def _select_function(sort, typ): if typ in ['F', 'D']: if callable(sort): # assume the user knows what they're doing sfunction = sort elif sort == 'lhp': sfunction = lambda x, y: (np.real(x/y) < 0.0) elif sort == 'rhp': sfunction = lambda x, y: (np.real(x/y) >= 0.0) elif sort == 'iuc': sfunction = lambda x, y: (abs(x/y) <= 1.0) elif sort == 'ouc': sfunction = lambda x, y: (abs(x/y) > 1.0) else: raise ValueError("sort parameter must be None, a callable, or " "one of ('lhp','rhp','iuc','ouc')") elif typ in ['f', 'd']: if callable(sort): # assume the user knows what they're doing sfunction = sort elif sort == 'lhp': sfunction = lambda x, y, z: (np.real((x+y*1j)/z) < 0.0) elif sort == 'rhp': sfunction = lambda x, y, z: (np.real((x+y*1j)/z) >= 0.0) elif sort == 'iuc': sfunction = lambda x, y, z: (abs((x+y*1j)/z) <= 1.0) elif sort == 'ouc': sfunction = lambda x, y, z: (abs((x+y*1j)/z) > 1.0) else: raise ValueError("sort parameter must be None, a callable, or " "one of ('lhp','rhp','iuc','ouc')") else: # to avoid an error later raise ValueError("dtype %s not understood" % typ) return sfunction
def _select_function(sort, typ): if typ in ['F', 'D']: if callable(sort): # assume the user knows what they're doing sfunction = sort elif sort == 'lhp': sfunction = lambda x, y: (np.real(x / y) < 0.0) elif sort == 'rhp': sfunction = lambda x, y: (np.real(x / y) >= 0.0) elif sort == 'iuc': sfunction = lambda x, y: (abs(x / y) <= 1.0) elif sort == 'ouc': sfunction = lambda x, y: (abs(x / y) > 1.0) else: raise ValueError("sort parameter must be None, a callable, or " "one of ('lhp','rhp','iuc','ouc')") elif typ in ['f', 'd']: if callable(sort): # assume the user knows what they're doing sfunction = sort elif sort == 'lhp': sfunction = lambda x, y, z: (np.real((x + y * 1j) / z) < 0.0) elif sort == 'rhp': sfunction = lambda x, y, z: (np.real((x + y * 1j) / z) >= 0.0) elif sort == 'iuc': sfunction = lambda x, y, z: (abs((x + y * 1j) / z) <= 1.0) elif sort == 'ouc': sfunction = lambda x, y, z: (abs((x + y * 1j) / z) > 1.0) else: raise ValueError("sort parameter must be None, a callable, or " "one of ('lhp','rhp','iuc','ouc')") else: # to avoid an error later raise ValueError("dtype %s not understood" % typ) return sfunction
def set_bandwidth(self, bw_method=None): """Compute the estimator bandwidth with given method. The new bandwidth calculated after a call to `set_bandwidth` is used for subsequent evaluations of the estimated density. Parameters ---------- bw_method : str, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar, this will be used directly as `kde.factor`. If a callable, it should take a `gaussian_kde` instance as only parameter and return a scalar. If None (default), nothing happens; the current `kde.covariance_factor` method is kept. Notes ----- .. versionadded:: 0.11 Examples -------- >>> x1 = np.array([-7, -5, 1, 4, 5.]) >>> kde = stats.gaussian_kde(x1) >>> xs = np.linspace(-10, 10, num=50) >>> y1 = kde(xs) >>> kde.set_bandwidth(bw_method='silverman') >>> y2 = kde(xs) >>> kde.set_bandwidth(bw_method=kde.factor / 3.) >>> y3 = kde(xs) >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x1, np.ones(x1.shape) / (4. * x1.size), 'bo', ... label='Data points (rescaled)') >>> ax.plot(xs, y1, label='Scott (default)') >>> ax.plot(xs, y2, label='Silverman') >>> ax.plot(xs, y3, label='Const (1/3 * Silverman)') >>> ax.legend() >>> plt.show() """ if bw_method is None: pass elif bw_method == 'scott': self.covariance_factor = self.scotts_factor elif bw_method == 'silverman': self.covariance_factor = self.silverman_factor elif np.isscalar(bw_method) and not isinstance(bw_method, string_types): self._bw_method = 'use constant' self.covariance_factor = lambda: bw_method elif callable(bw_method): self._bw_method = bw_method self.covariance_factor = lambda: self._bw_method(self) else: msg = "`bw_method` should be 'scott', 'silverman', a scalar " \ "or a callable." raise ValueError(msg) self._compute_covariance()
def set_bandwidth(self, bw_method=None): """Compute the estimator bandwidth with given method. The new bandwidth calculated after a call to `set_bandwidth` is used for subsequent evaluations of the estimated density. Parameters ---------- bw_method : str, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar, this will be used directly as `kde.factor`. If a callable, it should take a `gaussian_kde` instance as only parameter and return a scalar. If None (default), nothing happens; the current `kde.covariance_factor` method is kept. Notes ----- .. versionadded:: 0.11 Examples -------- >>> import scipy.stats as stats >>> x1 = np.array([-7, -5, 1, 4, 5.]) >>> kde = stats.gaussian_kde(x1) >>> xs = np.linspace(-10, 10, num=50) >>> y1 = kde(xs) >>> kde.set_bandwidth(bw_method='silverman') >>> y2 = kde(xs) >>> kde.set_bandwidth(bw_method=kde.factor / 3.) >>> y3 = kde(xs) >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> ax.plot(x1, np.ones(x1.shape) / (4. * x1.size), 'bo', ... label='Data points (rescaled)') >>> ax.plot(xs, y1, label='Scott (default)') >>> ax.plot(xs, y2, label='Silverman') >>> ax.plot(xs, y3, label='Const (1/3 * Silverman)') >>> ax.legend() >>> plt.show() """ if bw_method is None: pass elif bw_method == 'scott': self.covariance_factor = self.scotts_factor elif bw_method == 'silverman': self.covariance_factor = self.silverman_factor elif np.isscalar(bw_method) and not isinstance(bw_method, string_types): self._bw_method = 'use constant' self.covariance_factor = lambda: bw_method elif callable(bw_method): self._bw_method = bw_method self.covariance_factor = lambda: self._bw_method(self) else: msg = "`bw_method` should be 'scott', 'silverman', a scalar " \ "or a callable." raise ValueError(msg) self._compute_covariance()
def _init_function(self, r): if isinstance(self.function, str): self.function = self.function.lower() _mapped = { 'inverse': 'inverse_multiquadric', 'inverse multiquadric': 'inverse_multiquadric', 'thin-plate': 'thin_plate' } if self.function in _mapped: self.function = _mapped[self.function] func_name = "_h_" + self.function if hasattr(self, func_name): self._function = getattr(self, func_name) else: functionlist = [ x[3:] for x in dir(self) if x.startswith('_h_') ] raise ValueError("function must be a callable or one of " + ", ".join(functionlist)) self._function = getattr(self, "_h_" + self.function) elif callable(self.function): allow_one = False if hasattr(self.function, 'func_code') or \ hasattr(self.function, '__code__'): val = self.function allow_one = True elif hasattr(self.function, "im_func"): val = get_method_function(self.function) elif hasattr(self.function, "__call__"): val = get_method_function(self.function.__call__) else: raise ValueError( "Cannot determine number of arguments to function") argcount = get_function_code(val).co_argcount if allow_one and argcount == 1: self._function = self.function elif argcount == 2: if sys.version_info[0] >= 3: self._function = self.function.__get__(self, Rbf_poly_bias) else: import new self._function = new.instancemethod( self.function, self, Rbf_poly_bias) else: raise ValueError( "Function argument must take 1 or 2 arguments.") a0 = self._function(r) if a0.shape != r.shape: raise ValueError( "Callable must take array and return array of the same shape") return a0
