarray):
        indicesA = np.asarray(indicesA)
    if not isinstance(indptr, np.ndarray):
        indptr = np.asarray(indptr)

    # The C code doesn"t do striding.
    XA, indicesA = _subset_array_if_base_present(XA, indicesA)
    XB, indicesB = _subset_array_if_base_present(XB, indicesB)

    sA = XA.shape
    sB = XB.shape
    sindptr = indptr.shape

    if XA.dtype != np.str:
        if len(sA) != 2:
            raise ValueError("XA must be a 2-dimensional array.")
        if len(sB) != 2:
            raise ValueError("XB must be a 2-dimensional array.")
        if sA[1] != sB[1]:
            raise ValueError("XA and XB must have the same number of columns "
                             "(i.e. feature dimension.)")
        if len(sindptr) != 1:
            raise ValueError("Index pointers must be a 1-dimensional array.")
        if (indptr[-1] != indicesB.shape[0]
                or sindptr[0] != indicesA.shape[0] + 1):
            raise ValueError("Index pointer array has incorrect/incompatible "
                             "shape.")
    else:
        if len(sindptr) != 1:
            raise ValueError("Index pointers must be a 1-dimensional array.")
        if sindptr[0] != indicesA.shape[0] or indptr[-1] != indicesB.shape[0]:
            raise ValueError("Index pointer array has incorrect/incompatible "
                             "shape.")

    mA = indicesA.shape[0]
    mB = indicesB.shape[0]
    n = sA[1]
    if out is None:
        dm = np.zeros(mB, dtype=np.double)
    else:
        if not out.flags.contiguous:
            raise ValueError("Output array must be contiguous")
        if out.shape != (mB, ):
            raise ValueError("Output array has incorrect shape")
        if out.dtype != np.double:
            raise ValueError("Output array must have double dtype")
        dm = out

    # validate input for multi-args metrics
    if (metric in ["minkowski", "mi", "m", "pnorm", "test_minkowski"]
            or metric == minkowski):
        p = _validate_minkowski_args(p)
        _filter_deprecated_kwargs(w=w,
                                  V=V,
                                  VI=VI,
                                  gap_open=gap_open,
                                  gap_ext=gap_ext,
                                  mat=mat,
                                  normalized=normalized)
    elif (metric in ["wminkowski", "wmi", "wm", "wpnorm", "test_wminkowski"]
          or metric == wminkowski):
        p, w = _validate_wminkowski_args(p, w)
        _filter_deprecated_kwargs(V=V,
                                  VI=VI,
                                  gap_open=gap_open,
                                  gap_ext=gap_ext,
                                  mat=mat,
                                  normalized=normalized)
    elif (metric in ["seuclidean", "se", "s", "test_seuclidean"]
          or metric == seuclidean):
        V = _validate_seuclidean_args(np.vstack([XA, XB]), n, V)
        _filter_deprecated_kwargs(p=p,
                                  w=w,
                                  VI=VI,
                                  gap_open=gap_open,
                                  gap_ext=gap_ext,
                                  mat=mat,
                                  normalized=normalized)
    elif (metric in ["mahalanobis", "mahal", "mah", "test_mahalanobis"]
          or metric == mahalanobis):
        VI = _validate_mahalanobis_args(np.vstack([XA, XB]), mA + mB, n, VI)
        _filter_deprecated_kwargs(p=p,
                                  w=w,
                                  V=V,
                                  gap_open=gap_open,
                                  gap_ext=gap_ext,
                                  mat=mat,
                                  normalized=normalized)
    elif (metric
          in ["edit", "levenshtein", "blosum", "pam", "blosum62", "pam250"]
          or metric in [levenshtein, blosum62, pam250]):
        gap_open, gap_ext = _validate_alignment_args(gap_open, gap_ext,
                                                     normalized)
        _filter_deprecated_kwargs(p=p, V=V, w=w, VI=VI, mat=mat)
        matrix_dtype = None
    elif (metric in ["align", "alignment"] or metric == alignment):
        gap_open, gap_ext = _validate_alignment_args(gap_open, gap_ext,
                                                     normalized)
        mat, matrix_dtype = _validate_score_matrix(mat)
        _filter_deprecated_kwargs(p=p, V=V, w=w, VI=VI)
    else:
        _filter_deprecated_kwargs(p=p,
                                  w=w,
                                  V=V,
                                  VI=VI,
                                  gap_open=gap_open,
                                  gap_ext=gap_ext,
                                  mat=mat,
                                  normalized=normalized)

    if callable(metric):
        # metrics that expects only doubles:
        if metric in [
                braycurtis, canberra, chebyshev, cityblock, correlation,
                cosine, euclidean, mahalanobis, minkowski, sqeuclidean,
                seuclidean, wminkowski
        ]:
            XA, indicesA = _convert_to_double(XA)
            XB, indicesB = _convert_to_double(XB)
        # metrics that expects only bools:
        elif metric in [
                dice, kulsinski, rogerstanimoto, russellrao, sokalmichener,
                sokalsneath, yule
        ]:
            XA, indicesA = _convert_to_bool(XA)
            XB, indicesB = _convert_to_bool(XB)
        # metrics that may receive multiple types:
        elif metric in [matching, hamming, jaccard]:
            if XA.dtype == bool:
                XA, indicesA = _convert_to_bool(XA)
                XB, indicesB = _convert_to_bool(XB)
            else:
                XA, indicesA = _convert_to_double(XA)
                XB, indicesB = _convert_to_double(XB)

        # metrics that expects multiple args
        if metric == minkowski:
            metric = partial(minkowski, p=p)
        elif metric == wminkowski:
            metric = partial(wminkowski, p=p, w=w)
        elif metric == seuclidean:
            metric = partial(seuclidean, V=V)
        elif metric == mahalanobis:
            metric = partial(mahalanobis, VI=VI)

        for i in range(indicesA.shape[0]):
            ii = indicesA[i]
            for j in range(indptr[i], indptr[i + 1]):
                dm[j] = metric(XA[ii, :], XB[indicesB[j], :])

    elif isinstance(metric, string_types):
        mstr = metric.lower()

        try:
            validate, ssdist_fn = _SIMPLE_ssdist[mstr]
            XA, indicesA = validate(XA, indicesA)
            XB, indicesB = validate(XB, indicesB)
            ssdist_fn(XA, XB, indicesA, indicesB, indptr, dm)
            indices = input_indicesB - np.min(input_indicesB)
            return csr_matrix((dm, indices, indptr), copy=False)
        except KeyError:
            pass

        if mstr in ["matching", "hamming", "hamm", "ha", "h"]:
            if XA.dtype == bool:
                XA = _convert_to_bool(XA, indicesA)
                XB = _convert_to_bool(XB, indicesB)
                _ssdist_wrap.ssdist_hamming_bool_wrap(XA, XB, indicesA,
                                                      indicesB, indptr, dm)
            else:
                XA = _convert_to_double(XA)
                XB = _convert_to_double(XB)
                _ssdist_wrap.ssdist_hamming_wrap(XA, XB, indicesA, indicesB,
                                                 indptr, dm)
        elif mstr in ["jaccard", "jacc", "ja", "j"]:
            if XA.dtype == bool:
                XA = _convert_to_bool(XA)
                XB = _convert_to_bool(XB)
                _ssdist_wrap.ssdist_jaccard_bool_wrap(XA, XB, indicesA,
                                                      indicesB, indptr, dm)
            else:
                XA = _convert_to_double(XA)
                XB = _convert_to_double(XB)
                _ssdist_wrap.ssdist_jaccard_wrap(XA, XB, indicesA, indicesB,
                                                 indptr, dm)
        elif mstr in ["minkowski", "mi", "m", "pnorm"]:
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
            _ssdist_wrap.ssdist_minkowski_wrap(XA,
                                               XB,
                                               indicesA,
                                               indicesB,
                                               indptr,
                                               dm,
                                               p=p)
        elif mstr in ["wminkowski", "wmi", "wm", "wpnorm"]:
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
            _ssdist_wrap.ssdist_weighted_minkowski_wrap(XA,
                                                        XB,
                                                        indicesA,
                                                        indicesB,
                                                        indptr,
                                                        dm,
                                                        p=p,
                                                        w=w)
        elif mstr in ["seuclidean", "se", "s"]:
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
            _ssdist_wrap.ssdist_seuclidean_wrap(XA,
                                                XB,
                                                indicesA,
                                                indicesB,
                                                indptr,
                                                dm,
                                                V=V)
        elif mstr in ["cosine", "cos"]:
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
            _ssdist_cosine(XA, XB, indicesA, indicesB, indptr, dm)
        elif mstr in ["correlation", "co"]:
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
            XA, indicesA = _subset_array_if_is_parent(input_XA, XA, indicesA)
            XB, indicesB = _subset_array_if_is_parent(input_XB, XB, indicesB)
            XA -= XA.mean(axis=1)[:, np.newaxis]
            XB -= XB.mean(axis=1)[:, np.newaxis]
            _ssdist_cosine(XA, XB, indicesA, indicesB, indptr, dm)
        elif mstr in ["aitchison", "simplex", "clr"]:
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
            XA, indicesA = _subset_array_if_is_parent(input_XA, XA, indicesA)
            XB, indicesB = _subset_array_if_is_parent(input_XB, XB, indicesB)
            # check positive
            if not (XA >= 0).all():
                raise ValueError("All values in XA must be greater than or "
                                 "equal to zero.")
            if not (XB >= 0).all():
                raise ValueError("All values in XB must be greater than or "
                                 "equal to zero.")
            # check normalized
            sumA = XA.sum(axis=-1)
            sumB = XA.sum(axis=-1)
            if not np.allclose(sumA, 1.):
                XA /= sumA[:, np.newaxis]
            if not np.allclose(sumB, 1.):
                XB /= sumB[:, np.newaxis]
            XA = np.log(XA, out=XA)
            XB = np.log(XB, out=XB)
            XA -= XA.mean(axis=-1)[:, np.newaxis]
            XB -= XB.mean(axis=-1)[:, np.newaxis]
            _ssdist_wrap.ssdist_euclidean(XA, XB, indicesA, indicesB, indptr,
                                          dm)
        elif mstr in ["mahalanobis", "mahal", "mah"]:
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
            _ssdist_wrap.ssdist_mahalanobis_wrap(XA,
                                                 XB,
                                                 indicesA,
                                                 indicesB,
                                                 indptr,
                                                 dm,
                                                 VI=VI)
        elif mstr in _string_names:
            XA = _convert_to_str(XA)
            XB = _convert_to_str(XB)
            _validate_string_dtypes(XA, XB, indicesA, indicesB)
            key = (mstr, normalized, "o" if XA.dtype == np.object_ else "s")
            if matrix_dtype is not None:
                key += ({int: "l", float: "d"}[matrix_dtype], )
            _ssdist_fn = _STRING_ssdist[key]
            args = (XA, XB, indicesA, indicesB, indptr, dm)
            kwargs = [gap_open, gap_ext, mat]
            args += tuple(kwarg for kwarg in kwargs if kwarg is not None)
            _ssdist_fn(*args)
        elif mstr.startswith("test_"):
            if mstr in _TEST_METRICS:
                kwargs = {"p": p, "w": w, "V": V, "VI": VI}
                dm = ssdist(XA, XB, indicesB, indicesA, _TEST_METRICS[mstr],
                            **kwargs)
            else:
                raise ValueError("Unknown \"Test\" Distance Metric: %s" %
                                 mstr[5:])
        else:
            raise ValueError("Unknown Distance Metric: %s" % mstr)
    else:
        raise TypeError("2nd argument metric must be a string identifier "
                        "or a function.")
    indices = input_indicesB - np.min(input_indicesB)
    return csr_matrix((dm, indices, indptr), copy=False)
def resample(x, num, t=None, axis=0, window=None):
    """
    Resample `x` to `num` samples using Fourier method along the given axis.
    The resampled signal starts at the same value as `x` but is sampled
    with a spacing of ``len(x) / num * (spacing of x)``.  Because a
    Fourier method is used, the signal is assumed to be periodic.
    Parameters
    ----------
    x : array_like
        The data to be resampled.
    num : int
        The number of samples in the resampled signal.
    t : array_like, optional
        If `t` is given, it is assumed to be the sample positions
        associated with the signal data in `x`.
    axis : int, optional
        The axis of `x` that is resampled.  Default is 0.
    window : array_like, callable, string, float, or tuple, optional
        Specifies the window applied to the signal in the Fourier
        domain.  See below for details.
    Returns
    -------
    resampled_x or (resampled_x, resampled_t)
        Either the resampled array, or, if `t` was given, a tuple
        containing the resampled array and the corresponding resampled
        positions.
    Notes
    -----
    The argument `window` controls a Fourier-domain window that tapers
    the Fourier spectrum before zero-padding to alleviate ringing in
    the resampled values for sampled signals you didn't intend to be
    interpreted as band-limited.
    If `window` is a function, then it is called with a vector of inputs
    indicating the frequency bins (i.e. fftfreq(x.shape[axis]) ).
    If `window` is an array of the same length as `x.shape[axis]` it is
    assumed to be the window to be applied directly in the Fourier
    domain (with dc and low-frequency first).
    For any other type of `window`, the function `scipy.signal.get_window`
    is called to generate the window.
    The first sample of the returned vector is the same as the first
    sample of the input vector.  The spacing between samples is changed
    from ``dx`` to ``dx * len(x) / num``.
    If `t` is not None, then it represents the old sample positions,
    and the new sample positions will be returned as well as the new
    samples.
    As noted, `resample` uses FFT transformations, which can be very
    slow if the number of input samples is large and prime, see
    `scipy.fftpack.fft`.
    """
    x = np.asarray(x)
    X = fft(x, axis=axis)
    Nx = x.shape[axis]
    if window is not None:
        if callable(window):
            W = window(fftfreq(Nx))
        elif isinstance(window, np.ndarray):
            if window.shape != (Nx,):
                raise ValueError('window must have the same length as data')
            W = window
        else:
            W = ifftshift(get_window(window, Nx))
        newshape = [1] * x.ndim
        newshape[axis] = len(W)
        W.shape = newshape
        X = X * W
    sl = [slice(None)] * len(x.shape)
    newshape = list(x.shape)
    newshape[axis] = num
    N = int(np.minimum(num, Nx))
    Y = np.zeros(newshape, 'D')
    sl[axis] = slice(0, (N + 1) // 2)
    Y[sl] = X[sl]
    sl[axis] = slice(-(N - 1) // 2, None)
    Y[sl] = X[sl]
    y = ifft(Y, axis=axis) * (float(num) / float(Nx))

    if x.dtype.char not in ['F', 'D']:
        y = y.real

    if t is None:
        return y
    else:
        new_t = np.arange(0, num) * (t[1] - t[0]) * Nx / float(num) + t[0]
        return y, new_t
Beispiel #19
0
def root(fun, x0, args=(), method='hybr', jac=None, tol=None, callback=None,
         options=None):
    """
    Find a root of a vector function.

    Parameters
    ----------
    fun : callable
        A vector function to find a root of.
    x0 : ndarray
        Initial guess.
    args : tuple, optional
        Extra arguments passed to the objective function and its Jacobian.
    method : str, optional
        Type of solver.  Should be one of

            - 'hybr'             :ref:`(see here) <optimize.root-hybr>`
            - 'lm'               :ref:`(see here) <optimize.root-lm>`
            - 'broyden1'         :ref:`(see here) <optimize.root-broyden1>`
            - 'broyden2'         :ref:`(see here) <optimize.root-broyden2>`
            - 'anderson'         :ref:`(see here) <optimize.root-anderson>`
            - 'linearmixing'     :ref:`(see here) <optimize.root-linearmixing>`
            - 'diagbroyden'      :ref:`(see here) <optimize.root-diagbroyden>`
            - 'excitingmixing'   :ref:`(see here) <optimize.root-excitingmixing>`
            - 'krylov'           :ref:`(see here) <optimize.root-krylov>`
            - 'df-sane'          :ref:`(see here) <optimize.root-dfsane>`

    jac : bool or callable, optional
        If `jac` is a Boolean and is True, `fun` is assumed to return the
        value of Jacobian along with the objective function. If False, the
        Jacobian will be estimated numerically.
        `jac` can also be a callable returning the Jacobian of `fun`. In
        this case, it must accept the same arguments as `fun`.
    tol : float, optional
        Tolerance for termination. For detailed control, use solver-specific
        options.
    callback : function, optional
        Optional callback function. It is called on every iteration as
        ``callback(x, f)`` where `x` is the current solution and `f`
        the corresponding residual. For all methods but 'hybr' and 'lm'.
    options : dict, optional
        A dictionary of solver options. E.g. `xtol` or `maxiter`, see
        :obj:`show_options()` for details.

    Returns
    -------
    sol : OptimizeResult
        The solution represented as a ``OptimizeResult`` object.
        Important attributes are: ``x`` the solution array, ``success`` a
        Boolean flag indicating if the algorithm exited successfully and
        ``message`` which describes the cause of the termination. See
        `OptimizeResult` for a description of other attributes.

    See also
    --------
    show_options : Additional options accepted by the solvers

    Notes
    -----
    This section describes the available solvers that can be selected by the
    'method' parameter. The default method is *hybr*.

    Method *hybr* uses a modification of the Powell hybrid method as
    implemented in MINPACK [1]_.

    Method *lm* solves the system of nonlinear equations in a least squares
    sense using a modification of the Levenberg-Marquardt algorithm as
    implemented in MINPACK [1]_.

    Method *df-sane* is a derivative-free spectral method. [3]_

    Methods *broyden1*, *broyden2*, *anderson*, *linearmixing*,
    *diagbroyden*, *excitingmixing*, *krylov* are inexact Newton methods,
    with backtracking or full line searches [2]_. Each method corresponds
    to a particular Jacobian approximations. See `nonlin` for details.

    - Method *broyden1* uses Broyden's first Jacobian approximation, it is
      known as Broyden's good method.
    - Method *broyden2* uses Broyden's second Jacobian approximation, it
      is known as Broyden's bad method.
    - Method *anderson* uses (extended) Anderson mixing.
    - Method *Krylov* uses Krylov approximation for inverse Jacobian. It
      is suitable for large-scale problem.
    - Method *diagbroyden* uses diagonal Broyden Jacobian approximation.
    - Method *linearmixing* uses a scalar Jacobian approximation.
    - Method *excitingmixing* uses a tuned diagonal Jacobian
      approximation.

    .. warning::

        The algorithms implemented for methods *diagbroyden*,
        *linearmixing* and *excitingmixing* may be useful for specific
        problems, but whether they will work may depend strongly on the
        problem.

    .. versionadded:: 0.11.0

    References
    ----------
    .. [1] More, Jorge J., Burton S. Garbow, and Kenneth E. Hillstrom.
       1980. User Guide for MINPACK-1.
    .. [2] C. T. Kelley. 1995. Iterative Methods for Linear and Nonlinear
       Equations. Society for Industrial and Applied Mathematics.
       <http://www.siam.org/books/kelley/fr16/index.php>
    .. [3] W. La Cruz, J.M. Martinez, M. Raydan. Math. Comp. 75, 1429 (2006).

    Examples
    --------
    The following functions define a system of nonlinear equations and its
    jacobian.

    >>> def fun(x):
    ...     return [x[0]  + 0.5 * (x[0] - x[1])**3 - 1.0,
    ...             0.5 * (x[1] - x[0])**3 + x[1]]

    >>> def jac(x):
    ...     return np.array([[1 + 1.5 * (x[0] - x[1])**2,
    ...                       -1.5 * (x[0] - x[1])**2],
    ...                      [-1.5 * (x[1] - x[0])**2,
    ...                       1 + 1.5 * (x[1] - x[0])**2]])

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.root(fun, [0, 0], jac=jac, method='hybr')
    >>> sol.x
    array([ 0.8411639,  0.1588361])

    """
    if not isinstance(args, tuple):
        args = (args,)

    meth = method.lower()
    if options is None:
        options = {}

    if callback is not None and meth in ('hybr', 'lm'):
        warn('Method %s does not accept callback.' % method,
             RuntimeWarning)

    # fun also returns the jacobian
    if not callable(jac) and meth in ('hybr', 'lm'):
        if bool(jac):
            fun = MemoizeJac(fun)
            jac = fun.derivative
        else:
            jac = None

    # set default tolerances
    if tol is not None:
        options = dict(options)
        if meth in ('hybr', 'lm'):
            options.setdefault('xtol', tol)
        elif meth in ('df-sane',):
            options.setdefault('ftol', tol)
        elif meth in ('broyden1', 'broyden2', 'anderson', 'linearmixing',
                      'diagbroyden', 'excitingmixing', 'krylov'):
            options.setdefault('xtol', tol)
            options.setdefault('xatol', np.inf)
            options.setdefault('ftol', np.inf)
            options.setdefault('fatol', np.inf)

    if meth == 'hybr':
        sol = _root_hybr(fun, x0, args=args, jac=jac, **options)
    elif meth == 'lm':
        sol = _root_leastsq(fun, x0, args=args, jac=jac, **options)
    elif meth == 'df-sane':
        _warn_jac_unused(jac, method)
        sol = _root_df_sane(fun, x0, args=args, callback=callback,
                            **options)
    elif meth in ('broyden1', 'broyden2', 'anderson', 'linearmixing',
                  'diagbroyden', 'excitingmixing', 'krylov'):
        _warn_jac_unused(jac, method)
        sol = _root_nonlin_solve(fun, x0, args=args, jac=jac,
                                 _method=meth, _callback=callback,
                                 **options)
    else:
        raise ValueError('Unknown solver %s' % method)

    return sol
def cdist(XA, XB, metric='euclidean', p=2, V=None, VI=None, w=None):
    timer = MyTimer.MyTimerCLS()
    timer.refresh('enter cidst')
    XA = np.asarray(XA, order='c')
    XB = np.asarray(XB, order='c')
    timer.refresh('asarray')
    # The C code doesn't do striding.
    XA = _copy_array_if_base_present(_convert_to_double(XA))
    XB = _copy_array_if_base_present(_convert_to_double(XB))
    timer.refresh('_copy_array_if_base_present')
    s = XA.shape
    sB = XB.shape
    timer.refresh('get shape')
    if len(s) != 2:
        raise ValueError('XA must be a 2-dimensional array.')
    if len(sB) != 2:
        raise ValueError('XB must be a 2-dimensional array.')
    if s[1] != sB[1]:
        raise ValueError('XA and XB must have the same number of columns '
                         '(i.e. feature dimension.)')
    timer.refresh('error check')
    mA = s[0]
    mB = sB[0]
    n = s[1]
    timer.refresh('get dim')
    dm = np.zeros((mA, mB), dtype=np.double)
    timer.refresh(' np.zeros ')
    if callable(metric):
        if metric == minkowski:
            for i in xrange(0, mA):
                for j in xrange(0, mB):
                    dm[i, j] = minkowski(XA[i, :], XB[j, :], p)
        elif metric == wminkowski:
            for i in xrange(0, mA):
                for j in xrange(0, mB):
                    dm[i, j] = wminkowski(XA[i, :], XB[j, :], p, w)
        elif metric == seuclidean:
            for i in xrange(0, mA):
                for j in xrange(0, mB):
                    dm[i, j] = seuclidean(XA[i, :], XB[j, :], V)
        elif metric == mahalanobis:
            for i in xrange(0, mA):
                for j in xrange(0, mB):
                    dm[i, j] = mahalanobis(XA[i, :], XB[j, :], V)
        else:
            for i in xrange(0, mA):
                for j in xrange(0, mB):
                    dm[i, j] = metric(XA[i, :], XB[j, :])
        timer.refresh(' if callable ')
        print 'cool'
    elif isinstance(metric, string_types):
        mstr = metric.lower()
        timer.refresh('else')
        try:
            validate, cdist_fn = _SIMPLE_CDIST[mstr]
            XA = validate(XA)
            XB = validate(XB)
            cdist_fn(XA, XB, dm)
            return dm
        except KeyError:
            pass
        timer.refresh(' try')
        if mstr in ['hamming', 'hamm', 'ha', 'h']:
            if XA.dtype == bool:
                XA = _convert_to_bool(XA)
                XB = _convert_to_bool(XB)
                _distance_wrap.cdist_hamming_bool_wrap(XA, XB, dm)
            else:
                XA = _convert_to_double(XA)
                XB = _convert_to_double(XB)
                _distance_wrap.cdist_hamming_wrap(XA, XB, dm)
        elif mstr in ['jaccard', 'jacc', 'ja', 'j']:
            if XA.dtype == bool:
                XA = _convert_to_bool(XA)
                XB = _convert_to_bool(XB)
                _distance_wrap.cdist_jaccard_bool_wrap(XA, XB, dm)
            else:
                XA = _convert_to_double(XA)
                XB = _convert_to_double(XB)
                _distance_wrap.cdist_jaccard_wrap(XA, XB, dm)
        elif mstr in ['minkowski', 'mi', 'm', 'pnorm']:
            timer.refresh('before _convert_to_double')
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
            timer.refresh('_convert_to_double')
            _distance_wrap.cdist_minkowski_wrap(XA, XB, dm, p)
            timer.refresh('after minkowski')
        elif mstr in ['wminkowski', 'wmi', 'wm', 'wpnorm']:
            timer.refresh('before _convert_to_double')
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
            timer.refresh('_convert_to_double')
            w = _convert_to_double(w)
            _distance_wrap.cdist_weighted_minkowski_wrap(XA, XB, dm, p, w)
        elif mstr in ['seuclidean', 'se', 's']:
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
            if V is not None:
                V = np.asarray(V, order='c')
                if V.dtype != np.double:
                    raise TypeError('Variance vector V must contain doubles.')
                if len(V.shape) != 1:
                    raise ValueError('Variance vector V must be '
                                     'one-dimensional.')
                if V.shape[0] != n:
                    raise ValueError('Variance vector V must be of the same '
                                     'dimension as the vectors on which the '
                                     'distances are computed.')
                # The C code doesn't do striding.
                VV = _copy_array_if_base_present(_convert_to_double(V))
            else:
                VV = np.var(np.vstack([XA, XB]), axis=0, ddof=1)
            _distance_wrap.cdist_seuclidean_wrap(XA, XB, VV, dm)
        elif mstr in ['cosine', 'cos']:
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
            _cosine_cdist(XA, XB, dm)
        elif mstr in ['correlation', 'co']:
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
            XA -= XA.mean(axis=1)[:, np.newaxis]
            XB -= XB.mean(axis=1)[:, np.newaxis]
            _cosine_cdist(XA, XB, dm)
        elif mstr in ['mahalanobis', 'mahal', 'mah']:
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
            if VI is not None:
                VI = _convert_to_double(np.asarray(VI, order='c'))
                VI = _copy_array_if_base_present(VI)
            else:
                m = mA + mB
                if m <= n:
                    # There are fewer observations than the dimension of
                    # the observations.
                    raise ValueError("The number of observations (%d) is too "
                                     "small; the covariance matrix is "
                                     "singular. For observations with %d "
                                     "dimensions, at least %d observations "
                                     "are required." % (m, n, n + 1))
                X = np.vstack([XA, XB])
                V = np.atleast_2d(np.cov(X.T))
                del X
                VI = np.linalg.inv(V).T.copy()
            # (u-v)V^(-1)(u-v)^T
            _distance_wrap.cdist_mahalanobis_wrap(XA, XB, VI, dm)
        elif metric == 'test_euclidean':
            dm = cdist(XA, XB, euclidean)
        elif metric == 'test_seuclidean':
            if V is None:
                V = np.var(np.vstack([XA, XB]), axis=0, ddof=1)
            else:
                V = np.asarray(V, order='c')
            dm = cdist(XA, XB, lambda u, v: seuclidean(u, v, V))
        elif metric == 'test_sqeuclidean':
            dm = cdist(XA, XB, lambda u, v: sqeuclidean(u, v))
        elif metric == 'test_braycurtis':
            dm = cdist(XA, XB, braycurtis)
        elif metric == 'test_mahalanobis':
            if VI is None:
                X = np.vstack([XA, XB])
                V = np.cov(X.T)
                VI = np.linalg.inv(V)
                X = None
                del X
            else:
                VI = np.asarray(VI, order='c')
            VI = _copy_array_if_base_present(VI)
            # (u-v)V^(-1)(u-v)^T
            dm = cdist(XA, XB, (lambda u, v: mahalanobis(u, v, VI)))
        elif metric == 'test_canberra':
            dm = cdist(XA, XB, canberra)
        elif metric == 'test_cityblock':
            dm = cdist(XA, XB, cityblock)
        elif metric == 'test_minkowski':
            dm = cdist(XA, XB, minkowski, p=p)
        elif metric == 'test_wminkowski':
            dm = cdist(XA, XB, wminkowski, p=p, w=w)
        elif metric == 'test_correlation':
            dm = cdist(XA, XB, correlation)
        elif metric == 'test_hamming':
            dm = cdist(XA, XB, hamming)
        elif metric == 'test_jaccard':
            dm = cdist(XA, XB, jaccard)
        elif metric == 'test_chebyshev' or metric == 'test_chebychev':
            dm = cdist(XA, XB, chebyshev)
        elif metric == 'test_yule':
            dm = cdist(XA, XB, yule)
        elif metric == 'test_matching':
            dm = cdist(XA, XB, matching)
        elif metric == 'test_dice':
            dm = cdist(XA, XB, dice)
        elif metric == 'test_kulsinski':
            dm = cdist(XA, XB, kulsinski)
        elif metric == 'test_rogerstanimoto':
            dm = cdist(XA, XB, rogerstanimoto)
        elif metric == 'test_russellrao':
            dm = cdist(XA, XB, russellrao)
        elif metric == 'test_sokalsneath':
            dm = cdist(XA, XB, sokalsneath)
        elif metric == 'test_sokalmichener':
            dm = cdist(XA, XB, sokalmichener)
        else:
            raise ValueError('Unknown Distance Metric: %s' % mstr)
    else:
        raise TypeError('2nd argument metric must be a string identifier '
                        'or a function.')
    timer.refresh('before return')
    return dm, timer
Beispiel #21
0
def schur(a, output='real', lwork=None, overwrite_a=False, sort=None,
          check_finite=True):
    """
    Compute Schur decomposition of a matrix.

    The Schur decomposition is::

        A = Z T Z^H

    where Z is unitary and T is either upper-triangular, or for real
    Schur decomposition (output='real'), quasi-upper triangular.  In
    the quasi-triangular form, 2x2 blocks describing complex-valued
    eigenvalue pairs may extrude from the diagonal.

    Parameters
    ----------
    a : (M, M) array_like
        Matrix to decompose
    output : {'real', 'complex'}, optional
        Construct the real or complex Schur decomposition (for real matrices).
    lwork : int, optional
        Work array size. If None or -1, it is automatically computed.
    overwrite_a : bool, optional
        Whether to overwrite data in a (may improve performance).
    sort : {None, callable, 'lhp', 'rhp', 'iuc', 'ouc'}, optional
        Specifies whether the upper eigenvalues should be sorted.  A callable
        may be passed that, given a eigenvalue, returns a boolean denoting
        whether the eigenvalue should be sorted to the top-left (True).
        Alternatively, string parameters may be used::

            'lhp'   Left-hand plane (x.real < 0.0)
            'rhp'   Right-hand plane (x.real > 0.0)
            'iuc'   Inside the unit circle (x*x.conjugate() <= 1.0)
            'ouc'   Outside the unit circle (x*x.conjugate() > 1.0)

        Defaults to None (no sorting).
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    T : (M, M) ndarray
        Schur form of A. It is real-valued for the real Schur decomposition.
    Z : (M, M) ndarray
        An unitary Schur transformation matrix for A.
        It is real-valued for the real Schur decomposition.
    sdim : int
        If and only if sorting was requested, a third return value will
        contain the number of eigenvalues satisfying the sort condition.

    Raises
    ------
    LinAlgError
        Error raised under three conditions:

        1. The algorithm failed due to a failure of the QR algorithm to
           compute all eigenvalues
        2. If eigenvalue sorting was requested, the eigenvalues could not be
           reordered due to a failure to separate eigenvalues, usually because
           of poor conditioning
        3. If eigenvalue sorting was requested, roundoff errors caused the
           leading eigenvalues to no longer satisfy the sorting condition

    See also
    --------
    rsf2csf : Convert real Schur form to complex Schur form

    Examples
    --------
    >>> from scipy.linalg import schur, eigvals
    >>> A = np.array([[0, 2, 2], [0, 1, 2], [1, 0, 1]])
    >>> T, Z = schur(A)
    >>> T
    array([[ 2.65896708,  1.42440458, -1.92933439],
           [ 0.        , -0.32948354, -0.49063704],
           [ 0.        ,  1.31178921, -0.32948354]])
    >>> Z
    array([[0.72711591, -0.60156188, 0.33079564],
           [0.52839428, 0.79801892, 0.28976765],
           [0.43829436, 0.03590414, -0.89811411]])

    >>> T2, Z2 = schur(A, output='complex')
    >>> T2
    array([[ 2.65896708, -1.22839825+1.32378589j,  0.42590089+1.51937378j],
           [ 0.        , -0.32948354+0.80225456j, -0.59877807+0.56192146j],
           [ 0.        ,  0.                    , -0.32948354-0.80225456j]])
    >>> eigvals(T2)
    array([2.65896708, -0.32948354+0.80225456j, -0.32948354-0.80225456j])

    An arbitrary custom eig-sorting condition, having positive imaginary part, 
    which is satisfied by only one eigenvalue

    >>> T3, Z3, sdim = schur(A, output='complex', sort=lambda x: x.imag > 0)
    >>> sdim
    1

    """
    if output not in ['real', 'complex', 'r', 'c']:
        raise ValueError("argument must be 'real', or 'complex'")
    if check_finite:
        a1 = asarray_chkfinite(a)
    else:
        a1 = asarray(a)
    if len(a1.shape) != 2 or (a1.shape[0] != a1.shape[1]):
        raise ValueError('expected square matrix')
    typ = a1.dtype.char
    if output in ['complex', 'c'] and typ not in ['F', 'D']:
        if typ in _double_precision:
            a1 = a1.astype('D')
            typ = 'D'
        else:
            a1 = a1.astype('F')
            typ = 'F'
    overwrite_a = overwrite_a or (_datacopied(a1, a))
    gees, = get_lapack_funcs(('gees',), (a1,))
    if lwork is None or lwork == -1:
        # get optimal work array
        result = gees(lambda x: None, a1, lwork=-1)
        lwork = result[-2][0].real.astype(numpy.int)

    if sort is None:
        sort_t = 0
        sfunction = lambda x: None
    else:
        sort_t = 1
        if callable(sort):
            sfunction = sort
        elif sort == 'lhp':
            sfunction = lambda x: (x.real < 0.0)
        elif sort == 'rhp':
            sfunction = lambda x: (x.real >= 0.0)
        elif sort == 'iuc':
            sfunction = lambda x: (abs(x) <= 1.0)
        elif sort == 'ouc':
            sfunction = lambda x: (abs(x) > 1.0)
        else:
            raise ValueError("'sort' parameter must either be 'None', or a "
                             "callable, or one of ('lhp','rhp','iuc','ouc')")

    result = gees(sfunction, a1, lwork=lwork, overwrite_a=overwrite_a,
                  sort_t=sort_t)

    info = result[-1]
    if info < 0:
        raise ValueError('illegal value in {}-th argument of internal gees'
                         ''.format(-info))
    elif info == a1.shape[0] + 1:
        raise LinAlgError('Eigenvalues could not be separated for reordering.')
    elif info == a1.shape[0] + 2:
        raise LinAlgError('Leading eigenvalues do not satisfy sort condition.')
    elif info > 0:
        raise LinAlgError("Schur form not found.  Possibly ill-conditioned.")

    if sort_t == 0:
        return result[0], result[-3]
    else:
        return result[0], result[-3], result[1]
Beispiel #22
0
def root_scalar(f, args=(), method=None, bracket=None,
                fprime=None, fprime2=None,
                x0=None, x1=None,
                xtol=None, rtol=None, maxiter=None,
                options=None):
    """
    Find a root of a scalar function.

    Parameters
    ----------
    f : callable
        A function to find a root of.
    args : tuple, optional
        Extra arguments passed to the objective function and its derivative(s).
    method : str, optional
        Type of solver.  Should be one of

            - 'bisect'    :ref:`(see here) <optimize.root_scalar-bisect>`
            - 'brentq'    :ref:`(see here) <optimize.root_scalar-brentq>`
            - 'brenth'    :ref:`(see here) <optimize.root_scalar-brenth>`
            - 'ridder'    :ref:`(see here) <optimize.root_scalar-ridder>`
            - 'toms748'    :ref:`(see here) <optimize.root_scalar-toms748>`
            - 'newton'    :ref:`(see here) <optimize.root_scalar-newton>`
            - 'secant'    :ref:`(see here) <optimize.root_scalar-secant>`
            - 'halley'    :ref:`(see here) <optimize.root_scalar-halley>`

    bracket: A sequence of 2 floats, optional
        An interval bracketing a root.  `f(x, *args)` must have different
        signs at the two endpoints.
    x0 : float, optional
        Initial guess.
    x1 : float, optional
        A second guess.
    fprime : bool or callable, optional
        If `fprime` is a boolean and is True, `f` is assumed to return the
        value of the objective function and of the derivative.
        `fprime` can also be a callable returning the derivative of `f`. In
        this case, it must accept the same arguments as `f`.
    fprime2 : bool or callable, optional
        If `fprime2` is a boolean and is True, `f` is assumed to return the
        value of the objective function and of the
        first and second derivatives.
        `fprime2` can also be a callable returning the second derivative of `f`.
        In this case, it must accept the same arguments as `f`.
    xtol : float, optional
        Tolerance (absolute) for termination.
    rtol : float, optional
        Tolerance (relative) for termination.
    maxiter : int, optional
        Maximum number of iterations.
    options : dict, optional
        A dictionary of solver options. E.g. ``k``, see
        :obj:`show_options()` for details.

    Returns
    -------
    sol : RootResults
        The solution represented as a ``RootResults`` object.
        Important attributes are: ``root`` the solution , ``converged`` a
        boolean flag indicating if the algorithm exited successfully and
        ``flag`` which describes the cause of the termination. See
        `RootResults` for a description of other attributes.

    See also
    --------
    show_options : Additional options accepted by the solvers
    root : Find a root of a vector function.

    Notes
    -----
    This section describes the available solvers that can be selected by the
    'method' parameter.

    The default is to use the best method available for the situation
    presented.
    If a bracket is provided, it may use one of the bracketing methods.
    If a derivative and an initial value are specified, it may
    select one of the derivative-based methods.
    If no method is judged applicable, it will raise an Exception.


    Examples
    --------

    Find the root of a simple cubic

    >>> from scipy import optimize
    >>> def f(x):
    ...     return (x**3 - 1)  # only one real root at x = 1

    >>> def fprime(x):
    ...     return 3*x**2

    The `brentq` method takes as input a bracket

    >>> sol = optimize.root_scalar(f, bracket=[0, 3], method='brentq')
    >>> sol.root, sol.iterations, sol.function_calls
    (1.0, 10, 11)

    The `newton` method takes as input a single point and uses the derivative(s)

    >>> sol = optimize.root_scalar(f, x0=0.2, fprime=fprime, method='newton')
    >>> sol.root, sol.iterations, sol.function_calls
    (1.0, 11, 22)

    The function can provide the value and derivative(s) in a single call.

    >>> def f_p_pp(x):
    ...     return (x**3 - 1), 3*x**2, 6*x

    >>> sol = optimize.root_scalar(f_p_pp, x0=0.2, fprime=True, method='newton')
    >>> sol.root, sol.iterations, sol.function_calls
    (1.0, 11, 11)

    >>> sol = optimize.root_scalar(f_p_pp, x0=0.2, fprime=True, fprime2=True, method='halley')
    >>> sol.root, sol.iterations, sol.function_calls
    (1.0, 7, 8)


    """
    if not isinstance(args, tuple):
        args = (args,)

    if options is None:
        options = {}

    # fun also returns the derivative(s)
    is_memoized = False
    if fprime2 is not None and not callable(fprime2):
        if bool(fprime2):
            f = MemoizeDer(f)
            is_memoized = True
            fprime2 = f.fprime2
            fprime = f.fprime
        else:
            fprime2 = None
    if fprime is not None and not callable(fprime):
        if bool(fprime):
            f = MemoizeDer(f)
            is_memoized = True
            fprime = f.fprime
        else:
            fprime = None

    # respect solver-specific default tolerances - only pass in if actually set
    kwargs = {}
    for k in ['xtol', 'rtol', 'maxiter']:
        v = locals().get(k)
        if v is not None:
            kwargs[k] = v

    # Set any solver-specific options
    if options:
        kwargs.update(options)
    # Always request full_output from the underlying method as _root_scalar
    # always returns a RootResults object
    kwargs.update(full_output=True, disp=False)

    # Pick a method if not specified.
    # Use the "best" method available for the situation.
    if not method:
        if bracket:
            method = 'brentq'
        elif x0 is not None:
            if fprime:
                if fprime2:
                    method = 'halley'
                else:
                    method = 'newton'
            else:
                method = 'secant'
    if not method:
        raise ValueError('Unable to select a solver as neither bracket '
                         'nor starting point provided.')

    meth = method.lower()
    map2underlying = {'halley': 'newton', 'secant': 'newton'}

    try:
        methodc = getattr(optzeros, map2underlying.get(meth, meth))
    except AttributeError:
        raise ValueError('Unknown solver %s' % meth)

    if meth in ['bisect', 'ridder', 'brentq', 'brenth', 'toms748']:
        if not isinstance(bracket, (list, tuple, np.ndarray)):
            raise ValueError('Bracket needed for %s' % method)

        a, b = bracket[:2]
        r, sol = methodc(f, a, b, args=args, **kwargs)
    elif meth in ['secant']:
        if x0 is None:
            raise ValueError('x0 must not be None for %s' % method)
        if x1 is None:
            raise ValueError('x1 must not be None for %s' % method)
        if 'xtol' in kwargs:
            kwargs['tol'] = kwargs.pop('xtol')
        r, sol = methodc(f, x0, args=args, fprime=None, fprime2=None,
                         x1=x1, **kwargs)
    elif meth in ['newton']:
        if x0 is None:
            raise ValueError('x0 must not be None for %s' % method)
        if not fprime:
            raise ValueError('fprime must be specified for %s' % method)
        if 'xtol' in kwargs:
            kwargs['tol'] = kwargs.pop('xtol')
        r, sol = methodc(f, x0, args=args, fprime=fprime, fprime2=None,
                         **kwargs)
    elif meth in ['halley']:
        if x0 is None:
            raise ValueError('x0 must not be None for %s' % method)
        if not fprime:
            raise ValueError('fprime must be specified for %s' % method)
        if not fprime2:
            raise ValueError('fprime2 must be specified for %s' % method)
        if 'xtol' in kwargs:
            kwargs['tol'] = kwargs.pop('xtol')
        r, sol = methodc(f, x0, args=args, fprime=fprime, fprime2=fprime2, **kwargs)
    else:
        raise ValueError('Unknown solver %s' % method)

    if is_memoized:
        # Replace the function_calls count with the memoized count.
        # Avoids double and triple-counting.
        n_calls = f.n_calls
        sol.function_calls = n_calls

    return sol
Beispiel #23
0
def schur(a, output='real', lwork=None, overwrite_a=False, sort=None,
          check_finite=True):
    """
    Compute Schur decomposition of a matrix.