def _init_function(self, r): if isinstance(self.function, str): self.function = self.function.lower() _mapped = {'inverse': 'inverse_multiquadric', 'inverse multiquadric': 'inverse_multiquadric', 'thin-plate': 'thin_plate'} if self.function in _mapped: self.function = _mapped[self.function] func_name = "_h_" + self.function if hasattr(self, func_name): self._function = getattr(self, func_name) else: functionlist = [x[3:] for x in dir(self) if x.startswith('_h_')] raise ValueError("function must be a callable or one of " + ", ".join(functionlist)) self._function = getattr(self, "_h_"+self.function) elif callable(self.function): allow_one = False if hasattr(self.function, 'func_code') or \ hasattr(self.function, '__code__'): val = self.function allow_one = True elif hasattr(self.function, "im_func"): val = get_method_function(self.function) elif hasattr(self.function, "__call__"): val = get_method_function(self.function.__call__) else: raise ValueError("Cannot determine number of arguments to " "function") argcount = get_function_code(val).co_argcount if allow_one and argcount == 1: self._function = self.function elif argcount == 2: if sys.version_info[0] >= 3: self._function = self.function.__get__(self, Rbf) else: import new self._function = new.instancemethod(self.function, self, Rbf) else: raise ValueError("Function argument must take 1 or 2 " "arguments.") a0 = self._function(r) if a0.shape != r.shape: raise ValueError("Callable must take array and return array of " "the same shape") return a0
def _select_function(sort): if callable(sort): # assume the user knows what they're doing sfunction = sort elif sort == 'lhp': sfunction = lambda x, y: (np.real(x/y) < 0.0) elif sort == 'rhp': sfunction = lambda x, y: (np.real(x/y) > 0.0) elif sort == 'iuc': sfunction = lambda x, y: (abs(x/y) < 1.0) elif sort == 'ouc': sfunction = lambda x, y: (abs(x/y) > 1.0) else: raise ValueError("sort parameter must be None, a callable, or " "one of ('lhp','rhp','iuc','ouc')") return sfunction
def _select_function(sort): if callable(sort): # assume the user knows what they're doing sfunction = sort elif sort == 'lhp': sfunction = lambda x, y: (np.real(x / y) < 0.0) elif sort == 'rhp': sfunction = lambda x, y: (np.real(x / y) > 0.0) elif sort == 'iuc': sfunction = lambda x, y: (abs(x / y) < 1.0) elif sort == 'ouc': sfunction = lambda x, y: (abs(x / y) > 1.0) else: raise ValueError("sort parameter must be None, a callable, or " "one of ('lhp','rhp','iuc','ouc')") return sfunction
def _select_function(sort): if callable(sort): # assume the user knows what they're doing sfunction = sort elif sort == 'lhp': sfunction = _lhp elif sort == 'rhp': sfunction = _rhp elif sort == 'iuc': sfunction = _iuc elif sort == 'ouc': sfunction = _ouc else: raise ValueError("sort parameter must be None, a callable, or " "one of ('lhp','rhp','iuc','ouc')") return sfunction
def set_bandwidth(self, bw_method=None): """Compute the estimator bandwidth with given method. The new bandwidth calculated after a call to `set_bandwidth` is used for subsequent evaluations of the estimated density. Parameters ---------- bw_method : str, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar, this will be used directly as `kde.factor`. If a callable, it should take a `gaussian_kde` instance as only parameter and return a scalar. If None (default), nothing happens; the current `kde.covariance_factor` method is kept. """ if bw_method is None: pass elif bw_method == 'scott': self.covariance_factor = self.scotts_factor elif bw_method == 'silverman': self.covariance_factor = self.silverman_factor elif np.isscalar(bw_method) and not isinstance(bw_method, string_types): self._bw_method = 'use constant' self.covariance_factor = lambda: bw_method elif callable(bw_method): self._bw_method = bw_method self.covariance_factor = lambda: self._bw_method(self) else: msg = "`bw_method` should be 'scott', 'silverman', a scalar " \ "or a callable." raise ValueError(msg) self._compute_covariance()
def root_scalar(f, args=(), method=None, bracket=None, fprime=None, fprime2=None, x0=None, x1=None, xtol=None, rtol=None, maxiter=None, options=None): """ Find a root of a scalar function. Parameters ---------- f : callable A function to find a root of. args : tuple, optional Extra arguments passed to the objective function and its derivative(s). method : str, optional Type of solver. Should be one of - 'bisect' :ref:`(see here) <optimize.root_scalar-bisect>` - 'brentq' :ref:`(see here) <optimize.root_scalar-brentq>` - 'brenth' :ref:`(see here) <optimize.root_scalar-brenth>` - 'ridder' :ref:`(see here) <optimize.root_scalar-ridder>` - 'toms748' :ref:`(see here) <optimize.root_scalar-toms748>` - 'newton' :ref:`(see here) <optimize.root_scalar-newton>` - 'secant' :ref:`(see here) <optimize.root_scalar-secant>` - 'halley' :ref:`(see here) <optimize.root_scalar-halley>` bracket: A sequence of 2 floats, optional An interval bracketing a root. `f(x, *args)` must have different signs at the two endpoints. x0 : float, optional Initial guess. x1 : float, optional A second guess. fprime : bool or callable, optional If `fprime` is a boolean and is True, `f` is assumed to return the value of derivative along with the objective function. `fprime` can also be a callable returning the derivative of `f`. In this case, it must accept the same arguments as `f`. fprime2 : bool or callable, optional If `fprime2` is a boolean and is True, `f` is assumed to return the value of 1st and 2nd derivatives along with the objective function. `fprime2` can also be a callable returning the 2nd derivative of `f`. In this case, it must accept the same arguments as `f`. xtol : float, optional Tolerance (absolute) for termination. rtol : float, optional Tolerance (relative) for termination. maxiter : int, optional Maximum number of iterations. options : dict, optional A dictionary of solver options. E.g. ``k``, see :obj:`show_options()` for details. Returns ------- sol : RootResults The solution represented as a ``RootResults`` object. Important attributes are: ``root`` the solution , ``converged`` a boolean flag indicating if the algorithm exited successfully and ``flag`` which describes the cause of the termination. See `RootResults` for a description of other attributes. See also -------- show_options : Additional options accepted by the solvers root : Find a root of a vector function. Notes ----- This section describes the available solvers that can be selected by the 'method' parameter. The default is to use the best method available for the situation presented. If a bracket is provided, it may use one of the bracketing methods. If a derivative and an initial value are specified, it may select one of the derivative-based methods. If no method is judged