    The Schur decomposition is::

        A = Z T Z^H

    where Z is unitary and T is either upper-triangular, or for real
    Schur decomposition (output='real'), quasi-upper triangular.  In
    the quasi-triangular form, 2x2 blocks describing complex-valued
    eigenvalue pairs may extrude from the diagonal.

    Parameters
    ----------
    a : (M, M) array_like
        Matrix to decompose
    output : {'real', 'complex'}, optional
        Construct the real or complex Schur decomposition (for real matrices).
    lwork : int, optional
        Work array size. If None or -1, it is automatically computed.
    overwrite_a : bool, optional
        Whether to overwrite data in a (may improve performance).
    sort : {None, callable, 'lhp', 'rhp', 'iuc', 'ouc'}, optional
        Specifies whether the upper eigenvalues should be sorted.  A callable
        may be passed that, given a eigenvalue, returns a boolean denoting
        whether the eigenvalue should be sorted to the top-left (True).
        Alternatively, string parameters may be used::

            'lhp'   Left-hand plane (x.real < 0.0)
            'rhp'   Right-hand plane (x.real > 0.0)
            'iuc'   Inside the unit circle (x*x.conjugate() <= 1.0)
            'ouc'   Outside the unit circle (x*x.conjugate() > 1.0)

        Defaults to None (no sorting).
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    T : (M, M) ndarray
        Schur form of A. It is real-valued for the real Schur decomposition.
    Z : (M, M) ndarray
        An unitary Schur transformation matrix for A.
        It is real-valued for the real Schur decomposition.
    sdim : int
        If and only if sorting was requested, a third return value will
        contain the number of eigenvalues satisfying the sort condition.

    Raises
    ------
    LinAlgError
        Error raised under three conditions:

        1. The algorithm failed due to a failure of the QR algorithm to
           compute all eigenvalues
        2. If eigenvalue sorting was requested, the eigenvalues could not be
           reordered due to a failure to separate eigenvalues, usually because
           of poor conditioning
        3. If eigenvalue sorting was requested, roundoff errors caused the
           leading eigenvalues to no longer satisfy the sorting condition

    See also
    --------
    rsf2csf : Convert real Schur form to complex Schur form

    Examples
    --------
    >>> from scipy.linalg import schur, eigvals
    >>> A = np.array([[0, 2, 2], [0, 1, 2], [1, 0, 1]])
    >>> T, Z = schur(A)
    >>> T
    array([[ 2.65896708,  1.42440458, -1.92933439],
           [ 0.        , -0.32948354, -0.49063704],
           [ 0.        ,  1.31178921, -0.32948354]])
    >>> Z
    array([[0.72711591, -0.60156188, 0.33079564],
           [0.52839428, 0.79801892, 0.28976765],
           [0.43829436, 0.03590414, -0.89811411]])

    >>> T2, Z2 = schur(A, output='complex')
    >>> T2
    array([[ 2.65896708, -1.22839825+1.32378589j,  0.42590089+1.51937378j],
           [ 0.        , -0.32948354+0.80225456j, -0.59877807+0.56192146j],
           [ 0.        ,  0.                    , -0.32948354-0.80225456j]])
    >>> eigvals(T2)
    array([2.65896708, -0.32948354+0.80225456j, -0.32948354-0.80225456j])

    An arbitrary custom eig-sorting condition, having positive imaginary part, 
    which is satisfied by only one eigenvalue

    >>> T3, Z3, sdim = schur(A, output='complex', sort=lambda x: x.imag > 0)
    >>> sdim
    1

    """
    if output not in ['real', 'complex', 'r', 'c']:
        raise ValueError("argument must be 'real', or 'complex'")
    if check_finite:
        a1 = asarray_chkfinite(a)
    else:
        a1 = asarray(a)
    if len(a1.shape) != 2 or (a1.shape[0] != a1.shape[1]):
        raise ValueError('expected square matrix')
    typ = a1.dtype.char
    if output in ['complex', 'c'] and typ not in ['F', 'D']:
        if typ in _double_precision:
            a1 = a1.astype('D')
            typ = 'D'
        else:
            a1 = a1.astype('F')
            typ = 'F'
    overwrite_a = overwrite_a or (_datacopied(a1, a))
    gees, = get_lapack_funcs(('gees',), (a1,))
    if lwork is None or lwork == -1:
        # get optimal work array
        result = gees(lambda x: None, a1, lwork=-1)
        lwork = result[-2][0].real.astype(numpy.int)

    if sort is None:
        sort_t = 0
        sfunction = lambda x: None
    else:
        sort_t = 1
        if callable(sort):
            sfunction = sort
        elif sort == 'lhp':
            sfunction = lambda x: (x.real < 0.0)
        elif sort == 'rhp':
            sfunction = lambda x: (x.real >= 0.0)
        elif sort == 'iuc':
            sfunction = lambda x: (abs(x) <= 1.0)
        elif sort == 'ouc':
            sfunction = lambda x: (abs(x) > 1.0)
        else:
            raise ValueError("'sort' parameter must either be 'None', or a "
                             "callable, or one of ('lhp','rhp','iuc','ouc')")

    result = gees(sfunction, a1, lwork=lwork, overwrite_a=overwrite_a,
                  sort_t=sort_t)

    info = result[-1]
    if info < 0:
        raise ValueError('illegal value in {}-th argument of internal gees'
                         ''.format(-info))
    elif info == a1.shape[0] + 1:
        raise LinAlgError('Eigenvalues could not be separated for reordering.')
    elif info == a1.shape[0] + 2:
        raise LinAlgError('Leading eigenvalues do not satisfy sort condition.')
    elif info > 0:
        raise LinAlgError("Schur form not found.  Possibly ill-conditioned.")

    if sort_t == 0:
        return result[0], result[-3]
    else:
        return result[0], result[-3], result[1]
Beispiel #24
0
def minimize_scalar(fun, bracket=None, bounds=None, args=(),
                    method='brent', tol=None, options=None):
    """Minimization of scalar function of one variable.

    Parameters
    ----------
    fun : callable
        Objective function.
        Scalar function, must return a scalar.
    bracket : sequence, optional
        For methods 'brent' and 'golden', `bracket` defines the bracketing
        interval and can either have three items ``(a, b, c)`` so that
        ``a < b < c`` and ``fun(b) < fun(a), fun(c)`` or two items ``a`` and
        ``c`` which are assumed to be a starting interval for a downhill
        bracket search (see `bracket`); it doesn't always mean that the
        obtained solution will satisfy ``a <= x <= c``.
    bounds : sequence, optional
        For method 'bounded', `bounds` is mandatory and must have two items
        corresponding to the optimization bounds.
    args : tuple, optional
        Extra arguments passed to the objective function.
    method : str or callable, optional
        Type of solver.  Should be one of:

            - 'Brent'     :ref:`(see here) <optimize.minimize_scalar-brent>`
            - 'Bounded'   :ref:`(see here) <optimize.minimize_scalar-bounded>`
            - 'Golden'    :ref:`(see here) <optimize.minimize_scalar-golden>`
            - custom - a callable object (added in version 0.14.0), see below

    tol : float, optional
        Tolerance for termination. For detailed control, use solver-specific
        options.
    options : dict, optional
        A dictionary of solver options.

            maxiter : int
                Maximum number of iterations to perform.
            disp : bool
                Set to True to print convergence messages.

        See :func:`show_options()` for solver-specific options.

    Returns
    -------
    res : OptimizeResult
        The optimization result represented as a ``OptimizeResult`` object.
        Important attributes are: ``x`` the solution array, ``success`` a
        Boolean flag indicating if the optimizer exited successfully and
        ``message`` which describes the cause of the termination. See
        `OptimizeResult` for a description of other attributes.

    See also
    --------
    minimize : Interface to minimization algorithms for scalar multivariate
        functions
    show_options : Additional options accepted by the solvers

    Notes
    -----
    This section describes the available solvers that can be selected by the
    'method' parameter. The default method is *Brent*.

    Method :ref:`Brent <optimize.minimize_scalar-brent>` uses Brent's
    algorithm to find a local minimum.  The algorithm uses inverse
    parabolic interpolation when possible to speed up convergence of
    the golden section method.

    Method :ref:`Golden <optimize.minimize_scalar-golden>` uses the
    golden section search technique. It uses analog of the bisection
    method to decrease the bracketed interval. It is usually
    preferable to use the *Brent* method.

    Method :ref:`Bounded <optimize.minimize_scalar-bounded>` can
    perform bounded minimization. It uses the Brent method to find a
    local minimum in the interval x1 < xopt < x2.

    **Custom minimizers**

    It may be useful to pass a custom minimization method, for example
    when using some library frontend to minimize_scalar.  You can simply
    pass a callable as the ``method`` parameter.

    The callable is called as ``method(fun, args, **kwargs, **options)``
    where ``kwargs`` corresponds to any other parameters passed to `minimize`
    (such as `bracket`, `tol`, etc.), except the `options` dict, which has
    its contents also passed as `method` parameters pair by pair.  The method
    shall return an ``OptimizeResult`` object.

    The provided `method` callable must be able to accept (and possibly ignore)
    arbitrary parameters; the set of parameters accepted by `minimize` may
    expand in future versions and then these parameters will be passed to
    the method.  You can find an example in the scipy.optimize tutorial.

    .. versionadded:: 0.11.0

    Examples
    --------
    Consider the problem of minimizing the following function.

    >>> def f(x):
    ...     return (x - 2) * x * (x + 2)**2

    Using the *Brent* method, we find the local minimum as:

    >>> from scipy.optimize import minimize_scalar
    >>> res = minimize_scalar(f)
    >>> res.x
    1.28077640403

    Using the *Bounded* method, we find a local minimum with specified
    bounds as:

    >>> res = minimize_scalar(f, bounds=(-3, -1), method='bounded')
    >>> res.x
    -2.0000002026

    """
    if not isinstance(args, tuple):
        args = (args,)

    if callable(method):
        meth = "_custom"
    else:
        meth = method.lower()
    if options is None:
        options = {}

    if tol is not None:
        options = dict(options)
        if meth == 'bounded' and 'xatol' not in options:
            warn("Method 'bounded' does not support relative tolerance in x; "
                 "defaulting to absolute tolerance.", RuntimeWarning)
            options['xatol'] = tol
        elif meth == '_custom':
            options.setdefault('tol', tol)
        else:
            options.setdefault('xtol', tol)

    if meth == '_custom':
        return method(fun, args=args, bracket=bracket, bounds=bounds, **options)
    elif meth == 'brent':
        return _minimize_scalar_brent(fun, bracket, args, **options)
    elif meth == 'bounded':
        if bounds is None:
            raise ValueError('The `bounds` parameter is mandatory for '
                             'method `bounded`.')
        return _minimize_scalar_bounded(fun, bounds, args, **options)
    elif meth == 'golden':
        return _minimize_scalar_golden(fun, bracket, args, **options)
    else:
        raise ValueError('Unknown solver %s' % method)
Beispiel #25
0
def fmin_cobyla(func, x0, cons, args=(), consargs=None, rhobeg=1.0,
                rhoend=1e-4, maxfun=1000, disp=None, catol=2e-4):
    """
    Minimize a function using the Constrained Optimization BY Linear
    Approximation (COBYLA) method. This method wraps a FORTRAN
    implementation of the algorithm.

    Parameters
    ----------
    func : callable
        Function to minimize. In the form func(x, \\*args).
    x0 : ndarray
        Initial guess.
    cons : sequence
        Constraint functions; must all be ``>=0`` (a single function
        if only 1 constraint). Each function takes the parameters `x`
        as its first argument, and it can return either a single number or
        an array or list of numbers.
    args : tuple, optional
        Extra arguments to pass to function.
    consargs : tuple, optional
        Extra arguments to pass to constraint functions (default of None means
        use same extra arguments as those passed to func).
        Use ``()`` for no extra arguments.
    rhobeg : float, optional
        Reasonable initial changes to the variables.
    rhoend : float, optional
        Final accuracy in the optimization (not precisely guaranteed). This
        is a lower bound on the size of the trust region.
    disp : {0, 1, 2, 3}, optional
        Controls the frequency of output; 0 implies no output.
    maxfun : int, optional
        Maximum number of function evaluations.
    catol : float, optional
        Absolute tolerance for constraint violations.

    Returns
    -------
    x : ndarray
        The argument that minimises `f`.

    See also
    --------
    minimize: Interface to minimization algorithms for multivariate
        functions. See the 'COBYLA' `method` in particular.

    Notes
    -----
    This algorithm is based on linear approximations to the objective
    function and each constraint. We briefly describe the algorithm.

    Suppose the function is being minimized over k variables. At the
    jth iteration the algorithm has k+1 points v_1, ..., v_(k+1),
    an approximate solution x_j, and a radius RHO_j.
    (i.e. linear plus a constant) approximations to the objective
    function and constraint functions such that their function values
    agree with the linear approximation on the k+1 points v_1,.., v_(k+1).
    This gives a linear program to solve (where the linear approximations
    of the constraint functions are constrained to be non-negative).

    However the linear approximations are likely only good
    approximations near the current simplex, so the linear program is
    given the further requirement that the solution, which
    will become x_(j+1), must be within RHO_j from x_j. RHO_j only
    decreases, never increases. The initial RHO_j is rhobeg and the
    final RHO_j is rhoend. In this way COBYLA's iterations behave
    like a trust region algorithm.

    Additionally, the linear program may be inconsistent, or the
    approximation may give poor improvement. For details about
    how these issues are resolved, as well as how the points v_i are
    updated, refer to the source code or the references below.


    References
    ----------
    Powell M.J.D. (1994), "A direct search optimization method that models
    the objective and constraint functions by linear interpolation.", in
    Advances in Optimization and Numerical Analysis, eds. S. Gomez and
    J-P Hennart, Kluwer Academic (Dordrecht), pp. 51-67

    Powell M.J.D. (1998), "Direct search algorithms for optimization
    calculations", Acta Numerica 7, 287-336

    Powell M.J.D. (2007), "A view of algorithms for optimization without
    derivatives", Cambridge University Technical Report DAMTP 2007/NA03


    Examples
    --------
    Minimize the objective function f(x,y) = x*y subject
    to the constraints x**2 + y**2 < 1 and y > 0::

        >>> def objective(x):
        ...     return x[0]*x[1]
        ...
        >>> def constr1(x):
        ...     return 1 - (x[0]**2 + x[1]**2)
        ...
        >>> def constr2(x):
        ...     return x[1]
        ...
        >>> from scipy.optimize import fmin_cobyla
        >>> fmin_cobyla(objective, [0.0, 0.1], [constr1, constr2], rhoend=1e-7)
        array([-0.70710685,  0.70710671])

    The exact solution is (-sqrt(2)/2, sqrt(2)/2).



    """
    err = "cons must be a sequence of callable functions or a single"\
          " callable function."
    try:
        len(cons)
    except TypeError:
        if callable(cons):
            cons = [cons]
        else:
            raise TypeError(err)
    else:
        for thisfunc in cons:
            if not callable(thisfunc):
                raise TypeError(err)

    if consargs is None:
        consargs = args

    # build constraints
    con = tuple({'type': 'ineq', 'fun': c, 'args': consargs} for c in cons)

    # options
    opts = {'rhobeg': rhobeg,
            'tol': rhoend,
            'disp': disp,
            'maxiter': maxfun,
            'catol': catol}

    sol = _minimize_cobyla(func, x0, args, constraints=con,
                           **opts)
    if disp and not sol['success']:
        print("COBYLA failed to find a solution: %s" % (sol.message,))
    return sol['x']
Beispiel #26
0
def binned_statistic_dd(sample, values, statistic='mean',
                        bins=10, range=None, expand_binnumbers=False):
    """
    Compute a multidimensional binned statistic for a set of data.

    This is a generalization of a histogramdd function.  A histogram divides
    the space into bins, and returns the count of the number of points in
    each bin.  This function allows the computation of the sum, mean, median,
    or other statistic of the values within each bin.

    Parameters
    ----------
    sample : array_like
        Data to histogram passed as a sequence of D arrays of length N, or
        as an (N,D) array.
    values : (N,) array_like or list of (N,) array_like
        The data on which the statistic will be computed.  This must be
        the same shape as `x`, or a list of sequences - each with the same
        shape as `x`.  If `values` is such a list, the statistic will be
        computed on each independently.
    statistic : string or callable, optional
        The statistic to compute (default is 'mean').
        The following statistics are available:

          * 'mean' : compute the mean of values for points within each bin.
            Empty bins will be represented by NaN.
          * 'median' : compute the median of values for points within each
            bin. Empty bins will be represented by NaN.
          * 'count' : compute the count of points within each bin.  This is
            identical to an unweighted histogram.  `values` array is not
            referenced.
          * 'sum' : compute the sum of values for points within each bin.
            This is identical to a weighted histogram.
          * function : a user-defined function which takes a 1D array of
            values, and outputs a single numerical statistic. This function
            will be called on the values in each bin.  Empty bins will be
            represented by function([]), or NaN if this returns an error.

    bins : sequence or int, optional
        The bin specification must be in one of the following forms:

          * A sequence of arrays describing the bin edges along each dimension.
          * The number of bins for each dimension (nx, ny, ... = bins).
          * The number of bins for all dimensions (nx = ny = ... = bins).

    range : sequence, optional
        A sequence of lower and upper bin edges to be used if the edges are
        not given explicitely in `bins`. Defaults to the minimum and maximum
        values along each dimension.
    expand_binnumbers : bool, optional
        'False' (default): the returned `binnumber` is a shape (N,) array of
        linearized bin indices.
        'True': the returned `binnumber` is 'unraveled' into a shape (D,N)
        ndarray, where each row gives the bin numbers in the corresponding
        dimension.
        See the `binnumber` returned value, and the `Examples` section of
        `binned_statistic_2d`.

        .. versionadded:: 0.17.0

    Returns
    -------
    statistic : ndarray, shape(nx1, nx2, nx3,...)
        The values of the selected statistic in each two-dimensional bin.
    bin_edges : list of ndarrays
        A list of D arrays describing the (nxi + 1) bin edges for each
        dimension.
    binnumber : (N,) array of ints or (D,N) ndarray of ints
        This assigns to each element of `sample` an integer that represents the
        bin in which this observation falls.  The representation depends on the
        `expand_binnumbers` argument.  See `Notes` for details.


    See Also
    --------
    numpy.digitize, numpy.histogramdd, binned_statistic, binned_statistic_2d

    Notes
    -----
    Binedges:
    All but the last (righthand-most) bin is half-open in each dimension.  In
    other words, if `bins` is ``[1, 2, 3, 4]``, then the first bin is
    ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``.  The
    last bin, however, is ``[3, 4]``, which *includes* 4.

    `binnumber`:
    This returned argument assigns to each element of `sample` an integer that
    represents the bin in which it belongs.  The representation depends on the
    `expand_binnumbers` argument. If 'False' (default): The returned
    `binnumber` is a shape (N,) array of linearized indices mapping each
    element of `sample` to its corresponding bin (using row-major ordering).
    If 'True': The returned `binnumber` is a shape (D,N) ndarray where
    each row indicates bin placements for each dimension respectively.  In each
    dimension, a binnumber of `i` means the corresponding value is between
    (bin_edges[D][i-1], bin_edges[D][i]), for each dimension 'D'.

    .. versionadded:: 0.11.0

    """
    known_stats = ['mean', 'median', 'count', 'sum', 'std']
    if not callable(statistic) and statistic not in known_stats:
        raise ValueError('invalid statistic %r' % (statistic,))

    # `Ndim` is the number of dimensions (e.g. `2` for `binned_statistic_2d`)
    # `Dlen` is the length of elements along each dimension.
    # This code is based on np.histogramdd
    try:
        # `sample` is an ND-array.
        Dlen, Ndim = sample.shape
    except (AttributeError, ValueError):
        # `sample` is a sequence of 1D arrays.
        sample = np.atleast_2d(sample).T
        Dlen, Ndim = sample.shape

    # Store initial shape of `values` to preserve it in the output
    values = np.asarray(values)
    input_shape = list(values.shape)
    # Make sure that `values` is 2D to iterate over rows
    values = np.atleast_2d(values)
    Vdim, Vlen = values.shape

    # Make sure `values` match `sample`
    if(statistic != 'count' and Vlen != Dlen):
        raise AttributeError('The number of `values` elements must match the '
                             'length of each `sample` dimension.')

    nbin = np.empty(Ndim, int)    # Number of bins in each dimension
    edges = Ndim * [None]         # Bin edges for each dim (will be 2D array)
    dedges = Ndim * [None]        # Spacing between edges (will be 2D array)

    try:
        M = len(bins)
        if M != Ndim:
            raise AttributeError('The dimension of bins must be equal '
                                 'to the dimension of the sample x.')
    except TypeError:
        bins = Ndim * [bins]

    # Select range for each dimension
    # Used only if number of bins is given.
    if range is None:
        smin = np.atleast_1d(np.array(sample.min(axis=0), float))
        smax = np.atleast_1d(np.array(sample.max(axis=0), float))
    else:
        smin = np.zeros(Ndim)
        smax = np.zeros(Ndim)
        for i in xrange(Ndim):
            smin[i], smax[i] = range[i]

    # Make sure the bins have a finite width.
    for i in xrange(len(smin)):
        if smin[i] == smax[i]:
            smin[i] = smin[i] - .5
            smax[i] = smax[i] + .5

    # Create edge arrays
    for i in xrange(Ndim):
        if np.isscalar(bins[i]):
            nbin[i] = bins[i] + 2  # +2 for outlier bins
            edges[i] = np.linspace(smin[i], smax[i], nbin[i] - 1)
        else:
            edges[i] = np.asarray(bins[i], float)
            nbin[i] = len(edges[i]) + 1  # +1 for outlier bins
        dedges[i] = np.diff(edges[i])

    nbin = np.asarray(nbin)

    # Compute the bin number each sample falls into, in each dimension
    sampBin = {}
    for i in xrange(Ndim):
        sampBin[i] = np.digitize(sample[:, i], edges[i])

    # Using `digitize`, values that fall on an edge are put in the right bin.
    # For the rightmost bin, we want values equal to the right
    # edge to be counted in the last bin, and not as an outlier.
    for i in xrange(Ndim):
        # Find the rounding precision
        decimal = int(-np.log10(dedges[i].min())) + 6
        # Find which points are on the rightmost edge.
        on_edge = np.where(np.around(sample[:, i], decimal) ==
                           np.around(edges[i][-1], decimal))[0]
        # Shift these points one bin to the left.
        sampBin[i][on_edge] -= 1

    # Compute the sample indices in the flattened statistic matrix.
    ni = nbin.argsort()
    # `binnumbers` is which bin (in linearized `Ndim` space) each sample goes
    binnumbers = np.zeros(Dlen, int)
    for i in xrange(0, Ndim - 1):
        binnumbers += sampBin[ni[i]] * nbin[ni[i + 1:]].prod()
    binnumbers += sampBin[ni[-1]]

    result = np.empty([Vdim, nbin.prod()], float)

    if statistic == 'mean':
        result.fill(np.nan)
        flatcount = np.bincount(binnumbers, None)
        a = flatcount.nonzero()
        for vv in xrange(Vdim):
            flatsum = np.bincount(binnumbers, values[vv])
            result[vv, a] = flatsum[a] / flatcount[a]
    elif statistic == 'std':
        result.fill(0)
        flatcount = np.bincount(binnumbers, None)
        a = flatcount.nonzero()
        for vv in xrange(Vdim):
            flatsum = np.bincount(binnumbers, values[vv])
            flatsum2 = np.bincount(binnumbers, values[vv] ** 2)
            result[vv, a] = np.sqrt(flatsum2[a] / flatcount[a] -
                                    (flatsum[a] / flatcount[a]) ** 2)
    elif statistic == 'count':
        result.fill(0)
        flatcount = np.bincount(binnumbers, None)
        a = np.arange(len(flatcount))
        result[:, a] = flatcount[np.newaxis, :]
    elif statistic == 'sum':
        result.fill(0)
        for vv in xrange(Vdim):
            flatsum = np.bincount(binnumbers, values[vv])
            a = np.arange(len(flatsum))
            result[vv, a] = flatsum
    elif statistic == 'median':
        result.fill(np.nan)
        for i in np.unique(binnumbers):
            for vv in xrange(Vdim):
                result[vv, i] = np.median(values[vv, binnumbers == i])
    elif callable(statistic):
        with warnings.catch_warnings():
            # Numpy generates a warnings for mean/std/... with empty list
            warnings.filterwarnings('ignore', category=RuntimeWarning)
            old = np.seterr(invalid='ignore')
            try:
                null = statistic([])
            except:
                null = np.nan
            np.seterr(**old)
        result.fill(null)
        for i in np.unique(binnumbers):
            for vv in xrange(Vdim):
                result[vv, i] = statistic(values[vv, binnumbers == i])

    # Shape into a proper matrix
    result = result.reshape(np.append(Vdim, np.sort(nbin)))

    for i in xrange(nbin.size):
        j = ni.argsort()[i]
        # Accomodate the extra `Vdim` dimension-zero with `+1`
        result = result.swapaxes(i+1, j+1)
        ni[i], ni[j] = ni[j], ni[i]

    # Remove outliers (indices 0 and -1 for each bin-dimension).
    core = [slice(None)] + Ndim * [slice(1, -1)]
    result = result[core]

    # Unravel binnumbers into an ndarray, each row the bins for each dimension
    if(expand_binnumbers and Ndim > 1):
        binnumbers = np.asarray(np.unravel_index(binnumbers, nbin))

    if np.any(result.shape[1:] != nbin - 2):
        raise RuntimeError('Internal Shape Error')

    # Reshape to have output (`reulst`) match input (`values`) shape
    result = result.reshape(input_shape[:-1] + list(nbin-2))

    return BinnedStatisticddResult(result, edges, binnumbers)
Beispiel #27
0
 def test_nan_and_call(*args, **kwargs):
     if any((np.isnan(arg).any() for arg in args if not callable(arg))):
         # call my version
         return func(*args, **kwargs)
     # call scipy version
     return getattr(sci_dist, func.__name__)(*args, **kwargs)
Beispiel #28
0
def root(fun,
         x0,
         args=(),
         method='hybr',
         jac=None,
         tol=None,
         callback=None,
         options=None):
    """
    Find a root of a vector function.

    Parameters
    ----------
    fun : callable
        A vector function to find a root of.
    x0 : ndarray
        Initial guess.
    args : tuple, optional
        Extra arguments passed to the objective function and its Jacobian.
    method : str, optional
        Type of solver.  Should be one of

            - 'hybr'             :ref:`(see here) <optimize.root-hybr>`
            - 'lm'               :ref:`(see here) <optimize.root-lm>`
            - 'broyden1'         :ref:`(see here) <optimize.root-broyden1>`
            - 'broyden2'         :ref:`(see here) <optimize.root-broyden2>`
            - 'anderson'         :ref:`(see here) <optimize.root-anderson>`
            - 'linearmixing'     :ref:`(see here) <optimize.root-linearmixing>`
            - 'diagbroyden'      :ref:`(see here) <optimize.root-diagbroyden>`
            - 'excitingmixing'   :ref:`(see here) <optimize.root-excitingmixing>`
            - 'krylov'           :ref:`(see here) <optimize.root-krylov>`
            - 'df-sane'          :ref:`(see here) <optimize.root-dfsane>`

    jac : bool or callable, optional
        If `jac` is a Boolean and is True, `fun` is assumed to return the
        value of Jacobian along with the objective function. If False, the
        Jacobian will be estimated numerically.
        `jac` can also be a callable returning the Jacobian of `fun`. In
        this case, it must accept the same arguments as `fun`.
    tol : float, optional
        Tolerance for termination. For detailed control, use solver-specific
        options.
    callback : function, optional
        Optional callback function. It is called on every iteration as
        ``callback(x, f)`` where `x` is the current solution and `f`
        the corresponding residual. For all methods but 'hybr' and 'lm'.
    options : dict, optional
        A dictionary of solver options. E.g. `xtol` or `maxiter`, see
        :obj:`show_options()` for details.

    Returns
    -------
    sol : OptimizeResult
        The solution represented as a ``OptimizeResult`` object.
        Important attributes are: ``x`` the solution array, ``success`` a
        Boolean flag indicating if the algorithm exited successfully and
        ``message`` which describes the cause of the termination. See
        `OptimizeResult` for a description of other attributes.

    See also
    --------
    show_options : Additional options accepted by the solvers

    Notes
    -----
    This section describes the available solvers that can be selected by the
    'method' parameter. The default method is *hybr*.

    Method *hybr* uses a modification of the Powell hybrid method as
    implemented in MINPACK [1]_.

    Method *lm* solves the system of nonlinear equations in a least squares
    sense using a modification of the Levenberg-Marquardt algorithm as
    implemented in MINPACK [1]_.

    Method *df-sane* is a derivative-free spectral method. [3]_

    Methods *broyden1*, *broyden2*, *anderson*, *linearmixing*,
    *diagbroyden*, *excitingmixing*, *krylov* are inexact Newton methods,
    with backtracking or full line searches [2]_. Each method corresponds
    to a particular Jacobian approximations. See `nonlin` for details.

    - Method *broyden1* uses Broyden's first Jacobian approximation, it is
      known as Broyden's good method.
    - Method *broyden2* uses Broyden's second Jacobian approximation, it
      is known as Broyden's bad method.
    - Method *anderson* uses (extended) Anderson mixing.
    - Method *Krylov* uses Krylov approximation for inverse Jacobian. It
      is suitable for large-scale problem.
    - Method *diagbroyden* uses diagonal Broyden Jacobian approximation.
    - Method *linearmixing* uses a scalar Jacobian approximation.
    - Method *excitingmixing* uses a tuned diagonal Jacobian
      approximation.

    .. warning::

        The algorithms implemented for methods *diagbroyden*,
        *linearmixing* and *excitingmixing* may be useful for specific
        problems, but whether they will work may depend strongly on the
        problem.

    .. versionadded:: 0.11.0

    References
    ----------
    .. [1] More, Jorge J., Burton S. Garbow, and Kenneth E. Hillstrom.
       1980. User Guide for MINPACK-1.
    .. [2] C. T. Kelley. 1995. Iterative Methods for Linear and Nonlinear
        Equations. Society for Industrial and Applied Mathematics.
        <http://www.siam.org/books/kelley/fr16/index.php>
    .. [3] W. La Cruz, J.M. Martinez, M. Raydan. Math. Comp. 75, 1429 (2006).

    Examples
    --------
    The following functions define a system of nonlinear equations and its
    jacobian.

    >>> def fun(x):
    ...     return [x[0]  + 0.5 * (x[0] - x[1])**3 - 1.0,
    ...             0.5 * (x[1] - x[0])**3 + x[1]]

    >>> def jac(x):
    ...     return np.array([[1 + 1.5 * (x[0] - x[1])**2,
    ...                       -1.5 * (x[0] - x[1])**2],
    ...                      [-1.5 * (x[1] - x[0])**2,
    ...                       1 + 1.5 * (x[1] - x[0])**2]])

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.root(fun, [0, 0], jac=jac, method='hybr')
    >>> sol.x
    array([ 0.8411639,  0.1588361])
    """
    if not isinstance(args, tuple):
        args = (args, )

    meth = method.lower()
    if options is None:
        options = {}

    if callback is not None and meth in ('hybr', 'lm'):
        warn('Method %s does not accept callback.' % method, RuntimeWarning)

    # fun also returns the jacobian
    if not callable(jac) and meth in ('hybr', 'lm'):
        if bool(jac):
            fun = MemoizeJac(fun)
            jac = fun.derivative
        else:
            jac = None

    # set default tolerances
    if tol is not None:
        options = dict(options)
        if meth in ('hybr', 'lm'):
            options.setdefault('xtol', tol)
        elif meth in ('df-sane', ):
            options.setdefault('ftol', tol)
        elif meth in ('broyden1', 'broyden2', 'anderson', 'linearmixing',
                      'diagbroyden', 'excitingmixing', 'krylov'):
            options.setdefault('xtol', tol)
            options.setdefault('xatol', np.inf)
            options.setdefault('ftol', np.inf)
            options.setdefault('fatol', np.inf)

    if meth == 'hybr':
        sol = _root_hybr(fun, x0, args=args, jac=jac, **options)
    elif meth == 'lm':
        sol = _root_leastsq(fun, x0, args=args, jac=jac, **options)
    elif meth == 'df-sane':
        _warn_jac_unused(jac, method)
        sol = _root_df_sane(fun, x0, args=args, callback=callback, **options)
    elif meth in ('broyden1', 'broyden2', 'anderson', 'linearmixing',
                  'diagbroyden', 'excitingmixing', 'krylov'):
        _warn_jac_unused(jac, method)
        sol = _root_nonlin_solve(fun,
                                 x0,
                                 args=args,
                                 jac=jac,
                                 _method=meth,
                                 _callback=callback,
                                 **options)
    else:
        raise ValueError('Unknown solver %s' % method)

    return sol
Beispiel #29
0
def minimize(fun, x0, args=(), method=None, jac=None, hess=None,
             hessp=None, bounds=None, constraints=(), tol=None,
             callback=None, options=None):
    """Minimization of scalar function of one or more variables.

    In general, the optimization problems are of the form::

        minimize f(x) subject to

        g_i(x) >= 0,  i = 1,...,m
        h_j(x)  = 0,  j = 1,...,p

    where x is a vector of one or more variables.
    ``g_i(x)`` are the inequality constraints.
    ``h_j(x)`` are the equality constrains.

    Optionally, the lower and upper bounds for each element in x can also be
    specified using the `bounds` argument.

    Parameters
    ----------
    fun : callable
        The objective function to be minimized. Must be in the form
        ``f(x, *args)``. The optimizing argument, ``x``, is a 1-D array
        of points, and ``args`` is a tuple of any additional fixed parameters
        needed to completely specify the function.
    x0 : ndarray
        Initial guess. ``len(x0)`` is the dimensionality of the minimization
        problem.
    args : tuple, optional
        Extra arguments passed to the objective function and its
        derivatives (Jacobian, Hessian).
    method : str or callable, optional
        Type of solver.  Should be one of

            - 'Nelder-Mead' :ref:`(see here) <optimize.minimize-neldermead>`
            - 'Powell'      :ref:`(see here) <optimize.minimize-powell>`
            - 'CG'          :ref:`(see here) <optimize.minimize-cg>`
            - 'BFGS'        :ref:`(see here) <optimize.minimize-bfgs>`
            - 'Newton-CG'   :ref:`(see here) <optimize.minimize-newtoncg>`
            - 'L-BFGS-B'    :ref:`(see here) <optimize.minimize-lbfgsb>`
            - 'TNC'         :ref:`(see here) <optimize.minimize-tnc>`
            - 'COBYLA'      :ref:`(see here) <optimize.minimize-cobyla>`
            - 'SLSQP'       :ref:`(see here) <optimize.minimize-slsqp>`
            - 'dogleg'      :ref:`(see here) <optimize.minimize-dogleg>`
            - 'trust-ncg'   :ref:`(see here) <optimize.minimize-trustncg>`
            - 'trust-exact' :ref:`(see here) <optimize.minimize-trustexact>`
            - custom - a callable object (added in version 0.14.0),
              see below for description.

        If not given, chosen to be one of ``BFGS``, ``L-BFGS-B``, ``SLSQP``,
        depending if the problem has constraints or bounds.
    jac : bool or callable, optional
        Jacobian (gradient) of objective function. Only for CG, BFGS,
        Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg.
        If `jac` is a Boolean and is True, `fun` is assumed to return the
        gradient along with the objective function. If False, the
        gradient will be estimated numerically.
        `jac` can also be a callable returning the gradient of the
        objective. In this case, it must accept the same arguments as `fun`.
    hess, hessp : callable, optional
        Hessian (matrix of second-order derivatives) of objective function or
        Hessian of objective function times an arbitrary vector p.  Only for
        Newton-CG, dogleg, trust-ncg.
        Only one of `hessp` or `hess` needs to be given.  If `hess` is
        provided, then `hessp` will be ignored.  If neither `hess` nor
        `hessp` is provided, then the Hessian product will be approximated
        using finite differences on `jac`. `hessp` must compute the Hessian
        times an arbitrary vector.
    bounds : sequence, optional
        Bounds for variables (only for L-BFGS-B, TNC and SLSQP).
        ``(min, max)`` pairs for each element in ``x``, defining
        the bounds on that parameter. Use None for one of ``min`` or
        ``max`` when there is no bound in that direction.
    constraints : dict or sequence of dict, optional
        Constraints definition (only for COBYLA and SLSQP).
        Each constraint is defined in a dictionary with fields:

            type : str
                Constraint type: 'eq' for equality, 'ineq' for inequality.
            fun : callable
                The function defining the constraint.
            jac : callable, optional
                The Jacobian of `fun` (only for SLSQP).
            args : sequence, optional
                Extra arguments to be passed to the function and Jacobian.

        Equality constraint means that the constraint function result is to
        be zero whereas inequality means that it is to be non-negative.
        Note that COBYLA only supports inequality constraints.
    tol : float, optional
        Tolerance for termination. For detailed control, use solver-specific
        options.
    options : dict, optional
        A dictionary of solver options. All methods accept the following
        generic options:

            maxiter : int
                Maximum number of iterations to perform.
            disp : bool
                Set to True to print convergence messages.

        For method-specific options, see :func:`show_options()`.
    callback : callable, optional
        Called after each iteration, as ``callback(xk)``, where ``xk`` is the
        current parameter vector.

    Returns
    -------
    res : OptimizeResult
        The optimization result represented as a ``OptimizeResult`` object.
        Important attributes are: ``x`` the solution array, ``success`` a
        Boolean flag indicating if the optimizer exited successfully and
        ``message`` which describes the cause of the termination. See
        `OptimizeResult` for a description of other attributes.


    See also
    --------
    minimize_scalar : Interface to minimization algorithms for scalar
        univariate functions
    show_options : Additional options accepted by the solvers

    Notes
    -----
    This section describes the available solvers that can be selected by the
    'method' parameter. The default method is *BFGS*.

    **Unconstrained minimization**

    Method :ref:`Nelder-Mead <optimize.minimize-neldermead>` uses the
    Simplex algorithm [1]_, [2]_. This algorithm is robust in many
    applications. However, if numerical computation of derivative can be
    trusted, other algorithms using the first and/or second derivatives
    information might be preferred for their better performance in
    general.

    Method :ref:`Powell <optimize.minimize-powell>` is a modification
    of Powell's method [3]_, [4]_ which is a conjugate direction
    method. It performs sequential one-dimensional minimizations along
    each vector of the directions set (`direc` field in `options` and
    `info`), which is updated at each iteration of the main
    minimization loop. The function need not be differentiable, and no
    derivatives are taken.

    Method :ref:`CG <optimize.minimize-cg>` uses a nonlinear conjugate
    gradient algorithm by Polak and Ribiere, a variant of the
    Fletcher-Reeves method described in [5]_ pp.  120-122. Only the
    first derivatives are used.

    Method :ref:`BFGS <optimize.minimize-bfgs>` uses the quasi-Newton
    method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) [5]_
    pp. 136. It uses the first derivatives only. BFGS has proven good
    performance even for non-smooth optimizations. This method also
    returns an approximation of the Hessian inverse, stored as
    `hess_inv` in the OptimizeResult object.

    Method :ref:`Newton-CG <optimize.minimize-newtoncg>` uses a
    Newton-CG algorithm [5]_ pp. 168 (also known as the truncated
    Newton method). It uses a CG method to the compute the search
    direction. See also *TNC* method for a box-constrained
    minimization with a similar algorithm. Suitable for large-scale
    problems.

    Method :ref:`dogleg <optimize.minimize-dogleg>` uses the dog-leg
    trust-region algorithm [5]_ for unconstrained minimization. This
    algorithm requires the gradient and Hessian; furthermore the
    Hessian is required to be positive definite.

    Method :ref:`trust-ncg <optimize.minimize-trustncg>` uses the
    Newton conjugate gradient trust-region algorithm [5]_ for
    unconstrained minimization. This algorithm requires the gradient
    and either the Hessian or a function that computes the product of
    the Hessian with a given vector. Suitable for large-scale problems.