applicable, it will raise an Exception. Examples -------- Find the root of a simple cubic >>> from scipy import optimize >>> def f(x): ... return (x**3 - 1) # only one real root at x = 1 >>> def fprime(x): ... return 3*x**2 The `brentq` method takes as input a bracket >>> sol = optimize.root_scalar(f, bracket=[0, 3], method='brentq') >>> sol.root, sol.iterations, sol.function_calls (1.0, 10, 11) The `newton` method takes as input a single point and uses the derivative(s) >>> sol = optimize.root_scalar(f, x0=0.2, fprime=fprime, method='newton') >>> sol.root, sol.iterations, sol.function_calls (1.0, 11, 22) The function can provide the value and derivative(s) in a single call. >>> def f_p_pp(x): ... return (x**3 - 1), 3*x**2, 6*x >>> sol = optimize.root_scalar(f_p_pp, x0=0.2, fprime=True, method='newton') >>> sol.root, sol.iterations, sol.function_calls (1.0, 11, 11) >>> sol = optimize.root_scalar(f_p_pp, x0=0.2, fprime=True, fprime2=True, method='halley') >>> sol.root, sol.iterations, sol.function_calls (1.0, 7, 8) """ if not isinstance(args, tuple): args = (args, ) if options is None: options = {} # fun also returns the derivative(s) is_memoized = False if fprime2 is not None and not callable(fprime2): if bool(fprime2): f = MemoizeDer(f) is_memoized = True fprime2 = f.fprime2 fprime = f.fprime else: fprime2 = None if fprime is not None and not callable(fprime): if bool(fprime): f = MemoizeDer(f) is_memoized = True fprime = f.fprime else: fprime = None # respect solver-specific default tolerances - only pass in if actually set kwargs = {} for k in ['xtol', 'rtol', 'maxiter']: v = locals().get(k) if v is not None: kwargs[k] = v # Set any solver-specific options if options: kwargs.update(options) # Always request full_output from the underlying method as _root_scalar # always returns a RootResults object kwargs.update(full_output=True, disp=False) # Pick a method if not specified. # Use the "best" method available for the situation. if not method: if bracket: method = 'brentq' elif x0 is not None: if fprime: if fprime2: method = 'halley' else: method = 'newton' else: method = 'secant' if not method: raise ValueError('Unable to select a solver as neither bracket ' 'nor starting point provided.') meth = method.lower() map2underlying = {'halley': 'newton', 'secant': 'newton'} try: methodc = getattr(optzeros, map2underlying.get(meth, meth)) except AttributeError: raise ValueError('Unknown solver %s' % meth) if meth in ['bisect', 'ridder', 'brentq', 'brenth', 'toms748']: if not isinstance(bracket, (list, tuple, np.ndarray)): raise ValueError('Bracket needed for %s' % method) a, b = bracket[:2] r, sol = methodc(f, a, b, args=args, **kwargs) elif meth in ['secant']: if x0 is None: raise ValueError('x0 must not be None for %s' % method) if x1 is None: raise ValueError('x1 must not be None for %s' % method) if 'xtol' in kwargs: kwargs['tol'] = kwargs.pop('xtol') r, sol = methodc(f, x0, args=args, fprime=None, fprime2=None, x1=x1, **kwargs) elif meth in ['newton']: if x0 is None: raise ValueError('x0 must not be None for %s' % method) if not fprime: raise ValueError('fprime must be specified for %s' % method) if 'xtol' in kwargs: kwargs['tol'] = kwargs.pop('xtol') r, sol = methodc(f, x0, args=args, fprime=fprime, fprime2=None, **kwargs) elif meth in ['halley']: if x0 is None: raise ValueError('x0 must not be None for %s' % method) if not fprime: raise ValueError('fprime must be specified for %s' % method) if not fprime2: raise ValueError('fprime2 must be specified for %s' % method) if 'xtol' in kwargs: kwargs['tol'] = kwargs.pop('xtol') r, sol = methodc(f, x0, args=args, fprime=fprime, fprime2=fprime2, **kwargs) else: raise ValueError('Unknown solver %s' % method) if is_memoized: # Replace the function_calls count with the memoized count. # Avoids double and triple-counting. n_calls = f.n_calls sol.function_calls = n_calls return sol
def cdist(XA, XB, metric='euclidean', *args, **kwargs): """ """ kwargs = _args_to_kwargs_xdist(args, kwargs, metric, "cdist") XA = np.asarray(XA, order='c') XB = np.asarray(XB, order='c') # The C code doesn't do striding. XA = _copy_array_if_base_present(XA) XB = _copy_array_if_base_present(XB) s = XA.shape sB = XB.shape if len(s) != 2: raise ValueError('XA must be a 2-dimensional array.') if len(sB) != 2: raise ValueError('XB must be a 2-dimensional array.') if s[1] != sB[1]: raise ValueError('XA and XB must have the same number of columns ' '(i.e. feature dimension.)') mA = s[0] mB = sB[0] n = s[1] out = kwargs.pop("out", None) if out is None: dm = np.empty((mA, mB), dtype=np.double) else: if out.shape != (mA, mB): raise ValueError("Output array has incorrect shape.") if not out.flags.c_contiguous: raise ValueError("Output array must be C-contiguous.") if out.dtype != np.double: raise ValueError("Output array must be double type.") dm = out # compute blacklist for deprecated kwargs if(metric in _METRICS['minkowski'].aka or metric in _METRICS['wminkowski'].aka or metric in ['test_minkowski'] or metric in [minkowski]): kwargs_blacklist = ["V", "VI"] elif(metric in _METRICS['seuclidean'].aka or metric == 'test_seuclidean' or metric == seuclidean): kwargs_blacklist = ["p", "w", "VI"] elif(metric in _METRICS['mahalanobis'].aka or metric == 'test_mahalanobis' or metric == mahalanobis): kwargs_blacklist = ["p", "w", "V"] else: kwargs_blacklist = ["p", "V", "VI"] _filter_deprecated_kwargs(kwargs, kwargs_blacklist) if callable(metric): mstr = getattr(metric, '__name__', 'Unknown') metric_name = _METRIC_ALIAS.get(mstr, None) XA, XB, typ, kwargs = _validate_cdist_input(XA, XB, mA, mB, n, metric_name, **kwargs) for i in xrange(0, mA): for j in xrange(0, mB): dm[i, j] = metric(XA[i], XB[j], **kwargs) elif isinstance(metric, string_types): mstr = metric.lower() # NOTE: C-version still does not support weights if "w" in kwargs and not mstr.startswith("test_"): if(mstr in _METRICS['seuclidean'].aka or mstr in _METRICS['mahalanobis'].aka): raise ValueError("metric %s incompatible with weights" % mstr) # need to use python version for weighting kwargs['out'] = out mstr = "test_%s" % mstr metric_name = _METRIC_ALIAS.get(mstr, None) if metric_name is not None: XA, XB, typ, kwargs = _validate_cdist_input(XA, XB, mA, mB, n, metric_name, **kwargs) # get cdist wrapper cdist_fn = getattr(_distance_wrap, "cdist_%s_%s_wrap" % (metric_name, typ)) cdist_fn(XA, XB, dm, **kwargs) return dm elif mstr.startswith("test_"): if mstr in _TEST_METRICS: dm = cdist(XA, XB, _TEST_METRICS[mstr], **kwargs) else: raise ValueError('Unknown "Test" Distance Metric: %s' % mstr[5:]) else: raise ValueError('Unknown Distance Metric: %s' % mstr) else: raise TypeError('2nd argument metric must be a string identifier ' 'or a function.') return dm