    Method :ref:`trust-exact <optimize.minimize-trustexact>`
    is a trust-region method for unconstrained minimization in which
    quadratic subproblems are solved almost exactly [13]_. This
    algorithm requires the gradient and the Hessian (which is
    *not* required to be positive definite). It is, in many
    situations, the Newton method to converge in fewer iteraction
    and the most recommended for small and medium-size problems.

    **Constrained minimization**

    Method :ref:`L-BFGS-B <optimize.minimize-lbfgsb>` uses the L-BFGS-B
    algorithm [6]_, [7]_ for bound constrained minimization.

    Method :ref:`TNC <optimize.minimize-tnc>` uses a truncated Newton
    algorithm [5]_, [8]_ to minimize a function with variables subject
    to bounds. This algorithm uses gradient information; it is also
    called Newton Conjugate-Gradient. It differs from the *Newton-CG*
    method described above as it wraps a C implementation and allows
    each variable to be given upper and lower bounds.

    Method :ref:`COBYLA <optimize.minimize-cobyla>` uses the
    Constrained Optimization BY Linear Approximation (COBYLA) method
    [9]_, [10]_, [11]_. The algorithm is based on linear
    approximations to the objective function and each constraint. The
    method wraps a FORTRAN implementation of the algorithm. The
    constraints functions 'fun' may return either a single number
    or an array or list of numbers.

    Method :ref:`SLSQP <optimize.minimize-slsqp>` uses Sequential
    Least SQuares Programming to minimize a function of several
    variables with any combination of bounds, equality and inequality
    constraints. The method wraps the SLSQP Optimization subroutine
    originally implemented by Dieter Kraft [12]_. Note that the
    wrapper handles infinite values in bounds by converting them into
    large floating values.

    **Custom minimizers**

    It may be useful to pass a custom minimization method, for example
    when using a frontend to this method such as `scipy.optimize.basinhopping`
    or a different library.  You can simply pass a callable as the ``method``
    parameter.

    The callable is called as ``method(fun, x0, args, **kwargs, **options)``
    where ``kwargs`` corresponds to any other parameters passed to `minimize`
    (such as `callback`, `hess`, etc.), except the `options` dict, which has
    its contents also passed as `method` parameters pair by pair.  Also, if
    `jac` has been passed as a bool type, `jac` and `fun` are mangled so that
    `fun` returns just the function values and `jac` is converted to a function
    returning the Jacobian.  The method shall return an ``OptimizeResult``
    object.

    The provided `method` callable must be able to accept (and possibly ignore)
    arbitrary parameters; the set of parameters accepted by `minimize` may
    expand in future versions and then these parameters will be passed to
    the method.  You can find an example in the scipy.optimize tutorial.

    .. versionadded:: 0.11.0

    References
    ----------
    .. [1] Nelder, J A, and R Mead. 1965. A Simplex Method for Function
        Minimization. The Computer Journal 7: 308-13.
    .. [2] Wright M H. 1996. Direct search methods: Once scorned, now
        respectable, in Numerical Analysis 1995: Proceedings of the 1995
        Dundee Biennial Conference in Numerical Analysis (Eds. D F
        Griffiths and G A Watson). Addison Wesley Longman, Harlow, UK.
        191-208.
    .. [3] Powell, M J D. 1964. An efficient method for finding the minimum of
       a function of several variables without calculating derivatives. The
       Computer Journal 7: 155-162.
    .. [4] Press W, S A Teukolsky, W T Vetterling and B P Flannery.
       Numerical Recipes (any edition), Cambridge University Press.
    .. [5] Nocedal, J, and S J Wright. 2006. Numerical Optimization.
       Springer New York.
    .. [6] Byrd, R H and P Lu and J. Nocedal. 1995. A Limited Memory
       Algorithm for Bound Constrained Optimization. SIAM Journal on
       Scientific and Statistical Computing 16 (5): 1190-1208.
    .. [7] Zhu, C and R H Byrd and J Nocedal. 1997. L-BFGS-B: Algorithm
       778: L-BFGS-B, FORTRAN routines for large scale bound constrained
       optimization. ACM Transactions on Mathematical Software 23 (4):
       550-560.
    .. [8] Nash, S G. Newton-Type Minimization Via the Lanczos Method.
       1984. SIAM Journal of Numerical Analysis 21: 770-778.
    .. [9] Powell, M J D. A direct search optimization method that models
       the objective and constraint functions by linear interpolation.
       1994. Advances in Optimization and Numerical Analysis, eds. S. Gomez
       and J-P Hennart, Kluwer Academic (Dordrecht), 51-67.
    .. [10] Powell M J D. Direct search algorithms for optimization
       calculations. 1998. Acta Numerica 7: 287-336.
    .. [11] Powell M J D. A view of algorithms for optimization without
       derivatives. 2007.Cambridge University Technical Report DAMTP
       2007/NA03
    .. [12] Kraft, D. A software package for sequential quadratic
       programming. 1988. Tech. Rep. DFVLR-FB 88-28, DLR German Aerospace
       Center -- Institute for Flight Mechanics, Koln, Germany.
    .. [13] Conn, A. R., Gould, N. I., and Toint, P. L.
       Trust region methods. 2000. Siam. pp. 169-200.

    Examples
    --------
    Let us consider the problem of minimizing the Rosenbrock function. This
    function (and its respective derivatives) is implemented in `rosen`
    (resp. `rosen_der`, `rosen_hess`) in the `scipy.optimize`.

    >>> from scipy.optimize import minimize, rosen, rosen_der

    A simple application of the *Nelder-Mead* method is:

    >>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
    >>> res = minimize(rosen, x0, method='Nelder-Mead', tol=1e-6)
    >>> res.x
    array([ 1.,  1.,  1.,  1.,  1.])

    Now using the *BFGS* algorithm, using the first derivative and a few
    options:

    >>> res = minimize(rosen, x0, method='BFGS', jac=rosen_der,
    ...                options={'gtol': 1e-6, 'disp': True})
    Optimization terminated successfully.
             Current function value: 0.000000
             Iterations: 33
             Function evaluations: 35
             Gradient evaluations: 35
    >>> res.x
    array([ 1.,  1.,  1.,  1.,  1.])
    >>> print(res.message)
    Optimization terminated successfully.
    >>> res.hess_inv
    array([[ 0.00749589,  0.01255155,  0.02396251,  0.04750988,  0.09495377],  # may vary
           [ 0.01255155,  0.02510441,  0.04794055,  0.09502834,  0.18996269],
           [ 0.02396251,  0.04794055,  0.09631614,  0.19092151,  0.38165151],
           [ 0.04750988,  0.09502834,  0.19092151,  0.38341252,  0.7664427 ],
           [ 0.09495377,  0.18996269,  0.38165151,  0.7664427,   1.53713523]])


    Next, consider a minimization problem with several constraints (namely
    Example 16.4 from [5]_). The objective function is:

    >>> fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2

    There are three constraints defined as:

    >>> cons = ({'type': 'ineq', 'fun': lambda x:  x[0] - 2 * x[1] + 2},
    ...         {'type': 'ineq', 'fun': lambda x: -x[0] - 2 * x[1] + 6},
    ...         {'type': 'ineq', 'fun': lambda x: -x[0] + 2 * x[1] + 2})

    And variables must be positive, hence the following bounds:

    >>> bnds = ((0, None), (0, None))

    The optimization problem is solved using the SLSQP method as:

    >>> res = minimize(fun, (2, 0), method='SLSQP', bounds=bnds,
    ...                constraints=cons)

    It should converge to the theoretical solution (1.4 ,1.7).

    """
    x0 = np.asarray(x0)
    if x0.dtype.kind in np.typecodes["AllInteger"]:
        x0 = np.asarray(x0, dtype=float)

    if not isinstance(args, tuple):
        args = (args,)

    if method is None:
        # Select automatically
        if constraints:
            method = 'SLSQP'
        elif bounds is not None:
            method = 'L-BFGS-B'
        else:
            method = 'BFGS'

    if callable(method):
        meth = "_custom"
    else:
        meth = method.lower()

    if options is None:
        options = {}
    # check if optional parameters are supported by the selected method
    # - jac
    if meth in ['nelder-mead', 'powell', 'cobyla'] and bool(jac):
        warn('Method %s does not use gradient information (jac).' % method,
             RuntimeWarning)
    # - hess
    if meth not in ('newton-cg', 'dogleg', 'trust-ncg',
                    'trust-exact', '_custom') and hess is not None:
        warn('Method %s does not use Hessian information (hess).' % method,
             RuntimeWarning)
    # - hessp
    if meth not in ('newton-cg', 'dogleg', 'trust-ncg', '_custom') and hessp is not None:
        warn('Method %s does not use Hessian-vector product '
                'information (hessp).' % method, RuntimeWarning)
    # - constraints or bounds
    if (meth in ['nelder-mead', 'powell', 'cg', 'bfgs', 'newton-cg', 'dogleg',
                 'trust-ncg'] and (bounds is not None or np.any(constraints))):
        warn('Method %s cannot handle constraints nor bounds.' % method,
             RuntimeWarning)
    if meth in ['l-bfgs-b', 'tnc'] and np.any(constraints):
        warn('Method %s cannot handle constraints.' % method,
             RuntimeWarning)
    if meth == 'cobyla' and bounds is not None:
        warn('Method %s cannot handle bounds.' % method,
             RuntimeWarning)
    # - callback
    if (meth in ['cobyla'] and callback is not None):
        warn('Method %s does not support callback.' % method, RuntimeWarning)
    # - return_all
    if (meth in ['l-bfgs-b', 'tnc', 'cobyla', 'slsqp'] and
            options.get('return_all', False)):
        warn('Method %s does not support the return_all option.' % method,
             RuntimeWarning)

    # fun also returns the jacobian
    if not callable(jac):
        if bool(jac):
            fun = MemoizeJac(fun)
            jac = fun.derivative
        else:
            jac = None

    # set default tolerances
    if tol is not None:
        options = dict(options)
        if meth == 'nelder-mead':
            options.setdefault('xatol', tol)
            options.setdefault('fatol', tol)
        if meth in ['newton-cg', 'powell', 'tnc']:
            options.setdefault('xtol', tol)
        if meth in ['powell', 'l-bfgs-b', 'tnc', 'slsqp']:
            options.setdefault('ftol', tol)
        if meth in ['bfgs', 'cg', 'l-bfgs-b', 'tnc', 'dogleg',
                    'trust-ncg', 'trust-exact']:
            options.setdefault('gtol', tol)
        if meth in ['cobyla', '_custom']:
            options.setdefault('tol', tol)

    if meth == '_custom':
        return method(fun, x0, args=args, jac=jac, hess=hess, hessp=hessp,
                      bounds=bounds, constraints=constraints,
                      callback=callback, **options)
    elif meth == 'nelder-mead':
        return _minimize_neldermead(fun, x0, args, callback, **options)
    elif meth == 'powell':
        return _minimize_powell(fun, x0, args, callback, **options)
    elif meth == 'cg':
        return _minimize_cg(fun, x0, args, jac, callback, **options)
    elif meth == 'bfgs':
        return _minimize_bfgs(fun, x0, args, jac, callback, **options)
    elif meth == 'newton-cg':
        return _minimize_newtoncg(fun, x0, args, jac, hess, hessp, callback,
                                  **options)
    elif meth == 'l-bfgs-b':
        return _minimize_lbfgsb(fun, x0, args, jac, bounds,
                                callback=callback, **options)
    elif meth == 'tnc':
        return _minimize_tnc(fun, x0, args, jac, bounds, callback=callback,
                             **options)
    elif meth == 'cobyla':
        return _minimize_cobyla(fun, x0, args, constraints, **options)
    elif meth == 'slsqp':
        return _minimize_slsqp(fun, x0, args, jac, bounds,
                               constraints, callback=callback, **options)
    elif meth == 'dogleg':
        return _minimize_dogleg(fun, x0, args, jac, hess,
                                callback=callback, **options)
    elif meth == 'trust-ncg':
        return _minimize_trust_ncg(fun, x0, args, jac, hess, hessp,
                                   callback=callback, **options)
    elif meth == 'trust-exact':
        return _minimize_trustregion_exact(fun, x0, args, jac, hess,
                                           callback=callback, **options)
    else:
        raise ValueError('Unknown solver %s' % method)
Beispiel #30
0
class Rbf(object):
    """
    Rbf(*args)

    A class for radial basis function approximation/interpolation of
    n-dimensional scattered data.

    Parameters
    ----------
    *args : arrays
        x, y, z, ..., d, where x, y, z, ... are the coordinates of the nodes
        and d is the array of values at the nodes
    function : str or callable, optional
        The radial basis function, based on the radius, r, given by the norm
        (default is Euclidean distance); the default is 'multiquadric'::

            'multiquadric': sqrt((r/self.epsilon)**2 + 1)
            'inverse': 1.0/sqrt((r/self.epsilon)**2 + 1)
            'gaussian': exp(-(r/self.epsilon)**2)
            'linear': r
            'cubic': r**3
            'quintic': r**5
            'thin_plate': r**2 * log(r)

        If callable, then it must take 2 arguments (self, r).  The epsilon
        parameter will be available as self.epsilon.  Other keyword
        arguments passed in will be available as well.

    epsilon : float, optional
        Adjustable constant for gaussian or multiquadrics functions
        - defaults to approximate average distance between nodes (which is
        a good start).
    smooth : float, optional
        Values greater than zero increase the smoothness of the
        approximation.  0 is for interpolation (default), the function will
        always go through the nodal points in this case.
    norm : callable, optional
        A function that returns the 'distance' between two points, with
        inputs as arrays of positions (x, y, z, ...), and an output as an
        array of distance.  E.g, the default::

            def euclidean_norm(x1, x2):
                return sqrt( ((x1 - x2)**2).sum(axis=0) )

        which is called with x1=x1ndims,newaxis,:] and
        x2=x2ndims,:,newaxis] such that the result is a matrix of the
        distances from each point in x1 to each point in x2.

    Examples
    --------
    >>> from scipy.interpolate import Rbf
    >>> x, y, z, d = np.random.rand(4, 50)
    >>> rbfi = Rbf(x, y, z, d)  # radial basis function interpolator instance
    >>> xi = yi = zi = np.linspace(0, 1, 20)
    >>> di = rbfi(xi, yi, zi)   # interpolated values
    >>> di.shape
    (20,)

    """

    def _euclidean_norm(self, x1, x2):
        return np.sqrt(((x1 - x2)**2).sum(axis=0))

    def _h_multiquadric(self, r):
        return np.sqrt((1.0/self.epsilon*r)**2 + 1)

    def _h_inverse_multiquadric(self, r):
        return 1.0/np.sqrt((1.0/self.epsilon*r)**2 + 1)

    def _h_gaussian(self, r):
        return np.exp(-(1.0/self.epsilon*r)**2)

    def _h_linear(self, r):
        return r

    def _h_cubic(self, r):
        return r**3

    def _h_quintic(self, r):
        return r**5

    def _h_thin_plate(self, r):
        return xlogy(r**2, r)

    # Setup self._function and do smoke test on initial r
    def _init_function(self, r):
        if isinstance(self.function, str):
            self.function = self.function.lower()
            _mapped = {'inverse': 'inverse_multiquadric',
                       'inverse multiquadric': 'inverse_multiquadric',
                       'thin-plate': 'thin_plate'}
            if self.function in _mapped:
                self.function = _mappedself.function]

            func_name = "_h_" + self.function
            if hasattr(self, func_name):
                self._function = getattr(self, func_name)
            else:
                functionlist = x3:] for x in dir(self) if x.startswith('_h_')]
                raise ValueError("function must be a callable or one of " +
                                     ", ".join(functionlist))
            self._function = getattr(self, "_h_"+self.function)
        elif callable(self.function):
            allow_one = False
            if hasattr(self.function, 'func_code') or \
                   hasattr(self.function, '__code__'):
                val = self.function
                allow_one = True
            elif hasattr(self.function, "im_func"):
                val = get_method_function(self.function)
            elif hasattr(self.function, "__call__"):
                val = get_method_function(self.function.__call__)
            else:
                raise ValueError("Cannot determine number of arguments to function")

            argcount = get_function_code(val).co_argcount
            if allow_one and argcount == 1:
                self._function = self.function
            elif argcount == 2:
                if sys.version_info0] >= 3:
                    self._function = self.function.__get__(self, Rbf)
                else:
                    import new
                    self._function = new.instancemethod(self.function, self,
                                                        Rbf)
Beispiel #31
0
def binned_statistic_dd(sample, values, statistic='mean',
                        bins=10, range=None):
    """
    Compute a multidimensional binned statistic for a set of data.

    This is a generalization of a histogramdd function.  A histogram divides
    the space into bins, and returns the count of the number of points in
    each bin.  This function allows the computation of the sum, mean, median,
    or other statistic of the values within each bin.

    Parameters
    ----------
    sample : array_like
        Data to histogram passed as a sequence of D arrays of length N, or
        as an (N,D) array.
    values : array_like
        The values on which the statistic will be computed.  This must be
        the same shape as x.
    statistic : string or callable, optional
        The statistic to compute (default is 'mean').
        The following statistics are available:

          * 'mean' : compute the mean of values for points within each bin.
            Empty bins will be represented by NaN.
          * 'median' : compute the median of values for points within each
            bin. Empty bins will be represented by NaN.
          * 'count' : compute the count of points within each bin.  This is
            identical to an unweighted histogram.  `values` array is not
            referenced.
          * 'sum' : compute the sum of values for points within each bin.
            This is identical to a weighted histogram.
          * function : a user-defined function which takes a 1D array of
            values, and outputs a single numerical statistic. This function
            will be called on the values in each bin.  Empty bins will be
            represented by function([]), or NaN if this returns an error.

    bins : sequence or int, optional
        The bin specification:

          * A sequence of arrays describing the bin edges along each dimension.
          * The number of bins for each dimension (nx, ny, ... =bins)
          * The number of bins for all dimensions (nx=ny=...=bins).

    range : sequence, optional
        A sequence of lower and upper bin edges to be used if the edges are
        not given explicitely in `bins`. Defaults to the minimum and maximum
        values along each dimension.

    Returns
    -------
    statistic : ndarray, shape(nx1, nx2, nx3,...)
        The values of the selected statistic in each two-dimensional bin
    bin_edges : list of ndarrays
        A list of D arrays describing the (nxi + 1) bin edges for each
        dimension
    binnumber : 1-D ndarray of ints
        This assigns to each observation an integer that represents the bin
        in which this observation falls. Array has the same length as values.

    See Also
    --------
    np.histogramdd, binned_statistic, binned_statistic_2d

    Notes
    -----

    .. versionadded:: 0.11.0

    """
    known_stats = ['mean', 'median', 'count', 'sum', 'std']
    if not callable(statistic) and statistic not in known_stats:
        raise ValueError('invalid statistic %r' % (statistic,))

    # This code is based on np.histogramdd
    try:
        # Sample is an ND-array.
        N, D = sample.shape
    except (AttributeError, ValueError):
        # Sample is a sequence of 1D arrays.
        sample = np.atleast_2d(sample).T
        N, D = sample.shape

    nbin = np.empty(D, int)
    edges = D * [None]
    dedges = D * [None]

    try:
        M = len(bins)
        if M != D:
            raise AttributeError('The dimension of bins must be equal '
                                 'to the dimension of the sample x.')
    except TypeError:
        bins = D * [bins]

    # Select range for each dimension
    # Used only if number of bins is given.
    if range is None:
        smin = np.atleast_1d(np.array(sample.min(0), float))
        smax = np.atleast_1d(np.array(sample.max(0), float))
    else:
        smin = np.zeros(D)
        smax = np.zeros(D)
        for i in np.arange(D):
            smin[i], smax[i] = range[i]

    # Make sure the bins have a finite width.
    for i in np.arange(len(smin)):
        if smin[i] == smax[i]:
            smin[i] = smin[i] - .5
            smax[i] = smax[i] + .5

    # Create edge arrays
    for i in np.arange(D):
        if np.isscalar(bins[i]):
            nbin[i] = bins[i] + 2  # +2 for outlier bins
            edges[i] = np.linspace(smin[i], smax[i], nbin[i] - 1)
        else:
            edges[i] = np.asarray(bins[i], float)
            nbin[i] = len(edges[i]) + 1  # +1 for outlier bins
        dedges[i] = np.diff(edges[i])

    nbin = np.asarray(nbin)

    # Compute the bin number each sample falls into.
    Ncount = {}
    for i in np.arange(D):
        Ncount[i] = np.digitize(sample[:, i], edges[i])

    # Using digitize, values that fall on an edge are put in the right bin.
    # For the rightmost bin, we want values equal to the right
    # edge to be counted in the last bin, and not as an outlier.
    for i in np.arange(D):
        # Rounding precision
        decimal = int(-np.log10(dedges[i].min())) + 6
        # Find which points are on the rightmost edge.
        on_edge = np.where(np.around(sample[:, i], decimal)
                           == np.around(edges[i][-1], decimal))[0]
        # Shift these points one bin to the left.
        Ncount[i][on_edge] -= 1

    # Compute the sample indices in the flattened statistic matrix.
    ni = nbin.argsort()
    xy = np.zeros(N, int)
    for i in np.arange(0, D - 1):
        xy += Ncount[ni[i]] * nbin[ni[i + 1:]].prod()
    xy += Ncount[ni[-1]]

    result = np.empty(nbin.prod(), float)

    if statistic == 'mean':
        result.fill(np.nan)
        flatcount = np.bincount(xy, None)
        flatsum = np.bincount(xy, values)
        a = flatcount.nonzero()
        result[a] = flatsum[a] / flatcount[a]
    elif statistic == 'std':
        result.fill(0)
        flatcount = np.bincount(xy, None)
        flatsum = np.bincount(xy, values)
        flatsum2 = np.bincount(xy, values ** 2)
        a = flatcount.nonzero()
        result[a] = np.sqrt(flatsum2[a] / flatcount[a]
                            - (flatsum[a] / flatcount[a]) ** 2)
    elif statistic == 'count':
        result.fill(0)
        flatcount = np.bincount(xy, None)
        a = np.arange(len(flatcount))
        result[a] = flatcount
    elif statistic == 'sum':
        result.fill(0)
        flatsum = np.bincount(xy, values)
        a = np.arange(len(flatsum))
        result[a] = flatsum
    elif statistic == 'median':
        result.fill(np.nan)
        for i in np.unique(xy):
            result[i] = np.median(values[xy == i])
    elif callable(statistic):
        with warnings.catch_warnings():
            # Numpy generates a warnings for mean/std/... with empty list
            warnings.filterwarnings('ignore', category=RuntimeWarning)
            old = np.seterr(invalid='ignore')
            try:
                null = statistic([])
            except:
                null = np.nan
            np.seterr(**old)
        result.fill(null)
        for i in np.unique(xy):
            result[i] = statistic(values[xy == i])

    # Shape into a proper matrix
    result = result.reshape(np.sort(nbin))
    for i in np.arange(nbin.size):
        j = ni.argsort()[i]
        result = result.swapaxes(i, j)
        ni[i], ni[j] = ni[j], ni[i]

    # Remove outliers (indices 0 and -1 for each dimension).
    core = D * [slice(1, -1)]
    result = result[core]

    if (result.shape != nbin - 2).any():
        raise RuntimeError('Internal Shape Error')

    return BinnedStatisticddResult(result, edges, xy)
Beispiel #32
0
def schur(a, output='real', lwork=None, overwrite_a=False, sort=None,
          check_finite=True):
    """
    Compute Schur decomposition of a matrix.