def cdist(XA, XB, metric='euclidean', p=None, V=None, VI=None, w=None, out=None): """ Computes distance between each pair of the two collections of inputs. See Notes for common calling conventions. Parameters ---------- XA : ndarray An :math:`m_A` by :math:`n` array of :math:`m_A` original observations in an :math:`n`-dimensional space. Inputs are converted to float type. XB : ndarray An :math:`m_B` by :math:`n` array of :math:`m_B` original observations in an :math:`n`-dimensional space. Inputs are converted to float type. metric : str or callable, optional The distance metric to use. If a string, the distance function can be 'braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'wminkowski', 'yule'. p : double, optional The p-norm to apply Only for Minkowski, weighted and unweighted. Default: 2. w : ndarray, optional The weight vector. Only for weighted Minkowski. Mandatory V : ndarray, optional The variance vector Only for standardized Euclidean. Default: var(vstack([XA, XB]), axis=0, ddof=1) VI : ndarray, optional The inverse of the covariance matrix Only for Mahalanobis. Default: inv(cov(vstack([XA, XB]).T)).T out : ndarray, optional If not None, the distance matrix Y is stored in this array Returns ------- Y : ndarray A :math:`m_A` by :math:`m_B` distance matrix is returned. For each :math:`i` and :math:`j`, the metric ``dist(u=XA[i], v=XB[j])`` is computed and stored in the :math:`ij` th entry. Raises ------ ValueError An exception is thrown if `XA` and `XB` do not have the same number of columns. Notes ----- The following are common calling conventions: 1. ``Y = cdist(XA, XB, 'euclidean')`` Computes the distance between :math:`m` points using Euclidean distance (2-norm) as the distance metric between the points. The points are arranged as :math:`m` :math:`n`-dimensional row vectors in the matrix X. 2. ``Y = cdist(XA, XB, 'minkowski', p)`` Computes the distances using the Minkowski distance :math:`||u-v||_p` (:math:`p`-norm) where :math:`p \\geq 1`. 3. ``Y = cdist(XA, XB, 'cityblock')`` Computes the city block or Manhattan distance between the points. 4. ``Y = cdist(XA, XB, 'seuclidean', V=None)`` Computes the standardized Euclidean distance. The standardized Euclidean distance between two n-vectors ``u`` and ``v`` is .. math:: \\sqrt{\\sum {(u_i-v_i)^2 / V[x_i]}}. V is the variance vector; V[i] is the variance computed over all the i'th components of the points. If not passed, it is automatically computed. 5. ``Y = cdist(XA, XB, 'sqeuclidean')`` Computes the squared Euclidean distance :math:`||u-v||_2^2` between the vectors. 6. ``Y = cdist(XA, XB, 'cosine')`` Computes the cosine distance between vectors u and v, .. math:: 1 - \\frac{u \\cdot v} {{||u||}_2 {||v||}_2} where :math:`||*||_2` is the 2-norm of its argument ``*``, and :math:`u \\cdot v` is the dot product of :math:`u` and :math:`v`. 7. ``Y = cdist(XA, XB, 'correlation')`` Computes the correlation distance between vectors u and v. This is .. math:: 1 - \\frac{(u - \\bar{u}) \\cdot (v - \\bar{v})} {{||(u - \\bar{u})||}_2 {||(v - \\bar{v})||}_2} where :math:`\\bar{v}` is the mean of the elements of vector v, and :math:`x \\cdot y` is the dot product of :math:`x` and :math:`y`. 8. ``Y = cdist(XA, XB, 'hamming')`` Computes the normalized Hamming distance, or the proportion of those vector elements between two n-vectors ``u`` and ``v`` which disagree. To save memory, the matrix ``X`` can be of type boolean. 9. ``Y = cdist(XA, XB, 'jaccard')`` Computes the Jaccard distance between the points. Given two vectors, ``u`` and ``v``, the Jaccard distance is the proportion of those elements ``u[i]`` and ``v[i]`` that disagree where at least one of them is non-zero. 10. ``Y = cdist(XA, XB, 'chebyshev')`` Computes the Chebyshev distance between the points. The Chebyshev distance between two n-vectors ``u`` and ``v`` is the maximum norm-1 distance between their respective elements. More precisely, the distance is given by .. math:: d(u,v) = \\max_i {|u_i-v_i|}. 11. ``Y = cdist(XA, XB, 'canberra')`` Computes the Canberra distance between the points. The Canberra distance between two points ``u`` and ``v`` is .. math:: d(u,v) = \\sum_i \\frac{|u_i-v_i|} {|u_i|+|v_i|}. 12. ``Y = cdist(XA, XB, 'braycurtis')`` Computes the Bray-Curtis distance between the points. The Bray-Curtis distance between two points ``u`` and ``v`` is .. math:: d(u,v) = \\frac{\\sum_i (|u_i-v_i|)} {\\sum_i (|u_i+v_i|)} 13. ``Y = cdist(XA, XB, 'mahalanobis', VI=None)`` Computes the Mahalanobis distance between the points. The Mahalanobis distance between two points ``u`` and ``v`` is :math:`\\sqrt{(u-v)(1/V)(u-v)^T}` where :math:`(1/V)` (the ``VI`` variable) is the inverse covariance. If ``VI`` is not None, ``VI`` will be used as the inverse covariance matrix. 14. ``Y = cdist(XA, XB, 'yule')`` Computes the Yule distance between the boolean vectors. (see `yule` function documentation) 15. ``Y = cdist(XA, XB, 'matching')`` Synonym for 'hamming'. 16. ``Y = cdist(XA, XB, 'dice')`` Computes the Dice distance between the boolean vectors. (see `dice` function documentation) 17. ``Y = cdist(XA, XB, 'kulsinski')`` Computes the Kulsinski distance between the boolean vectors. (see `kulsinski` function documentation) 18. ``Y = cdist(XA, XB, 'rogerstanimoto')`` Computes the Rogers-Tanimoto distance between the boolean vectors. (see `rogerstanimoto` function documentation) 19. ``Y = cdist(XA, XB, 'russellrao')`` Computes the Russell-Rao distance between the boolean vectors. (see `russellrao` function documentation) 20. ``Y = cdist(XA, XB, 'sokalmichener')`` Computes the Sokal-Michener distance between the boolean vectors. (see `sokalmichener` function documentation) 21. ``Y = cdist(XA, XB, 'sokalsneath')`` Computes the Sokal-Sneath distance between the vectors. (see `sokalsneath` function documentation) 22. ``Y = cdist(XA, XB, 'wminkowski')`` Computes the weighted Minkowski distance between the vectors. (see `wminkowski` function documentation) 23. ``Y = cdist(XA, XB, f)`` Computes the distance between all pairs of vectors in X using the user supplied 2-arity function f. For example, Euclidean distance between the vectors could be computed as follows:: dm = cdist(XA, XB, lambda u, v: np.sqrt(((u-v)**2).sum())) Note that you should avoid passing a reference to one of the distance functions defined in this library. For example,:: dm = cdist(XA, XB, sokalsneath) would calculate the pair-wise distances between the vectors in X using the Python function `sokalsneath`. This would result in sokalsneath being called :math:`{n \\choose 2}` times, which is inefficient. Instead, the optimized C version is more efficient, and we call it using the following syntax:: dm = cdist(XA, XB, 'sokalsneath') Examples -------- Find the Euclidean distances between four 2-D coordinates: >>> from scipy.spatial import distance >>> coords = [(35.0456, -85.2672), ... (35.1174, -89.9711), ... (35.9728, -83.9422), ... (36.1667, -86.7833)] >>> distance.cdist(coords, coords, 'euclidean') array([[ 0. , 4.7044, 1.6172, 1.8856], [ 4.7044, 0. , 6.0893, 3.3561], [ 1.6172, 6.0893, 0. , 2.8477], [ 1.8856, 3.3561, 2.8477, 0. ]]) Find the Manhattan distance from a 3-D point to the corners of the unit cube: >>> a = np.array([[0, 0, 0], ... [0, 0, 1], ... [0, 1, 0], ... [0, 1, 1], ... [1, 0, 