    The Schur decomposition is::

        A = Z T Z^H

    where Z is unitary and T is either upper-triangular, or for real
    Schur decomposition (output='real'), quasi-upper triangular.  In
    the quasi-triangular form, 2x2 blocks describing complex-valued
    eigenvalue pairs may extrude from the diagonal.

    Parameters
    ----------
    a : (M, M) array_like
        Matrix to decompose
    output : {'real', 'complex'}, optional
        Construct the real or complex Schur decomposition (for real matrices).
    lwork : int, optional
        Work array size. If None or -1, it is automatically computed.
    overwrite_a : bool, optional
        Whether to overwrite data in a (may improve performance).
    sort : {None, callable, 'lhp', 'rhp', 'iuc', 'ouc'}, optional
        Specifies whether the upper eigenvalues should be sorted.  A callable
        may be passed that, given a eigenvalue, returns a boolean denoting
        whether the eigenvalue should be sorted to the top-left (True).
        Alternatively, string parameters may be used::

            'lhp'   Left-hand plane (x.real < 0.0)
            'rhp'   Right-hand plane (x.real > 0.0)
            'iuc'   Inside the unit circle (x*x.conjugate() <= 1.0)
            'ouc'   Outside the unit circle (x*x.conjugate() > 1.0)

        Defaults to None (no sorting).
    check_finite : boolean, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    T : (M, M) ndarray
        Schur form of A. It is real-valued for the real Schur decomposition.
    Z : (M, M) ndarray
        An unitary Schur transformation matrix for A.
        It is real-valued for the real Schur decomposition.
    sdim : int
        If and only if sorting was requested, a third return value will
        contain the number of eigenvalues satisfying the sort condition.

    Raises
    ------
    LinAlgError
        Error raised under three conditions:

        1. The algorithm failed due to a failure of the QR algorithm to
           compute all eigenvalues
        2. If eigenvalue sorting was requested, the eigenvalues could not be
           reordered due to a failure to separate eigenvalues, usually because
           of poor conditioning
        3. If eigenvalue sorting was requested, roundoff errors caused the
           leading eigenvalues to no longer satisfy the sorting condition

    See also
    --------
    rsf2csf : Convert real Schur form to complex Schur form

    """
    if output not in ['real','complex','r','c']:
        raise ValueError("argument must be 'real', or 'complex'")
    if check_finite:
        a1 = asarray_chkfinite(a)
    else:
        a1 = asarray(a)
    if len(a1.shape) != 2 or (a1.shape[0] != a1.shape[1]):
        raise ValueError('expected square matrix')
    typ = a1.dtype.char
    if output in ['complex','c'] and typ not in ['F','D']:
        if typ in _double_precision:
            a1 = a1.astype('D')
            typ = 'D'
        else:
            a1 = a1.astype('F')
            typ = 'F'
    overwrite_a = overwrite_a or (_datacopied(a1, a))
    gees, = get_lapack_funcs(('gees',), (a1,))
    if lwork is None or lwork == -1:
        # get optimal work array
        result = gees(lambda x: None, a1, lwork=-1)
        lwork = result[-2][0].real.astype(numpy.int)

    if sort is None:
        sort_t = 0
        sfunction = lambda x: None
    else:
        sort_t = 1
        if callable(sort):
            sfunction = sort
        elif sort == 'lhp':
            sfunction = lambda x: (numpy.real(x) < 0.0)
        elif sort == 'rhp':
            sfunction = lambda x: (numpy.real(x) >= 0.0)
        elif sort == 'iuc':
            sfunction = lambda x: (abs(x) <= 1.0)
        elif sort == 'ouc':
            sfunction = lambda x: (abs(x) > 1.0)
        else:
            raise ValueError("sort parameter must be None, a callable, or " +
                "one of ('lhp','rhp','iuc','ouc')")

    result = gees(sfunction, a1, lwork=lwork, overwrite_a=overwrite_a,
        sort_t=sort_t)

    info = result[-1]
    if info < 0:
        raise ValueError('illegal value in %d-th argument of internal gees'
                                                                    % -info)
    elif info == a1.shape[0] + 1:
        raise LinAlgError('Eigenvalues could not be separated for reordering.')
    elif info == a1.shape[0] + 2:
        raise LinAlgError('Leading eigenvalues do not satisfy sort condition.')
    elif info > 0:
        raise LinAlgError("Schur form not found.  Possibly ill-conditioned.")

    if sort_t == 0:
        return result[0], result[-3]
    else:
        return result[0], result[-3], result[1]
Beispiel #33
0
def fmin_cobyla(func, x0, cons, args=(), consargs=None, rhobeg=1.0,
                rhoend=1e-4, iprint=1, maxfun=1000, disp=None, catol=2e-4):
    """
    Minimize a function using the Constrained Optimization BY Linear
    Approximation (COBYLA) method. This method wraps a FORTRAN
    implementation of the algorithm.

    Parameters
    ----------
    func : callable
        Function to minimize. In the form func(x, \\*args).
    x0 : ndarray
        Initial guess.
    cons : sequence
        Constraint functions; must all be ``>=0`` (a single function
        if only 1 constraint). Each function takes the parameters `x`
        as its first argument, and it can return either a single number or
        an array or list of numbers.
    args : tuple, optional
        Extra arguments to pass to function.
    consargs : tuple, optional
        Extra arguments to pass to constraint functions (default of None means
        use same extra arguments as those passed to func).
        Use ``()`` for no extra arguments.
    rhobeg : float, optional
        Reasonable initial changes to the variables.
    rhoend : float, optional
        Final accuracy in the optimization (not precisely guaranteed). This
        is a lower bound on the size of the trust region.
    iprint : {0, 1, 2, 3}, optional
        Controls the frequency of output; 0 implies no output.  Deprecated.
    disp : {0, 1, 2, 3}, optional
        Over-rides the iprint interface.  Preferred.
    maxfun : int, optional
        Maximum number of function evaluations.
    catol : float, optional
        Absolute tolerance for constraint violations.

    Returns
    -------
    x : ndarray
        The argument that minimises `f`.

    See also
    --------
    minimize: Interface to minimization algorithms for multivariate
        functions. See the 'COBYLA' `method` in particular.

    Notes
    -----
    This algorithm is based on linear approximations to the objective
    function and each constraint. We briefly describe the algorithm.

    Suppose the function is being minimized over k variables. At the
    jth iteration the algorithm has k+1 points v_1, ..., v_(k+1),
    an approximate solution x_j, and a radius RHO_j.
    (i.e. linear plus a constant) approximations to the objective
    function and constraint functions such that their function values
    agree with the linear approximation on the k+1 points v_1,.., v_(k+1).
    This gives a linear program to solve (where the linear approximations
    of the constraint functions are constrained to be non-negative).

    However the linear approximations are likely only good
    approximations near the current simplex, so the linear program is
    given the further requirement that the solution, which
    will become x_(j+1), must be within RHO_j from x_j. RHO_j only
    decreases, never increases. The initial RHO_j is rhobeg and the
    final RHO_j is rhoend. In this way COBYLA's iterations behave
    like a trust region algorithm.

    Additionally, the linear program may be inconsistent, or the
    approximation may give poor improvement. For details about
    how these issues are resolved, as well as how the points v_i are
    updated, refer to the source code or the references below.


    References
    ----------
    Powell M.J.D. (1994), "A direct search optimization method that models
    the objective and constraint functions by linear interpolation.", in
    Advances in Optimization and Numerical Analysis, eds. S. Gomez and
    J-P Hennart, Kluwer Academic (Dordrecht), pp. 51-67

    Powell M.J.D. (1998), "Direct search algorithms for optimization
    calculations", Acta Numerica 7, 287-336

    Powell M.J.D. (2007), "A view of algorithms for optimization without
    derivatives", Cambridge University Technical Report DAMTP 2007/NA03


    Examples
    --------
    Minimize the objective function f(x,y) = x*y subject
    to the constraints x**2 + y**2 < 1 and y > 0::

        >>> def objective(x):
        ...     return x[0]*x[1]
        ...
        >>> def constr1(x):
        ...     return 1 - (x[0]**2 + x[1]**2)
        ...
        >>> def constr2(x):
        ...     return x[1]
        ...
        >>> from scipy.optimize import fmin_cobyla
        >>> fmin_cobyla(objective, [0.0, 0.1], [constr1, constr2], rhoend=1e-7)
        array([-0.70710685,  0.70710671])

    The exact solution is (-sqrt(2)/2, sqrt(2)/2).



    """
    err = "cons must be a sequence of callable functions or a single"\
          " callable function."
    try:
        len(cons)
    except TypeError:
        if callable(cons):
            cons = [cons]
        else:
            raise TypeError(err)
    else:
        for thisfunc in cons:
            if not callable(thisfunc):
                raise TypeError(err)

    if consargs is None:
        consargs = args

    # build constraints
    con = tuple({'type': 'ineq', 'fun': c, 'args': consargs} for c in cons)

    # options
    if disp is not None:
        iprint = disp
    opts = {'rhobeg': rhobeg,
            'tol': rhoend,
            'iprint': iprint,
            'disp': iprint != 0,
            'maxiter': maxfun,
            'catol': catol}

    sol = _minimize_cobyla(func, x0, args, constraints=con,
                           **opts)
    if iprint > 0 and not sol['success']:
        print("COBYLA failed to find a solution: %s" % (sol.message,))
    return sol['x']
Beispiel #34
0
def binned_statistic_dd(sample, values, statistic='mean', bins=10, range=None):
    """
    Compute a multidimensional binned statistic for a set of data.

    This is a generalization of a histogramdd function.  A histogram divides
    the space into bins, and returns the count of the number of points in
    each bin.  This function allows the computation of the sum, mean, median,
    or other statistic of the values within each bin.

    Parameters
    ----------
    sample : array_like
        Data to histogram passed as a sequence of D arrays of length N, or
        as an (N,D) array.
    values : array_like
        The values on which the statistic will be computed.  This must be
        the same shape as x.
    statistic : string or callable, optional
        The statistic to compute (default is 'mean').
        The following statistics are available:

          * 'mean' : compute the mean of values for points within each bin.
            Empty bins will be represented by NaN.
          * 'median' : compute the median of values for points within each
            bin. Empty bins will be represented by NaN.
          * 'count' : compute the count of points within each bin.  This is
            identical to an unweighted histogram.  `values` array is not
            referenced.
          * 'sum' : compute the sum of values for points within each bin.
            This is identical to a weighted histogram.
          * function : a user-defined function which takes a 1D array of
            values, and outputs a single numerical statistic. This function
            will be called on the values in each bin.  Empty bins will be
            represented by function([]), or NaN if this returns an error.

    bins : sequence or int, optional
        The bin specification:

          * A sequence of arrays describing the bin edges along each dimension.
          * The number of bins for each dimension (nx, ny, ... =bins)
          * The number of bins for all dimensions (nx=ny=...=bins).

    range : sequence, optional
        A sequence of lower and upper bin edges to be used if the edges are
        not given explicitely in `bins`. Defaults to the minimum and maximum
        values along each dimension.

    Returns
    -------
    statistic : ndarray, shape(nx1, nx2, nx3,...)
        The values of the selected statistic in each two-dimensional bin
    edges : list of ndarrays
        A list of D arrays describing the (nxi + 1) bin edges for each
        dimension
    binnumber : 1-D ndarray of ints
        This assigns to each observation an integer that represents the bin
        in which this observation falls. Array has the same length as values.

    See Also
    --------
    np.histogramdd, binned_statistic, binned_statistic_2d

    Notes
    -----

    .. versionadded:: 0.11.0

    """
    if type(statistic) == str:
        if statistic not in ['mean', 'median', 'count', 'sum', 'std']:
            raise ValueError('unrecognized statistic "%s"' % statistic)
    elif callable(statistic):
        pass
    else:
        raise ValueError("statistic not understood")

    # This code is based on np.histogramdd
    try:
        # Sample is an ND-array.
        N, D = sample.shape
    except (AttributeError, ValueError):
        # Sample is a sequence of 1D arrays.
        sample = np.atleast_2d(sample).T
        N, D = sample.shape

    nbin = np.empty(D, int)
    edges = D * [None]
    dedges = D * [None]

    try:
        M = len(bins)
        if M != D:
            raise AttributeError('The dimension of bins must be equal '
                                 'to the dimension of the sample x.')
    except TypeError:
        bins = D * [bins]

    # Select range for each dimension
    # Used only if number of bins is given.
    if range is None:
        smin = np.atleast_1d(np.array(sample.min(0), float))
        smax = np.atleast_1d(np.array(sample.max(0), float))
    else:
        smin = np.zeros(D)
        smax = np.zeros(D)
        for i in np.arange(D):
            smin[i], smax[i] = range[i]

    # Make sure the bins have a finite width.
    for i in np.arange(len(smin)):
        if smin[i] == smax[i]:
            smin[i] = smin[i] - .5
            smax[i] = smax[i] + .5

    # Create edge arrays
    for i in np.arange(D):
        if np.isscalar(bins[i]):
            nbin[i] = bins[i] + 2  # +2 for outlier bins
            edges[i] = np.linspace(smin[i], smax[i], nbin[i] - 1)
        else:
            edges[i] = np.asarray(bins[i], float)
            nbin[i] = len(edges[i]) + 1  # +1 for outlier bins
        dedges[i] = np.diff(edges[i])

    nbin = np.asarray(nbin)

    # Compute the bin number each sample falls into.
    Ncount = {}
    for i in np.arange(D):
        Ncount[i] = np.digitize(sample[:, i], edges[i])

    # Using digitize, values that fall on an edge are put in the right bin.
    # For the rightmost bin, we want values equal to the right
    # edge to be counted in the last bin, and not as an outlier.
    for i in np.arange(D):
        # Rounding precision
        decimal = int(-np.log10(dedges[i].min())) + 6
        # Find which points are on the rightmost edge.
        on_edge = np.where(
            np.around(sample[:, i], decimal) == np.around(
                edges[i][-1], decimal))[0]
        # Shift these points one bin to the left.
        Ncount[i][on_edge] -= 1

    # Compute the sample indices in the flattened statistic matrix.
    ni = nbin.argsort()
    xy = np.zeros(N, int)
    for i in np.arange(0, D - 1):
        xy += Ncount[ni[i]] * nbin[ni[i + 1:]].prod()
    xy += Ncount[ni[-1]]

    result = np.empty(nbin.prod(), float)

    if statistic == 'mean':
        result.fill(np.nan)
        flatcount = np.bincount(xy, None)
        flatsum = np.bincount(xy, values)
        a = flatcount.nonzero()
        result[a] = flatsum[a] / flatcount[a]
    elif statistic == 'std':
        result.fill(0)
        flatcount = np.bincount(xy, None)
        flatsum = np.bincount(xy, values)
        flatsum2 = np.bincount(xy, values**2)
        a = flatcount.nonzero()
        result[a] = np.sqrt(flatsum2[a] / flatcount[a] -
                            (flatsum[a] / flatcount[a])**2)
    elif statistic == 'count':
        result.fill(0)
        flatcount = np.bincount(xy, None)
        a = np.arange(len(flatcount))
        result[a] = flatcount
    elif statistic == 'sum':
        result.fill(0)
        flatsum = np.bincount(xy, values)
        a = np.arange(len(flatsum))
        result[a] = flatsum
    elif statistic == 'median':
        result.fill(np.nan)
        for i in np.unique(xy):
            result[i] = np.median(values[xy == i])
    elif callable(statistic):
        with warnings.catch_warnings():
            # Numpy generates a warnings for mean/std/... with empty list
            warnings.filterwarnings('ignore', category=RuntimeWarning)
            old = np.seterr(invalid='ignore')
            try:
                null = statistic([])
            except:
                null = np.nan
            np.seterr(**old)
        result.fill(null)
        for i in np.unique(xy):
            result[i] = statistic(values[xy == i])

    # Shape into a proper matrix
    result = result.reshape(np.sort(nbin))
    for i in np.arange(nbin.size):
        j = ni.argsort()[i]
        result = result.swapaxes(i, j)
        ni[i], ni[j] = ni[j], ni[i]

    # Remove outliers (indices 0 and -1 for each dimension).
    core = D * [slice(1, -1)]
    result = result[core]

    if (result.shape != nbin - 2).any():
        raise RuntimeError('Internal Shape Error')

    return result, edges, xy
Beispiel #35
0
def asjacobian(J):
    """
    Convert given object to one suitable for use as a Jacobian.
    """
    spsolve = scipy.sparse.linalg.spsolve
    if isinstance(J, Jacobian):
        return J
    elif inspect.isclass(J) and issubclass(J, Jacobian):
        return J()
    elif isinstance(J, np.ndarray):
        if J.ndim > 2:
            raise ValueError('array must have rank <= 2')
        J = np.atleast_2d(np.asarray(J))
        if J.shape[0] != J.shape[1]:
            raise ValueError('array must be square')

        return Jacobian(matvec=lambda v: dot(J, v),
                        rmatvec=lambda v: dot(J.conj().T, v),
                        solve=lambda v: solve(J, v),
                        rsolve=lambda v: solve(J.conj().T, v),
                        dtype=J.dtype, shape=J.shape)
    elif scipy.sparse.isspmatrix(J):
        if J.shape[0] != J.shape[1]:
            raise ValueError('matrix must be square')
        return Jacobian(matvec=lambda v: J*v,
                        rmatvec=lambda v: J.conj().T * v,
                        solve=lambda v: spsolve(J, v),
                        rsolve=lambda v: spsolve(J.conj().T, v),
                        dtype=J.dtype, shape=J.shape)
    elif hasattr(J, 'shape') and hasattr(J, 'dtype') and hasattr(J, 'solve'):
        return Jacobian(matvec=getattr(J, 'matvec'),
                        rmatvec=getattr(J, 'rmatvec'),
                        solve=J.solve,
                        rsolve=getattr(J, 'rsolve'),
                        update=getattr(J, 'update'),
                        setup=getattr(J, 'setup'),
                        dtype=J.dtype,
                        shape=J.shape)
    elif callable(J):
        # Assume it's a function J(x) that returns the Jacobian
        class Jac(Jacobian):
            def update(self, x, F):
                self.x = x

            def solve(self, v, tol=0):
                m = J(self.x)
                if isinstance(m, np.ndarray):
                    return solve(m, v)
                elif scipy.sparse.isspmatrix(m):
                    return spsolve(m, v)
                else:
                    raise ValueError("Unknown matrix type")

            def matvec(self, v):
                m = J(self.x)
                if isinstance(m, np.ndarray):
                    return dot(m, v)
                elif scipy.sparse.isspmatrix(m):
                    return m*v
                else:
                    raise ValueError("Unknown matrix type")

            def rsolve(self, v, tol=0):
                m = J(self.x)
                if isinstance(m, np.ndarray):
                    return solve(m.conj().T, v)
                elif scipy.sparse.isspmatrix(m):
                    return spsolve(m.conj().T, v)
                else:
                    raise ValueError("Unknown matrix type")

            def rmatvec(self, v):
                m = J(self.x)
                if isinstance(m, np.ndarray):
                    return dot(m.conj().T, v)
                elif scipy.sparse.isspmatrix(m):
                    return m.conj().T * v
                else:
                    raise ValueError("Unknown matrix type")
        return Jac()
    elif isinstance(J, str):
        return dict(broyden1=BroydenFirst,
                    broyden2=BroydenSecond,
                    anderson=Anderson,
                    diagbroyden=DiagBroyden,
                    linearmixing=LinearMixing,
                    excitingmixing=ExcitingMixing,
                    krylov=KrylovJacobian)[J]()
    else:
        raise TypeError('Cannot convert object to a Jacobian')
def minimize(fun,
             x0,
             args=(),
             method=None,
             jac=None,
             hess=None,
             hessp=None,
             bounds=None,
             constraints=(),
             tol=None,
             callback=None,
             options=None):
    """Minimization of scalar function of one or more variables.