0], ... [1, 0, 1], ... [1, 1, 0], ... [1, 1, 1]]) >>> b = np.array([[ 0.1, 0.2, 0.4]]) >>> distance.cdist(a, b, 'cityblock') array([[ 0.7], [ 0.9], [ 1.3], [ 1.5], [ 1.5], [ 1.7], [ 2.1], [ 2.3]]) """ # You can also call this as: # Y = cdist(XA, XB, 'test_abc') # where 'abc' is the metric being tested. This computes the distance # between all pairs of vectors in XA and XB using the distance metric 'abc' # but with a more succinct, verifiable, but less efficient implementation. # Store input arguments to check whether we can modify later. input_XA, input_XB = XA, XB XA = np.asarray(XA, order='c') XB = np.asarray(XB, order='c') # The C code doesn't do striding. XA = _copy_array_if_base_present(XA) XB = _copy_array_if_base_present(XB) s = XA.shape sB = XB.shape if len(s) != 2: raise ValueError('XA must be a 2-dimensional array.') if len(sB) != 2: raise ValueError('XB must be a 2-dimensional array.') if s[1] != sB[1]: raise ValueError('XA and XB must have the same number of columns ' '(i.e. feature dimension.)') mA = s[0] mB = sB[0] n = s[1] if out is None: dm = np.zeros((mA, mB), dtype=np.double) else: if out.shape != (mA, mB): raise ValueError("Output array has wrong dimension.") if not out.flags.c_contiguous: raise ValueError("Output array must be C-contiguous.") if out.dtype != np.double: raise ValueError("Output array must be double type.") dm = out # validate input for multi-args metrics if (metric in ['minkowski', 'mi', 'm', 'pnorm', 'test_minkowski'] or metric == minkowski): p = _validate_minkowski_args(p) _filter_deprecated_kwargs(w=w, V=V, VI=VI) elif (metric in ['wminkowski', 'wmi', 'wm', 'wpnorm', 'test_wminkowski'] or metric == wminkowski): p, w = _validate_wminkowski_args(p, w) _filter_deprecated_kwargs(V=V, VI=VI) elif (metric in ['seuclidean', 'se', 's', 'test_seuclidean'] or metric == seuclidean): V = _validate_seuclidean_args(np.vstack([XA, XB]), n, V) _filter_deprecated_kwargs(p=p, w=w, VI=VI) elif (metric in ['mahalanobis', 'mahal', 'mah', 'test_mahalanobis'] or metric == mahalanobis): VI = _validate_mahalanobis_args(np.vstack([XA, XB]), mA + mB, n, VI) _filter_deprecated_kwargs(p=p, w=w, V=V) else: _filter_deprecated_kwargs(p=p, w=w, V=V, VI=VI) if callable(metric): # metrics that expects only doubles: if metric in [ braycurtis, canberra, chebyshev, cityblock, correlation, cosine, euclidean, mahalanobis, minkowski, sqeuclidean, seuclidean, wminkowski ]: XA = _convert_to_double(XA) XB = _convert_to_double(XB) # metrics that expects only bools: elif metric in [ dice, kulsinski, rogerstanimoto, russellrao, sokalmichener, sokalsneath, yule ]: XA = _convert_to_bool(XA) XB = _convert_to_bool(XB) # metrics that may receive multiple types: elif metric in [matching, hamming, jaccard]: if XA.dtype == bool: XA = _convert_to_bool(XA) XB = _convert_to_bool(XB) else: XA = _convert_to_double(XA) XB = _convert_to_double(XB) # metrics that expects multiple args if metric == minkowski: metric = partial(minkowski, p=p) elif metric == wminkowski: metric = partial(wminkowski, p=p, w=w) elif metric == seuclidean: metric = partial(seuclidean, V=V) elif metric == mahalanobis: metric = partial(mahalanobis, VI=VI) for i in xrange(0, mA): for j in xrange(0, mB): dm[i, j] = metric(XA[i, :], XB[j, :]) elif isinstance(metric, string_types): mstr = metric.lower() try: validate, cdist_fn = _SIMPLE_CDIST[mstr] XA = validate(XA) XB = validate(XB) cdist_fn(XA, XB, dm) return dm except KeyError: pass if mstr in ['matching', 'hamming', 'hamm', 'ha', 'h']: if XA.dtype == bool: XA = _convert_to_bool(XA) XB = _convert_to_bool(XB) _distance_wrap.cdist_hamming_bool_wrap(XA, XB, dm) else: XA = _convert_to_double(XA) XB = _convert_to_double(XB) _distance_wrap.cdist_hamming_wrap(XA, XB, dm) elif mstr in ['jaccard', 'jacc', 'ja', 'j']: if XA.dtype == bool: XA = _convert_to_bool(XA) XB = _convert_to_bool(XB) _distance_wrap.cdist_jaccard_bool_wrap(XA, XB, dm) else: XA = _convert_to_double(XA) XB = _convert_to_double(XB) _distance_wrap.cdist_jaccard_wrap(XA, XB, dm) elif mstr in ['minkowski', 'mi', 'm', 'pnorm']: XA = _convert_to_double(XA) XB = _convert_to_double(XB) _distance_wrap.cdist_minkowski_wrap(XA, XB, dm, p=p) elif mstr in ['wminkowski', 'wmi', 'wm', 'wpnorm']: XA = _convert_to_double(XA) XB = _convert_to_double(XB) _distance_wrap.cdist_weighted_minkowski_wrap(XA, XB, dm, p=p, w=w) elif mstr in ['seuclidean', 'se', 's']: XA = _convert_to_double(XA) XB = _convert_to_double(XB) _distance_wrap.cdist_seuclidean_wrap(XA, XB, dm, V=V) elif mstr in ['cosine', 'cos']: XA = _convert_to_double(XA) XB = _convert_to_double(XB) _cosine_cdist(XA, XB, dm) elif mstr in ['correlation', 'co']: XA = _convert_to_double(XA) XB = _convert_to_double(XB) XA = XA.copy() if XA is input_XA else XA XB = XB.copy() if XB is input_XB else XB XA -= XA.mean(axis=1)[:, np.newaxis] XB -= XB.mean(axis=1)[:, np.newaxis] _cosine_cdist(XA, XB, dm) elif mstr in ['mahalanobis', 'mahal', 'mah']: XA = _convert_to_double(XA) XB = _convert_to_double(XB) # sqrt((u-v)V^(-1)(u-v)^T) _distance_wrap.cdist_mahalanobis_wrap(XA, XB, dm, VI=VI) elif mstr.startswith("test_"): if mstr in _TEST_METRICS: kwargs = {"p": p, "w": w, "V": V, "VI": VI} dm = cdist(XA, XB, _TEST_METRICS[mstr], **kwargs) else: raise ValueError('Unknown "Test" Distance Metric: %s' % mstr[5:]) else: raise ValueError('Unknown Distance Metric: %s' % mstr) else: raise TypeError('2nd argument metric must be a string identifier ' 'or a function.') return dm
def asjacobian(J): """ Convert given object to one suitable for use as a Jacobian. """ spsolve = scipy.sparse.linalg.spsolve if isinstance(J, Jacobian): return J elif inspect.isclass(J) and issubclass(J, Jacobian): return J() elif isinstance(J, np.ndarray): if J.ndim > 2: raise ValueError('array must have rank <= 2') J = np.atleast_2d(np.asarray(J)) if J.shape[0] != J.shape[1]: raise ValueError('array must be square') return Jacobian(matvec=lambda v: dot(J, v), rmatvec=lambda v: dot(J.conj().T, v), solve=lambda v: solve(J, v), rsolve=lambda v: solve(J.conj().T, v), dtype=J.dtype, shape=J.shape) elif scipy.sparse.isspmatrix(J): if J.shape[0] != J.shape[1]: raise ValueError('matrix must be square') return Jacobian(matvec=lambda v: J * v, rmatvec=lambda v: J.conj().T * v, solve=lambda v: spsolve(J, v), rsolve=lambda v: spsolve(J.conj().T, v), dtype=J.dtype, shape=J.shape) elif hasattr(J, 'shape') and hasattr(J, 'dtype') and hasattr(J, 'solve'): return Jacobian(matvec=getattr(J, 'matvec'), rmatvec=getattr(J, 'rmatvec'), solve=J.solve, rsolve=getattr(J, 'rsolve'), update=getattr(J, 'update'), setup=getattr(J, 'setup'), dtype=J.dtype, shape=J.shape) elif callable(J): # Assume it's a function J(x) that returns the Jacobian class Jac(Jacobian): def update(self, x, F): self.x = x def solve(self, v, tol=0): m = J(self.x) if isinstance(m, np.ndarray): return solve(m, v) elif scipy.sparse.isspmatrix(m): return spsolve(m, v) else: raise ValueError("Unknown matrix type") def matvec(self, v): m = J(self.x) if isinstance(m, np.ndarray): return dot(m, v) elif scipy.sparse.isspmatrix(m): return m * v else: raise ValueError("Unknown matrix type") def rsolve(self, v, tol=0): m = J(self.x) if isinstance(m, np.ndarray): return solve(m.conj().T, v) elif scipy.sparse.isspmatrix(m): return spsolve(m.conj().T, v) else: raise ValueError("Unknown matrix type") def rmatvec(self, v): m = J(self.x) if isinstance(m, np.ndarray): return dot(m.conj().T, v) elif scipy.sparse.isspmatrix(m): return m.conj().T * v else: raise ValueError("Unknown matrix type") return Jac() elif isinstance(J, str): return dict(broyden1=BroydenFirst, broyden2=BroydenSecond, anderson=Anderson, diagbroyden=DiagBroyden, linearmixing=LinearMixing, excitingmixing=ExcitingMixing, krylov=KrylovJacobian)[J]() else: raise TypeError('Cannot convert object to a Jacobian')
def minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None): """Minimization of scalar function of one or more variables. Parameters ---------- fun : callable The objective function to be minimized. ``fun(x, *args) -> float`` where x is an 1-D array with shape (n,) and `args` is a tuple of the fixed parameters needed to completely specify the function. x0 : ndarray, shape (n,) Initial guess. Array of real elements of size (n,), where 'n' is the number of independent variables. args : tuple, optional Extra arguments passed to the objective function and its derivatives (`fun`, `jac` and `hess` functions). method : str or callable, optional Type of solver. Should be one of - 'Nelder-Mead' :ref:`(see here) <optimize.minimize-neldermead>` - 'Powell' :ref:`(see here) <optimize.minimize-powell>` - 'CG' :ref:`(see here) <optimize.minimize-cg>` - 'BFGS' :ref:`(see here) <optimize.minimize-bfgs>` - 'Newton-CG' :ref:`(see here) <optimize.minimize-newtoncg>` - 'L-BFGS-B' :ref:`(see here) <optimize.minimize-lbfgsb>` - 'TNC' :ref:`(see here) <optimize.minimize-tnc>` - 'COBYLA' :ref:`(see here) <optimize.minimize-cobyla>` - 'SLSQP' :ref:`(see here) <optimize.minimize-slsqp>` - 'trust-constr':ref:`(see here) <optimize.minimize-trustconstr>` - 'dogleg' :ref:`(see here) <optimize.minimize-dogleg>` - 'trust-ncg' :ref:`(see here) <optimize.minimize-trustncg>` - 'trust-exact' :ref:`(see here) <optimize.minimize-trustexact>` - 'trust-krylov' :ref:`(see here) <optimize.minimize-trustkrylov>` - custom - a callable object (added in version 0.14.0), see below for description. If not given, chosen to be one of ``BFGS``, ``L-BFGS-B``, ``SLSQP``, depending if the problem has constraints or bounds. jac : {callable, '2-point', '3-point', 'cs', bool}, optional Method for computing the gradient vector. Only for CG, BFGS, Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg, trust-krylov, trust-exact and trust-constr. If it is a callable, it should be a function that returns the gradient vector: ``jac(x, *args) -> array_like, shape (n,)`` where x is an array with shape (n,) and `args` is a tuple with the fixed parameters. Alternatively, the keywords {'2-point', '3-point', 'cs'} select a finite difference scheme for numerical estimation of the gradient. Options '3-point' and 'cs' are available only to 'trust-constr'. If `jac` is a Boolean and is True, `fun` is assumed to return the gradient along with the objective function. If False, the gradient will be estimated using '2-point' finite difference estimation. hess : {callable, '2-point', '3-point', 'cs', HessianUpdateStrategy}, optional Method for computing the Hessian matrix. Only for Newton-CG, dogleg, trust-ncg, trust-krylov, trust-exact and trust-constr. If it is callable, it should return the Hessian matrix: ``hess(x, *args) -> {LinearOperator, spmatrix, array}, (n, n)`` where x is a (n,) ndarray and `args` is a tuple with the fixed parameters. LinearOperator and sparse matrix returns are allowed only for 'trust-constr' method. Alternatively, the keywords {'2-point', '3-point', 'cs'} select a finite difference scheme for numerical estimation. Or, objects implementing `HessianUpdateStrategy` interface can be used to approximate the Hessian. Available quasi-Newton methods implementing this interface are: - `BFGS`; - `SR1`. Whenever the gradient is estimated via finite-differences, the Hessian cannot be estimated with options {'2-point', '3-point', 'cs'} and needs to be estimated using one of the quasi-Newton strategies. Finite-difference options {'2-point', '3-point', 'cs'} and `HessianUpdateStrategy` are available only for 'trust-constr' method. hessp : callable, optional Hessian of objective function times an arbitrary vector p. Only for Newton-CG, trust-ncg, trust-krylov, trust-constr. Only one of `hessp` or `hess` needs to be given. If `hess` is provided, then `hessp` will be ignored. `hessp` must compute the Hessian times an arbitrary vector: ``hessp(x, p, *args) -> ndarray shape (n,)`` where x is a (n,) ndarray, p is an arbitrary vector with dimension (n,) and `args` is a tuple with the fixed parameters. bounds : sequence or `Bounds`, optional Bounds on variables for L-BFGS-B, TNC, SLSQP and trust-constr methods. There are two ways to specify the bounds: 1. Instance of `Bounds` class. 2. Sequence of ``(min, max)`` pairs for each element in `x`. None is used to specify no bound. constraints : {Constraint, dict} or List of {Constraint, dict}, optional Constraints definition (only for COBYLA, SLSQP and trust-constr). Constraints for 'trust-constr' are defined as a single object or a list of objects specifying constraints to the optimization problem. Available constraints are: - `LinearConstraint` - `NonlinearConstraint` Constraints for COBYLA, SLSQP are defined as a list of dictionaries. Each dictionary with fields: type : str Constraint type: 'eq' for equality, 'ineq' for inequality. fun : callable The function defining the constraint. jac : callable, optional The Jacobian of `fun` (only for SLSQP). args : sequence, optional Extra arguments to be passed to the function and Jacobian. Equality constraint means that the constraint function result is to be zero whereas inequality means that it is to be non-negative. Note that COBYLA only supports inequality constraints. tol : float, optional Tolerance for termination. For detailed control, use solver-specific options. options : dict, optional A dictionary of solver options. All methods accept the following generic options: maxiter : int Maximum number of iterations to perform. disp : bool Set to True to print convergence messages. For method-specific options, see :func:`show_options()`. callback : callable, optional Called after each iteration. For 'trust-constr' it is a callable with the signature: ``callback(xk, OptimizeResult state) -> bool`` where ``xk`` is the current parameter vector. and ``state`` is an `OptimizeResult` object, with the same fields as the ones from the return. If callback returns True the algorithm execution is terminated. For all the other methods, the signature is: ``callback(xk)`` where ``xk`` is the current parameter vector. Returns ------- res : OptimizeResult The optimization result represented as a ``OptimizeResult`` object. Important