    Parameters
    ----------
    fun : callable
        The objective function to be minimized.

            ``fun(x, *args) -> float``

        where x is an 1-D array with shape (n,) and `args`
        is a tuple of the fixed parameters needed to completely
        specify the function.
    x0 : ndarray, shape (n,)
        Initial guess. Array of real elements of size (n,),
        where 'n' is the number of independent variables.
    args : tuple, optional
        Extra arguments passed to the objective function and its
        derivatives (`fun`, `jac` and `hess` functions).
    method : str or callable, optional
        Type of solver.  Should be one of

            - 'Nelder-Mead' :ref:`(see here) <optimize.minimize-neldermead>`
            - 'Powell'      :ref:`(see here) <optimize.minimize-powell>`
            - 'CG'          :ref:`(see here) <optimize.minimize-cg>`
            - 'BFGS'        :ref:`(see here) <optimize.minimize-bfgs>`
            - 'Newton-CG'   :ref:`(see here) <optimize.minimize-newtoncg>`
            - 'L-BFGS-B'    :ref:`(see here) <optimize.minimize-lbfgsb>`
            - 'TNC'         :ref:`(see here) <optimize.minimize-tnc>`
            - 'COBYLA'      :ref:`(see here) <optimize.minimize-cobyla>`
            - 'SLSQP'       :ref:`(see here) <optimize.minimize-slsqp>`
            - 'trust-constr':ref:`(see here) <optimize.minimize-trustconstr>`
            - 'dogleg'      :ref:`(see here) <optimize.minimize-dogleg>`
            - 'trust-ncg'   :ref:`(see here) <optimize.minimize-trustncg>`
            - 'trust-exact' :ref:`(see here) <optimize.minimize-trustexact>`
            - 'trust-krylov' :ref:`(see here) <optimize.minimize-trustkrylov>`
            - custom - a callable object (added in version 0.14.0),
              see below for description.

        If not given, chosen to be one of ``BFGS``, ``L-BFGS-B``, ``SLSQP``,
        depending if the problem has constraints or bounds.
    jac : {callable,  '2-point', '3-point', 'cs', bool}, optional
        Method for computing the gradient vector. Only for CG, BFGS,
        Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg, trust-krylov,
        trust-exact and trust-constr. If it is a callable, it should be a
        function that returns the gradient vector:

            ``jac(x, *args) -> array_like, shape (n,)``

        where x is an array with shape (n,) and `args` is a tuple with
        the fixed parameters. Alternatively, the keywords
        {'2-point', '3-point', 'cs'} select a finite
        difference scheme for numerical estimation of the gradient. Options
        '3-point' and 'cs' are available only to 'trust-constr'.
        If `jac` is a Boolean and is True, `fun` is assumed to return the
        gradient along with the objective function. If False, the gradient
        will be estimated using '2-point' finite difference estimation.
    hess : {callable, '2-point', '3-point', 'cs', HessianUpdateStrategy},  optional
        Method for computing the Hessian matrix. Only for Newton-CG, dogleg,
        trust-ncg,  trust-krylov, trust-exact and trust-constr. If it is
        callable, it should return the  Hessian matrix:

            ``hess(x, *args) -> {LinearOperator, spmatrix, array}, (n, n)``

        where x is a (n,) ndarray and `args` is a tuple with the fixed
        parameters. LinearOperator and sparse matrix returns are
        allowed only for 'trust-constr' method. Alternatively, the keywords
        {'2-point', '3-point', 'cs'} select a finite difference scheme
        for numerical estimation. Or, objects implementing
        `HessianUpdateStrategy` interface can be used to approximate
        the Hessian. Available quasi-Newton methods implementing
        this interface are:

            - `BFGS`;
            - `SR1`.

        Whenever the gradient is estimated via finite-differences,
        the Hessian cannot be estimated with options
        {'2-point', '3-point', 'cs'} and needs to be
        estimated using one of the quasi-Newton strategies.
        Finite-difference options {'2-point', '3-point', 'cs'} and
        `HessianUpdateStrategy` are available only for 'trust-constr' method.
    hessp : callable, optional
        Hessian of objective function times an arbitrary vector p. Only for
        Newton-CG, trust-ncg, trust-krylov, trust-constr.
        Only one of `hessp` or `hess` needs to be given.  If `hess` is
        provided, then `hessp` will be ignored.  `hessp` must compute the
        Hessian times an arbitrary vector:

            ``hessp(x, p, *args) ->  ndarray shape (n,)``

        where x is a (n,) ndarray, p is an arbitrary vector with
        dimension (n,) and `args` is a tuple with the fixed
        parameters.
    bounds : sequence or `Bounds`, optional
        Bounds on variables for L-BFGS-B, TNC, SLSQP and
        trust-constr methods. There are two ways to specify the bounds:

            1. Instance of `Bounds` class.
            2. Sequence of ``(min, max)`` pairs for each element in `x`. None
               is used to specify no bound.

    constraints : {Constraint, dict} or List of {Constraint, dict}, optional
        Constraints definition (only for COBYLA, SLSQP and trust-constr).
        Constraints for 'trust-constr' are defined as a single object or a
        list of objects specifying constraints to the optimization problem.
        Available constraints are:

            - `LinearConstraint`
            - `NonlinearConstraint`

        Constraints for COBYLA, SLSQP are defined as a list of dictionaries.
        Each dictionary with fields:

            type : str
                Constraint type: 'eq' for equality, 'ineq' for inequality.
            fun : callable
                The function defining the constraint.
            jac : callable, optional
                The Jacobian of `fun` (only for SLSQP).
            args : sequence, optional
                Extra arguments to be passed to the function and Jacobian.

        Equality constraint means that the constraint function result is to
        be zero whereas inequality means that it is to be non-negative.
        Note that COBYLA only supports inequality constraints.
    tol : float, optional
        Tolerance for termination. For detailed control, use solver-specific
        options.
    options : dict, optional
        A dictionary of solver options. All methods accept the following
        generic options:

            maxiter : int
                Maximum number of iterations to perform.
            disp : bool
                Set to True to print convergence messages.

        For method-specific options, see :func:`show_options()`.
    callback : callable, optional
        Called after each iteration. For 'trust-constr' it is a callable with
        the signature:

            ``callback(xk, OptimizeResult state) -> bool``

        where ``xk`` is the current parameter vector. and ``state``
        is an `OptimizeResult` object, with the same fields
        as the ones from the return.  If callback returns True
        the algorithm execution is terminated.
        For all the other methods, the signature is:

            ``callback(xk)``

        where ``xk`` is the current parameter vector.

    Returns
    -------
    res : OptimizeResult
        The optimization result represented as a ``OptimizeResult`` object.
        Important attributes are: ``x`` the solution array, ``success`` a
        Boolean flag indicating if the optimizer exited successfully and
        ``message`` which describes the cause of the termination. See
        `OptimizeResult` for a description of other attributes.

    See also
    --------
    minimize_scalar : Interface to minimization algorithms for scalar
        univariate functions
    show_options : Additional options accepted by the solvers

    Notes
    -----
    This section describes the available solvers that can be selected by the
    'method' parameter. The default method is *BFGS*.

    **Unconstrained minimization**

    Method :ref:`Nelder-Mead <optimize.minimize-neldermead>` uses the
    Simplex algorithm [1]_, [2]_. This algorithm is robust in many
    applications. However, if numerical computation of derivative can be
    trusted, other algorithms using the first and/or second derivatives
    information might be preferred for their better performance in
    general.

    Method :ref:`Powell <optimize.minimize-powell>` is a modification
    of Powell's method [3]_, [4]_ which is a conjugate direction
    method. It performs sequential one-dimensional minimizations along
    each vector of the directions set (`direc` field in `options` and
    `info`), which is updated at each iteration of the main
    minimization loop. The function need not be differentiable, and no
    derivatives are taken.

    Method :ref:`CG <optimize.minimize-cg>` uses a nonlinear conjugate
    gradient algorithm by Polak and Ribiere, a variant of the
    Fletcher-Reeves method described in [5]_ pp.  120-122. Only the
    first derivatives are used.

    Method :ref:`BFGS <optimize.minimize-bfgs>` uses the quasi-Newton
    method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) [5]_
    pp. 136. It uses the first derivatives only. BFGS has proven good
    performance even for non-smooth optimizations. This method also
    returns an approximation of the Hessian inverse, stored as
    `hess_inv` in the OptimizeResult object.

    Method :ref:`Newton-CG <optimize.minimize-newtoncg>` uses a
    Newton-CG algorithm [5]_ pp. 168 (also known as the truncated
    Newton method). It uses a CG method to the compute the search
    direction. See also *TNC* method for a box-constrained
    minimization with a similar algorithm. Suitable for large-scale
    problems.

    Method :ref:`dogleg <optimize.minimize-dogleg>` uses the dog-leg
    trust-region algorithm [5]_ for unconstrained minimization. This
    algorithm requires the gradient and Hessian; furthermore the
    Hessian is required to be positive definite.

    Method :ref:`trust-ncg <optimize.minimize-trustncg>` uses the
    Newton conjugate gradient trust-region algorithm [5]_ for
    unconstrained minimization. This algorithm requires the gradient
    and either the Hessian or a function that computes the product of
    the Hessian with a given vector. Suitable for large-scale problems.

    Method :ref:`trust-krylov <optimize.minimize-trustkrylov>` uses
    the Newton GLTR trust-region algorithm [14]_, [15]_ for unconstrained
    minimization. This algorithm requires the gradient
    and either the Hessian or a function that computes the product of
    the Hessian with a given vector. Suitable for large-scale problems.
    On indefinite problems it requires usually less iterations than the
    `trust-ncg` method and is recommended for medium and large-scale problems.

    Method :ref:`trust-exact <optimize.minimize-trustexact>`
    is a trust-region method for unconstrained minimization in which
    quadratic subproblems are solved almost exactly [13]_. This
    algorithm requires the gradient and the Hessian (which is
    *not* required to be positive definite). It is, in many
    situations, the Newton method to converge in fewer iteraction
    and the most recommended for small and medium-size problems.

    **Bound-Constrained minimization**

    Method :ref:`L-BFGS-B <optimize.minimize-lbfgsb>` uses the L-BFGS-B
    algorithm [6]_, [7]_ for bound constrained minimization.

    Method :ref:`TNC <optimize.minimize-tnc>` uses a truncated Newton
    algorithm [5]_, [8]_ to minimize a function with variables subject
    to bounds. This algorithm uses gradient information; it is also
    called Newton Conjugate-Gradient. It differs from the *Newton-CG*
    method described above as it wraps a C implementation and allows
    each variable to be given upper and lower bounds.

    **Constrained Minimization**

    Method :ref:`COBYLA <optimize.minimize-cobyla>` uses the
    Constrained Optimization BY Linear Approximation (COBYLA) method
    [9]_, [10]_, [11]_. The algorithm is based on linear
    approximations to the objective function and each constraint. The
    method wraps a FORTRAN implementation of the algorithm. The
    constraints functions 'fun' may return either a single number
    or an array or list of numbers.

    Method :ref:`SLSQP <optimize.minimize-slsqp>` uses Sequential
    Least SQuares Programming to minimize a function of several
    variables with any combination of bounds, equality and inequality
    constraints. The method wraps the SLSQP Optimization subroutine
    originally implemented by Dieter Kraft [12]_. Note that the
    wrapper handles infinite values in bounds by converting them into
    large floating values.

    Method :ref:`trust-constr <optimize.minimize-trustconstr>` is a
    trust-region algorithm for constrained optimization. It swiches
    between two implementations depending on the problem definition.
    It is the most versatile constrained minimization algorithm
    implemented in SciPy and the most appropriate for large-scale problems.
    For equality constrained problems it is an implementation of Byrd-Omojokun
    Trust-Region SQP method described in [17]_ and in [5]_, p. 549. When
    inequality constraints  are imposed as well, it swiches to the trust-region
    interior point  method described in [16]_. This interior point algorithm,
    in turn, solves inequality constraints by introducing slack variables
    and solving a sequence of equality-constrained barrier problems
    for progressively smaller values of the barrier parameter.
    The previously described equality constrained SQP method is
    used to solve the subproblems with increasing levels of accuracy
    as the iterate gets closer to a solution.

    **Finite-Difference Options**

    For Method :ref:`trust-constr <optimize.minimize-trustconstr>`
    the gradient and the Hessian may be approximated using
    three finite-difference schemes: {'2-point', '3-point', 'cs'}.
    The scheme 'cs' is, potentially, the most accurate but it
    requires the function to correctly handles complex inputs and to
    be differentiable in the complex plane. The scheme '3-point' is more
    accurate than '2-point' but requires twice as much operations.

    **Custom minimizers**

    It may be useful to pass a custom minimization method, for example
    when using a frontend to this method such as `scipy.optimize.basinhopping`
    or a different library.  You can simply pass a callable as the ``method``
    parameter.

    The callable is called as ``method(fun, x0, args, **kwargs, **options)``
    where ``kwargs`` corresponds to any other parameters passed to `minimize`
    (such as `callback`, `hess`, etc.), except the `options` dict, which has
    its contents also passed as `method` parameters pair by pair.  Also, if
    `jac` has been passed as a bool type, `jac` and `fun` are mangled so that
    `fun` returns just the function values and `jac` is converted to a function
    returning the Jacobian.  The method shall return an `OptimizeResult`
    object.

    The provided `method` callable must be able to accept (and possibly ignore)
    arbitrary parameters; the set of parameters accepted by `minimize` may
    expand in future versions and then these parameters will be passed to
    the method.  You can find an example in the scipy.optimize tutorial.

    .. versionadded:: 0.11.0

    References
    ----------
    .. [1] Nelder, J A, and R Mead. 1965. A Simplex Method for Function
        Minimization. The Computer Journal 7: 308-13.
    .. [2] Wright M H. 1996. Direct search methods: Once scorned, now
        respectable, in Numerical Analysis 1995: Proceedings of the 1995
        Dundee Biennial Conference in Numerical Analysis (Eds. D F
        Griffiths and G A Watson). Addison Wesley Longman, Harlow, UK.
        191-208.
    .. [3] Powell, M J D. 1964. An efficient method for finding the minimum of
       a function of several variables without calculating derivatives. The
       Computer Journal 7: 155-162.
    .. [4] Press W, S A Teukolsky, W T Vetterling and B P Flannery.
       Numerical Recipes (any edition), Cambridge University Press.
    .. [5] Nocedal, J, and S J Wright. 2006. Numerical Optimization.
       Springer New York.
    .. [6] Byrd, R H and P Lu and J. Nocedal. 1995. A Limited Memory
       Algorithm for Bound Constrained Optimization. SIAM Journal on
       Scientific and Statistical Computing 16 (5): 1190-1208.
    .. [7] Zhu, C and R H Byrd and J Nocedal. 1997. L-BFGS-B: Algorithm
       778: L-BFGS-B, FORTRAN routines for large scale bound constrained
       optimization. ACM Transactions on Mathematical Software 23 (4):
       550-560.
    .. [8] Nash, S G. Newton-Type Minimization Via the Lanczos Method.
       1984. SIAM Journal of Numerical Analysis 21: 770-778.
    .. [9] Powell, M J D. A direct search optimization method that models
       the objective and constraint functions by linear interpolation.
       1994. Advances in Optimization and Numerical Analysis, eds. S. Gomez
       and J-P Hennart, Kluwer Academic (Dordrecht), 51-67.
    .. [10] Powell M J D. Direct search algorithms for optimization
       calculations. 1998. Acta Numerica 7: 287-336.
    .. [11] Powell M J D. A view of algorithms for optimization without
       derivatives. 2007.Cambridge University Technical Report DAMTP
       2007/NA03
    .. [12] Kraft, D. A software package for sequential quadratic
       programming. 1988. Tech. Rep. DFVLR-FB 88-28, DLR German Aerospace
       Center -- Institute for Flight Mechanics, Koln, Germany.
    .. [13] Conn, A. R., Gould, N. I., and Toint, P. L.
       Trust region methods. 2000. Siam. pp. 169-200.
    .. [14] F. Lenders, C. Kirches, A. Potschka: "trlib: A vector-free
       implementation of the GLTR method for iterative solution of
       the trust region problem", https://arxiv.org/abs/1611.04718
    .. [15] N. Gould, S. Lucidi, M. Roma, P. Toint: "Solving the
       Trust-Region Subproblem using the Lanczos Method",
       SIAM J. Optim., 9(2), 504--525, (1999).
    .. [16] Byrd, Richard H., Mary E. Hribar, and Jorge Nocedal. 1999.
        An interior point algorithm for large-scale nonlinear  programming.
        SIAM Journal on Optimization 9.4: 877-900.
    .. [17] Lalee, Marucha, Jorge Nocedal, and Todd Plantega. 1998. On the
        implementation of an algorithm for large-scale equality constrained
        optimization. SIAM Journal on Optimization 8.3: 682-706.

    Examples
    --------
    Let us consider the problem of minimizing the Rosenbrock function. This
    function (and its respective derivatives) is implemented in `rosen`
    (resp. `rosen_der`, `rosen_hess`) in the `scipy.optimize`.

    >>> from scipy.optimize import minimize, rosen, rosen_der

    A simple application of the *Nelder-Mead* method is:

    >>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
    >>> res = minimize(rosen, x0, method='Nelder-Mead', tol=1e-6)
    >>> res.x
    array([ 1.,  1.,  1.,  1.,  1.])

    Now using the *BFGS* algorithm, using the first derivative and a few
    options:

    >>> res = minimize(rosen, x0, method='BFGS', jac=rosen_der,
    ...                options={'gtol': 1e-6, 'disp': True})
    Optimization terminated successfully.
             Current function value: 0.000000
             Iterations: 26
             Function evaluations: 31
             Gradient evaluations: 31
    >>> res.x
    array([ 1.,  1.,  1.,  1.,  1.])
    >>> print(res.message)
    Optimization terminated successfully.
    >>> res.hess_inv
    array([[ 0.00749589,  0.01255155,  0.02396251,  0.04750988,  0.09495377],  # may vary
           [ 0.01255155,  0.02510441,  0.04794055,  0.09502834,  0.18996269],
           [ 0.02396251,  0.04794055,  0.09631614,  0.19092151,  0.38165151],
           [ 0.04750988,  0.09502834,  0.19092151,  0.38341252,  0.7664427 ],
           [ 0.09495377,  0.18996269,  0.38165151,  0.7664427,   1.53713523]])


    Next, consider a minimization problem with several constraints (namely
    Example 16.4 from [5]_). The objective function is:

    >>> fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2

    There are three constraints defined as:

    >>> cons = ({'type': 'ineq', 'fun': lambda x:  x[0] - 2 * x[1] + 2},
    ...         {'type': 'ineq', 'fun': lambda x: -x[0] - 2 * x[1] + 6},
    ...         {'type': 'ineq', 'fun': lambda x: -x[0] + 2 * x[1] + 2})

    And variables must be positive, hence the following bounds:

    >>> bnds = ((0, None), (0, None))

    The optimization problem is solved using the SLSQP method as:

    >>> res = minimize(fun, (2, 0), method='SLSQP', bounds=bnds,
    ...                constraints=cons)

    It should converge to the theoretical solution (1.4 ,1.7).

    """
    x0 = np.asarray(x0)
    if x0.dtype.kind in np.typecodes["AllInteger"]:
        x0 = np.asarray(x0, dtype=float)

    if not isinstance(args, tuple):
        args = (args, )

    if method is None:
        # Select automatically
        if constraints:
            method = 'SLSQP'
        elif bounds is not None:
            method = 'L-BFGS-B'
        else:
            method = 'BFGS'

    if callable(method):
        meth = "_custom"
    else:
        meth = method.lower()

    if options is None:
        options = {}
    # check if optional parameters are supported by the selected method
    # - jac
    if meth in ('nelder-mead', 'powell', 'cobyla') and bool(jac):
        warn('Method %s does not use gradient information (jac).' % method,
             RuntimeWarning)
    # - hess
    if meth not in ('newton-cg', 'dogleg', 'trust-ncg', 'trust-constr',
                    'trust-krylov', 'trust-exact',
                    '_custom') and hess is not None:
        warn('Method %s does not use Hessian information (hess).' % method,
             RuntimeWarning)
    # - hessp
    if meth not in ('newton-cg', 'dogleg', 'trust-ncg', 'trust-constr',
                    'trust-krylov', '_custom') \
       and hessp is not None:
        warn(
            'Method %s does not use Hessian-vector product '
            'information (hessp).' % method, RuntimeWarning)
    # - constraints or bounds
    if (meth in ('nelder-mead', 'powell', 'cg', 'bfgs', 'newton-cg', 'dogleg',
                 'trust-ncg') and (bounds is not None or np.any(constraints))):
        warn('Method %s cannot handle constraints nor bounds.' % method,
             RuntimeWarning)
    if meth in ('l-bfgs-b', 'tnc') and np.any(constraints):
        warn('Method %s cannot handle constraints.' % method, RuntimeWarning)
    if meth == 'cobyla' and bounds is not None:
        warn('Method %s cannot handle bounds.' % method, RuntimeWarning)
    # - callback
    if (meth in ('cobyla', ) and callback is not None):
        warn('Method %s does not support callback.' % method, RuntimeWarning)
    # - return_all
    if (meth in ('l-bfgs-b', 'tnc', 'cobyla', 'slsqp')
            and options.get('return_all', False)):
        warn('Method %s does not support the return_all option.' % method,
             RuntimeWarning)

    # check gradient vector
    if meth == 'trust-constr':
        if type(jac) is bool:
            if jac:
                fun = MemoizeJac(fun)
                jac = fun.derivative
            else:
                jac = '2-point'
        elif jac is None:
            jac = '2-point'
        elif not callable(jac) and jac not in ('2-point', '3-point', 'cs'):
            raise ValueError("Unsupported jac definition.")
    else:
        if jac in ('2-point', '3-point', 'cs'):
            if jac in ('3-point', 'cs'):
                warn("Only 'trust-constr' method accept %s "
                     "options for 'jac'. Using '2-point' instead." % jac)
            jac = None
        elif not callable(jac):
            if bool(jac):
                fun = MemoizeJac(fun)
                jac = fun.derivative
            else:
                jac = None

    # set default tolerances
    if tol is not None:
        options = dict(options)
        if meth == 'nelder-mead':
            options.setdefault('xatol', tol)
            options.setdefault('fatol', tol)
        if meth in ('newton-cg', 'powell', 'tnc'):
            options.setdefault('xtol', tol)
        if meth in ('powell', 'l-bfgs-b', 'tnc', 'slsqp'):
            options.setdefault('ftol', tol)
        if meth in ('bfgs', 'cg', 'l-bfgs-b', 'tnc', 'dogleg', 'trust-ncg',
                    'trust-exact', 'trust-krylov'):
            options.setdefault('gtol', tol)
        if meth in ('cobyla', '_custom'):
            options.setdefault('tol', tol)
        if meth == 'trust-constr':
            options.setdefault('xtol', tol)
            options.setdefault('gtol', tol)
            options.setdefault('barrier_tol', tol)

    if bounds is not None:
        bounds = standardize_bounds(bounds, x0, meth)

    if constraints is not None:
        constraints = standardize_constraints(constraints, x0, meth)

    if meth == '_custom':
        return method(fun,
                      x0,
                      args=args,
                      jac=jac,
                      hess=hess,
                      hessp=hessp,
                      bounds=bounds,
                      constraints=constraints,
                      callback=callback,
                      **options)
    elif meth == 'nelder-mead':
        return _minimize_neldermead(fun, x0, args, callback, **options)
    elif meth == 'powell':
        return _minimize_powell(fun, x0, args, callback, **options)
    elif meth == 'cg':
        return _minimize_cg(fun, x0, args, jac, callback, **options)
    elif meth == 'bfgs':
        return _minimize_bfgs(fun, x0, args, jac, callback, **options)
    elif meth == 'newton-cg':
        return _minimize_newtoncg(fun, x0, args, jac, hess, hessp, callback,
                                  **options)
    elif meth == 'l-bfgs-b':
        return _minimize_lbfgsb(fun,
                                x0,
                                args,
                                jac,
                                bounds,
                                callback=callback,
                                **options)
    elif meth == 'tnc':
        return _minimize_tnc(fun,
                             x0,
                             args,
                             jac,
                             bounds,
                             callback=callback,
                             **options)
    elif meth == 'cobyla':
        return _minimize_cobyla(fun, x0, args, constraints, **options)
    elif meth == 'slsqp':
        return _minimize_slsqp(fun,
                               x0,
                               args,
                               jac,
                               bounds,
                               constraints,
                               callback=callback,
                               **options)
    elif meth == 'trust-constr':
        return _minimize_trustregion_constr(fun,
                                            x0,
                                            args,
                                            jac,
                                            hess,
                                            hessp,
                                            bounds,
                                            constraints,
                                            callback=callback,
                                            **options)
    elif meth == 'dogleg':
        return _minimize_dogleg(fun,
                                x0,
                                args,
                                jac,
                                hess,
                                callback=callback,
                                **options)
    elif meth == 'trust-ncg':
        return _minimize_trust_ncg(fun,
                                   x0,
                                   args,
                                   jac,
                                   hess,
                                   hessp,
                                   callback=callback,
                                   **options)
    elif meth == 'trust-krylov':
        return _minimize_trust_krylov(fun,
                                      x0,
                                      args,
                                      jac,
                                      hess,
                                      hessp,
                                      callback=callback,
                                      **options)
    elif meth == 'trust-exact':
        return _minimize_trustregion_exact(fun,
                                           x0,
                                           args,
                                           jac,
                                           hess,
                                           callback=callback,
                                           **options)
    else:
        raise ValueError('Unknown solver %s' % method)
def binned_statistic_dd(sample,
                        values,
                        statistic='mean',
                        bins=10,
                        range=None,
                        expand_binnumbers=False,
                        binned_statistic_result=None):
    """
    Compute a multidimensional binned statistic for a set of data.

    This is a generalization of a histogramdd function.  A histogram divides
    the space into bins, and returns the count of the number of points in
    each bin.  This function allows the computation of the sum, mean, median,
    or other statistic of the values within each bin.

    Parameters
    ----------
    sample : array_like
        Data to histogram passed as a sequence of N arrays of length D, or
        as an (N,D) array.
    values : (N,) array_like or list of (N,) array_like
        The data on which the statistic will be computed.  This must be
        the same shape as `sample`, or a list of sequences - each with the
        same shape as `sample`.  If `values` is such a list, the statistic
        will be computed on each independently.
    statistic : string or callable, optional
        The statistic to compute (default is 'mean').
        The following statistics are available:

          * 'mean' : compute the mean of values for points within each bin.
            Empty bins will be represented by NaN.
          * 'median' : compute the median of values for points within each
            bin. Empty bins will be represented by NaN.
          * 'count' : compute the count of points within each bin.  This is
            identical to an unweighted histogram.  `values` array is not
            referenced.
          * 'sum' : compute the sum of values for points within each bin.
            This is identical to a weighted histogram.
          * 'std' : compute the standard deviation within each bin. This
            is implicitly calculated with ddof=0.
          * 'min' : compute the minimum of values for points within each bin.
            Empty bins will be represented by NaN.
          * 'max' : compute the maximum of values for point within each bin.
            Empty bins will be represented by NaN.
          * function : a user-defined function which takes a 1D array of
            values, and outputs a single numerical statistic. This function
            will be called on the values in each bin.  Empty bins will be
            represented by function([]), or NaN if this returns an error.

    bins : sequence or positive int, optional
        The bin specification must be in one of the following forms:

          * A sequence of arrays describing the bin edges along each dimension.
          * The number of bins for each dimension (nx, ny, ... = bins).
          * The number of bins for all dimensions (nx = ny = ... = bins).
    range : sequence, optional
        A sequence of lower and upper bin edges to be used if the edges are
        not given explicitly in `bins`. Defaults to the minimum and maximum
        values along each dimension.
    expand_binnumbers : bool, optional
        'False' (default): the returned `binnumber` is a shape (N,) array of
        linearized bin indices.
        'True': the returned `binnumber` is 'unraveled' into a shape (D,N)
        ndarray, where each row gives the bin numbers in the corresponding
        dimension.
        See the `binnumber` returned value, and the `Examples` section of
        `binned_statistic_2d`.
    binned_statistic_result : binnedStatisticddResult
        Result of a previous call to the function in order to reuse bin edges
        and bin numbers with new values and/or a different statistic.
        To reuse bin numbers, `expand_binnumbers` must have been set to False
        (the default)

        .. versionadded:: 0.17.0

    Returns
    -------
    statistic : ndarray, shape(nx1, nx2, nx3,...)
        The values of the selected statistic in each two-dimensional bin.
    bin_edges : list of ndarrays
        A list of D arrays describing the (nxi + 1) bin edges for each
        dimension.
    binnumber : (N,) array of ints or (D,N) ndarray of ints
        This assigns to each element of `sample` an integer that represents the
        bin in which this observation falls.  The representation depends on the
        `expand_binnumbers` argument.  See `Notes` for details.


    See Also
    --------
    numpy.digitize, numpy.histogramdd, binned_statistic, binned_statistic_2d

    Notes
    -----
    Binedges:
    All but the last (righthand-most) bin is half-open in each dimension.  In
    other words, if `bins` is ``[1, 2, 3, 4]``, then the first bin is
    ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``.  The
    last bin, however, is ``[3, 4]``, which *includes* 4.

    `binnumber`:
    This returned argument assigns to each element of `sample` an integer that
    represents the bin in which it belongs.  The representation depends on the
    `expand_binnumbers` argument. If 'False' (default): The returned
    `binnumber` is a shape (N,) array of linearized indices mapping each
    element of `sample` to its corresponding bin (using row-major ordering).
    If 'True': The returned `binnumber` is a shape (D,N) ndarray where
    each row indicates bin placements for each dimension respectively.  In each
    dimension, a binnumber of `i` means the corresponding value is between
    (bin_edges[D][i-1], bin_edges[D][i]), for each dimension 'D'.

    .. versionadded:: 0.11.0

    Examples
    --------
    >>> from scipy import stats
    >>> import matplotlib.pyplot as plt
    >>> from mpl_toolkits.mplot3d import Axes3D

    Take an array of 600 (x, y) coordinates as an example.
    `binned_statistic_dd` can handle arrays of higher dimension `D`. But a plot
    of dimension `D+1` is required.

    >>> mu = np.array([0., 1.])
    >>> sigma = np.array([[1., -0.5],[-0.5, 1.5]])
    >>> multinormal = stats.multivariate_normal(mu, sigma)
    >>> data = multinormal.rvs(size=600, random_state=235412)
    >>> data.shape
    (600, 2)

    Create bins and count how many arrays fall in each bin:

    >>> N = 60
    >>> x = np.linspace(-3, 3, N)
    >>> y = np.linspace(-3, 4, N)
    >>> ret = stats.binned_statistic_dd(data, np.arange(600), bins=[x, y],
    ...                                 statistic='count')
    >>> bincounts = ret.statistic

    Set the volume and the location of bars:

    >>> dx = x[1] - x[0]
    >>> dy = y[1] - y[0]
    >>> x, y = np.meshgrid(x[:-1]+dx/2, y[:-1]+dy/2)
    >>> z = 0

    >>> bincounts = bincounts.ravel()
    >>> x = x.ravel()
    >>> y = y.ravel()

    >>> fig = plt.figure()
    >>> ax = fig.add_subplot(111, projection='3d')
    >>> with np.errstate(divide='ignore'):   # silence random axes3d warning
    ...     ax.bar3d(x, y, z, dx, dy, bincounts)

    Reuse bin numbers and bin edges with new values:

    >>> ret2 = stats.binned_statistic_dd(data, -np.arange(600),
    ...                                  binned_statistic_result=ret,
    ...                                  statistic='mean')
    """
    known_stats = ['mean', 'median', 'count', 'sum', 'std', 'min', 'max']
    if not callable(statistic) and statistic not in known_stats:
        raise ValueError('invalid statistic %r' % (statistic, ))

    if not np.isfinite(values).all() or not np.isfinite(sample).all:
        raise ValueError('%r or %r contains non-finite values.' % (
            sample,
            values,
        ))

    # `Ndim` is the number of dimensions (e.g. `2` for `binned_statistic_2d`)
    # `Dlen` is the length of elements along each dimension.
    # This code is based on np.histogramdd
    try:
        # `sample` is an ND-array.
        Dlen, Ndim = sample.shape
    except (AttributeError, ValueError):
        # `sample` is a sequence of 1D arrays.
        sample = np.atleast_2d(sample).T
        Dlen, Ndim = sample.shape

    # Store initial shape of `values` to preserve it in the output
    values = np.asarray(values)
    input_shape = list(values.shape)
    # Make sure that `values` is 2D to iterate over rows
    values = np.atleast_2d(values)
    Vdim, Vlen = values.shape

    # Make sure `values` match `sample`
    if (statistic != 'count' and Vlen != Dlen):
        raise AttributeError('The number of `values` elements must match the '
                             'length of each `sample` dimension.')

    try:
        M = len(bins)
        if M != Ndim:
            raise AttributeError('The dimension of bins must be equal '
                                 'to the dimension of the sample x.')
    except TypeError:
        bins = Ndim * [bins]

    if binned_statistic_result is None:
        nbin, edges, dedges = _bin_edges(sample, bins, range)
        binnumbers = _bin_numbers(sample, nbin, edges, dedges)
    else:
        edges = binned_statistic_result.bin_edges
        nbin = np.array([len(edges[i]) + 1 for i in xrange(Ndim)])
        # +1 for outlier bins
        dedges = [np.diff(edges[i]) for i in xrange(Ndim)]
        binnumbers = binned_statistic_result.binnumber

    result = np.empty([Vdim, nbin.prod()], float)

    if statistic == 'mean':
        result.fill(np.nan)
        flatcount = np.bincount(binnumbers, None)
        a = flatcount.nonzero()
        for vv in xrange(Vdim):
            flatsum = np.bincount(binnumbers, values[vv])
            result[vv, a] = flatsum[a] / flatcount[a]
    elif statistic == 'std':
        result.fill(0)
        flatcount = np.bincount(binnumbers, None)
        a = flatcount.nonzero()
        for i in np.unique(binnumbers):
            for vv in xrange(Vdim):
                # NOTE: take std dev by bin, np.std() is 2-pass and stable
                result[vv, i] = np.std(values[vv, binnumbers == i])
    elif statistic == 'count':
        result.fill(0)
        flatcount = np.bincount(binnumbers, None)
        a = np.arange(len(flatcount))
        result[:, a] = flatcount[np.newaxis, :]
    elif statistic == 'sum':
        result.fill(0)
        for vv in xrange(Vdim):
            flatsum = np.bincount(binnumbers, values[vv])
            a = np.arange(len(flatsum))
            result[vv, a] = flatsum
    elif statistic == 'median':
        result.fill(np.nan)
        for i in np.unique(binnumbers):
            for vv in xrange(Vdim):
                result[vv, i] = np.median(values[vv, binnumbers == i])
    elif statistic == 'min':
        result.fill(np.nan)
        for i in np.unique(binnumbers):
            for vv in xrange(Vdim):
                result[vv, i] = np.min(values[vv, binnumbers == i])
    elif statistic == 'max':
        result.fill(np.nan)
        for i in np.unique(binnumbers):
            for vv in xrange(Vdim):
                result[vv, i] = np.max(values[vv, binnumbers == i])
    elif callable(statistic):
        with np.errstate(invalid='ignore'), suppress_warnings() as sup:
            sup.filter(RuntimeWarning)
            try:
                null = statistic([])
            except Exception:
                null = np.nan
        result.fill(null)
        for i in np.unique(binnumbers):
            for vv in xrange(Vdim):
                result[vv, i] = statistic(values[vv, binnumbers == i])

    # Shape into a proper matrix
    result = result.reshape(np.append(Vdim, nbin))

    # Remove outliers (indices 0 and -1 for each bin-dimension).
    core = tuple([slice(None)] + Ndim * [slice(1, -1)])
    result = result[core]

    # Unravel binnumbers into an ndarray, each row the bins for each dimension
    if (expand_binnumbers and Ndim > 1):
        binnumbers = np.asarray(np.unravel_index(binnumbers, nbin))

    if np.any(result.shape[1:] != nbin - 2):
        raise RuntimeError('Internal Shape Error')

    # Reshape to have output (`reulst`) match input (`values`) shape
    result = result.reshape(input_shape[:-1] + list(nbin - 2))

    return BinnedStatisticddResult(result, edges, binnumbers)
Beispiel #38
0
def pdist(X, metric='euclidean', *args, **kwargs):
    """
    """
    kwargs = _args_to_kwargs_xdist(args, kwargs, metric, "pdist")

    X = np.asarray(X, order='c')

    # The C code doesn't do striding.
    X = _copy_array_if_base_present(X)

    s = X.shape
    if len(s) != 2:
        raise ValueError('A 2-dimensional array must be passed.')

    m, n = s
    out = kwargs.pop("out", None)
    if out is None:
        dm = np.empty((m * (m - 1)) // 2, dtype=np.double)
    else:
        if out.shape != (m * (m - 1) // 2,):
            raise ValueError("output array has incorrect shape.")
        if not out.flags.c_contiguous:
            raise ValueError("Output array must be C-contiguous.")
        if out.dtype != np.double:
            raise ValueError("Output array must be double type.")
        dm = out

    # compute blacklist for deprecated kwargs
    if(metric in _METRICS['minkowski'].aka or
       metric in ['test_minkowski'] or
       metric in [minkowski]):
        kwargs_blacklist = ["V", "VI"]
    elif(metric in _METRICS['seuclidean'].aka or
         metric == 'test_seuclidean' or metric == seuclidean):
        kwargs_blacklist = ["p", "w", "VI"]
    elif(metric in _METRICS['mahalanobis'].aka or
         metric == 'test_mahalanobis' or metric == mahalanobis):
        kwargs_blacklist = ["p", "w", "V"]
    else:
        kwargs_blacklist = ["p", "V", "VI"]

    _filter_deprecated_kwargs(kwargs, kwargs_blacklist)

    if callable(metric):
        mstr = getattr(metric, '__name__', 'UnknownCustomMetric')
        metric_name = _METRIC_ALIAS.get(mstr, None)

        if metric_name is not None:
            X, typ, kwargs = _validate_pdist_input(X, m, n,
                                                            metric_name,
                                                            **kwargs)

        k = 0
        for i in xrange(0, m - 1):
            for j in xrange(i + 1, m):
                dm[k] = metric(X[i], X[j], **kwargs)
                k = k + 1

    elif isinstance(metric, string_types):
        mstr = metric.lower()

        # NOTE: C-version still does not support weights
        if "w" in kwargs and not mstr.startswith("test_"):
            if(mstr in _METRICS['seuclidean'].aka or
               mstr in _METRICS['mahalanobis'].aka):
                raise ValueError("metric %s incompatible with weights" % mstr)
            # need to use python version for weighting
            kwargs['out'] = out
            mstr = "test_%s" % mstr

        metric_name = _METRIC_ALIAS.get(mstr, None)

        if metric_name is not None:
            X, typ, kwargs = _validate_pdist_input(X, m, n,
                                                            metric_name,
                                                            **kwargs)

            # get pdist wrapper
            pdist_fn = getattr(_distance_wrap,
                               "pdist_%s_%s_wrap" % (metric_name, typ))
            pdist_fn(X, dm, **kwargs)
            return dm

        elif mstr in ['old_cosine', 'old_cos']:
            warnings.warn('"old_cosine" is deprecated and will be removed in '
                          'a future version. Use "cosine" instead.',
                          DeprecationWarning)
            X = _convert_to_double(X)
            norms = np.einsum('ij,ij->i', X, X, dtype=np.double)
            np.sqrt(norms, out=norms)
            nV = norms.reshape(m, 1)
            # The numerator u * v
            nm = np.dot(X, X.T)
            # The denom. ||u||*||v||
            de = np.dot(nV, nV.T)
            dm = 1.0 - (nm / de)
            dm[xrange(0, m), xrange(0, m)] = 0.0
            dm = squareform(dm)
        elif mstr.startswith("test_"):
            if mstr in _TEST_METRICS:
                dm = pdist(X, _TEST_METRICS[mstr], **kwargs)
            else:
                raise ValueError('Unknown "Test" Distance Metric: %s' % mstr[5:])
        else:
            raise ValueError('Unknown Distance Metric: %s' % mstr)
    else:
        raise TypeError('2nd argument metric must be a string identifier '
                        'or a function.')
    return dm