attributes are: ``x`` the solution array, ``success`` a Boolean flag indicating if the optimizer exited successfully and ``message`` which describes the cause of the termination. See `OptimizeResult` for a description of other attributes. See also -------- minimize_scalar : Interface to minimization algorithms for scalar univariate functions show_options : Additional options accepted by the solvers Notes ----- This section describes the available solvers that can be selected by the 'method' parameter. The default method is *BFGS*. **Unconstrained minimization** Method :ref:`Nelder-Mead <optimize.minimize-neldermead>` uses the Simplex algorithm [1]_, [2]_. This algorithm is robust in many applications. However, if numerical computation of derivative can be trusted, other algorithms using the first and/or second derivatives information might be preferred for their better performance in general. Method :ref:`Powell <optimize.minimize-powell>` is a modification of Powell's method [3]_, [4]_ which is a conjugate direction method. It performs sequential one-dimensional minimizations along each vector of the directions set (`direc` field in `options` and `info`), which is updated at each iteration of the main minimization loop. The function need not be differentiable, and no derivatives are taken. Method :ref:`CG <optimize.minimize-cg>` uses a nonlinear conjugate gradient algorithm by Polak and Ribiere, a variant of the Fletcher-Reeves method described in [5]_ pp. 120-122. Only the first derivatives are used. Method :ref:`BFGS <optimize.minimize-bfgs>` uses the quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) [5]_ pp. 136. It uses the first derivatives only. BFGS has proven good performance even for non-smooth optimizations. This method also returns an approximation of the Hessian inverse, stored as `hess_inv` in the OptimizeResult object. Method :ref:`Newton-CG <optimize.minimize-newtoncg>` uses a Newton-CG algorithm [5]_ pp. 168 (also known as the truncated Newton method). It uses a CG method to the compute the search direction. See also *TNC* method for a box-constrained minimization with a similar algorithm. Suitable for large-scale problems. Method :ref:`dogleg <optimize.minimize-dogleg>` uses the dog-leg trust-region algorithm [5]_ for unconstrained minimization. This algorithm requires the gradient and Hessian; furthermore the Hessian is required to be positive definite. Method :ref:`trust-ncg <optimize.minimize-trustncg>` uses the Newton conjugate gradient trust-region algorithm [5]_ for unconstrained minimization. This algorithm requires the gradient and either the Hessian or a function that computes the product of the Hessian with a given vector. Suitable for large-scale problems. Method :ref:`trust-krylov <optimize.minimize-trustkrylov>` uses the Newton GLTR trust-region algorithm [14]_, [15]_ for unconstrained minimization. This algorithm requires the gradient and either the Hessian or a function that computes the product of the Hessian with a given vector. Suitable for large-scale problems. On indefinite problems it requires usually less iterations than the `trust-ncg` method and is recommended for medium and large-scale problems. Method :ref:`trust-exact <optimize.minimize-trustexact>` is a trust-region method for unconstrained minimization in which quadratic subproblems are solved almost exactly [13]_. This algorithm requires the gradient and the Hessian (which is *not* required to be positive definite). It is, in many situations, the Newton method to converge in fewer iteraction and the most recommended for small and medium-size problems. **Bound-Constrained minimization** Method :ref:`L-BFGS-B <optimize.minimize-lbfgsb>` uses the L-BFGS-B algorithm [6]_, [7]_ for bound constrained minimization. Method :ref:`TNC <optimize.minimize-tnc>` uses a truncated Newton algorithm [5]_, [8]_ to minimize a function with variables subject to bounds. This algorithm uses gradient information; it is also called Newton Conjugate-Gradient. It differs from the *Newton-CG* method described above as it wraps a C implementation and allows each variable to be given upper and lower bounds. **Constrained Minimization** Method :ref:`COBYLA <optimize.minimize-cobyla>` uses the Constrained Optimization BY Linear Approximation (COBYLA) method [9]_, [10]_, [11]_. The algorithm is based on linear approximations to the objective function and each constraint. The method wraps a FORTRAN implementation of the algorithm. The constraints functions 'fun' may return either a single number or an array or list of numbers. Method :ref:`SLSQP <optimize.minimize-slsqp>` uses Sequential Least SQuares Programming to minimize a function of several variables with any combination of bounds, equality and inequality constraints. The method wraps the SLSQP Optimization subroutine originally implemented by Dieter Kraft [12]_. Note that the wrapper handles infinite values in bounds by converting them into large floating values. Method :ref:`trust-constr <optimize.minimize-trustconstr>` is a trust-region algorithm for constrained optimization. It swiches between two implementations depending on the problem definition. It is the most versatile constrained minimization algorithm implemented in SciPy and the most appropriate for large-scale problems. For equality constrained problems it is an implementation of Byrd-Omojokun Trust-Region SQP method described in [17]_ and in [5]_, p. 549. When inequality constraints are imposed as well, it swiches to the trust-region interior point method described in [16]_. This interior point algorithm, in turn, solves inequality constraints by introducing slack variables and solving a sequence of equality-constrained barrier problems for progressively smaller values of the barrier parameter. The previously described equality constrained SQP method is used to solve the subproblems with increasing levels of accuracy as the iterate gets closer to a solution. **Finite-Difference Options** For Method :ref:`trust-constr <optimize.minimize-trustconstr>` the gradient and the Hessian may be approximated using three finite-difference schemes: {'2-point', '3-point', 'cs'}. The scheme 'cs' is, potentially, the most accurate but it requires the function to correctly handles complex inputs and to be differentiable in the complex plane. The scheme '3-point' is more accurate than '2-point' but requires twice as much operations. **Custom minimizers** It may be useful to pass a custom minimization method, for example when using a frontend to this method such as `scipy.optimize.basinhopping` or a different library. You can simply pass a callable as the ``method`` parameter. The callable is called as ``method(fun, x0, args, **kwargs, **options)`` where ``kwargs`` corresponds to any other parameters passed to `minimize` (such as `callback`, `hess`, etc.), except the `options` dict, which has its contents also passed as `method` parameters pair by pair. Also, if `jac` has been passed as a bool type, `jac` and `fun` are mangled so that `fun` returns just the function values and `jac` is converted to a function returning the Jacobian. The method shall return an `OptimizeResult` object. The provided `method` callable must be able to accept (and possibly ignore) arbitrary parameters; the set of parameters accepted by `minimize` may expand in future versions and then these parameters will be passed to the method. You can find an example in the scipy.optimize tutorial. .. versionadded:: 0.11.0 References ---------- .. [1] Nelder, J A, and R Mead. 1965. A Simplex Method for Function Minimization. The Computer Journal 7: 308-13. .. [2] Wright M H. 1996. Direct search methods: Once scorned, now respectable, in Numerical Analysis 1995: Proceedings of the 1995 Dundee Biennial Conference in Numerical Analysis (Eds. D F Griffiths and G A Watson). Addison Wesley Longman, Harlow, UK. 191-208. .. [3] Powell, M J D. 1964. An efficient method for finding the minimum of a function of several variables without calculating derivatives. The Computer Journal 7: 155-162. .. [4] Press W, S A Teukolsky, W T Vetterling and B P Flannery. Numerical Recipes (any edition), Cambridge University Press. .. [5] Nocedal, J, and S J Wright. 2006. Numerical Optimization. Springer New York. .. [6] Byrd, R H and P Lu and J. Nocedal. 1995. A Limited Memory Algorithm for Bound Constrained Optimization. SIAM Journal on Scientific and Statistical Computing 16 (5): 1190-1208. .. [7] Zhu, C and R H Byrd and J Nocedal. 1997. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization. ACM Transactions on Mathematical Software 23 (4): 550-560. .. [8] Nash, S G. Newton-Type Minimization Via the Lanczos Method. 1984. SIAM Journal of Numerical Analysis 21: 770-778. .. [9] Powell, M J D. A direct search optimization method that models the objective and constraint functions by linear interpolation. 1994. Advances in Optimization and Numerical Analysis, eds. S. Gomez and J-P Hennart, Kluwer Academic (Dordrecht), 51-67. .. [10] Powell M J D. Direct search algorithms for optimization calculations. 1998. Acta Numerica 7: 287-336. .. [11] Powell M J D. A view of algorithms for optimization without derivatives. 2007.Cambridge University Technical Report DAMTP 2007/NA03 .. [12] Kraft, D. A software package for sequential quadratic programming. 1988. Tech. Rep. DFVLR-FB 88-28, DLR German Aerospace Center -- Institute for Flight Mechanics, Koln, Germany. .. [13] Conn, A. R., Gould, N. I., and Toint, P. L. Trust region methods. 2000. Siam. pp. 169-200. .. [14] F. Lenders, C. Kirches, A. Potschka: "trlib: A vector-free implementation of the GLTR method for iterative solution of the trust region problem", https://arxiv.org/abs/1611.04718 .. [15] N. Gould, S. Lucidi, M. Roma, P. Toint: "Solving the Trust-Region Subproblem using the Lanczos Method", SIAM J. Optim., 9(2), 504--525, (1999). .. [16] Byrd, Richard H., Mary E. Hribar, and Jorge Nocedal. 1999. An interior point algorithm for large-scale nonlinear programming. SIAM Journal on Optimization 9.4: 877-900. .. [17] Lalee, Marucha, Jorge Nocedal, and Todd Plantega. 1998. On the implementation of an algorithm for large-scale equality constrained optimization. SIAM Journal on Optimization 8.3: 682-706. Examples -------- Let us consider the problem of minimizing the Rosenbrock function. This function (and its respective derivatives) is implemented in `rosen` (resp. `rosen_der`, `rosen_hess`) in the `scipy.optimize`. >>> from scipy.optimize import minimize, rosen, rosen_der A simple application of the *Nelder-Mead* method is: >>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2] >>> res = minimize(rosen, x0, method='Nelder-Mead', tol=1e-6) >>> res.x array([ 1., 1., 1., 1., 1.]) Now using the *BFGS* algorithm, using the first derivative and a few options: >>> res = minimize(rosen, x0, method='BFGS', jac=rosen_der, ... options={'gtol': 1e-6, 'disp': True}) Optimization terminated successfully. Current function value: 0.000000 Iterations: 26 Function evaluations: 31 Gradient evaluations: 31 >>> res.x array([ 1., 1., 1., 1., 1.]) >>> print(res.message) Optimization terminated successfully. >>> res.hess_inv array([[ 0.00749589, 0.01255155, 0.02396251, 0.04750988, 0.09495377], # may vary [ 0.01255155, 0.02510441, 0.04794055, 0.09502834, 0.18996269], [ 0.02396251, 0.04794055, 0.09631614, 0.19092151, 0.38165151], [ 0.04750988, 0.09502834, 0.19092151, 0.38341252, 0.7664427 ], [ 0.09495377, 0.18996269, 0.38165151, 0.7664427, 1.53713523]]) Next, consider a minimization problem with several constraints (namely Example 16.4 from [5]_). The objective function is: >>> fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2 There are three constraints defined as: >>> cons = ({'type': 'ineq', 'fun': lambda x: x[0] - 2 * x[1] + 2}, ... {'type': 'ineq', 'fun': lambda x: -x[0] - 2 * x[1] + 6}, ... {'type': 'ineq', 'fun': lambda x: -x[0] + 2 * x[1] + 2}) And variables must be positive, hence the following bounds: >>> bnds = ((0, None), (0, None)) The optimization problem is solved using the SLSQP method as: >>> res = minimize(fun, (2, 0), method='SLSQP', bounds=bnds, ... constraints=cons) It should converge to the theoretical solution (1.4 ,1.7). """ x0 = np.asarray(x0) if x0.dtype.kind in np.typecodes["AllInteger"]: x0 = np.asarray(x0, dtype=float) if not isinstance(args, tuple): args = (args,) if method is None: # Select automatically if constraints: method = 'SLSQP' elif bounds is not None: method = 'L-BFGS-B' else: method = 'BFGS' if callable(method): meth = "_custom" else: meth = method.lower() if options is None: options = {} # check if optional parameters are supported by the selected method # - jac if meth in ('nelder-mead', 'powell', 'cobyla') and bool(jac): warn('Method %s does not use gradient information (jac).' % method, RuntimeWarning) # - hess if meth not in ('newton-cg', 'dogleg', 'trust-ncg', 'trust-constr', 'trust-krylov', 'trust-exact', '_custom') and hess is not None: warn('Method %s does not use Hessian information (hess).' % method, RuntimeWarning) # - hessp if meth not in ('newton-cg', 'dogleg', 'trust-ncg', 'trust-constr', 'trust-krylov', '_custom') \ and hessp is not None: warn('Method %s does not use Hessian-vector product ' 'information (hessp).' % method, RuntimeWarning) # - constraints or bounds if (meth in ('nelder-mead', 'powell', 'cg', 'bfgs', 'newton-cg', 'dogleg', 'trust-ncg') and (bounds is not None or np.any(constraints))): warn('Method %s cannot handle constraints nor bounds.' % method, RuntimeWarning) if meth in ('l-bfgs-b', 'tnc') and np.any(constraints): warn('Method %s cannot handle constraints.' % method, RuntimeWarning) if meth == 'cobyla' and bounds is not None: warn('Method %s cannot handle bounds.' % method, RuntimeWarning) # - callback if (meth in ('cobyla',) and callback is not None): warn('Method %s does not support callback.' % method, RuntimeWarning) # - return_all if (meth in ('l-bfgs-b', 'tnc', 'cobyla', 'slsqp') and options.get('return_all', False)): warn('Method %s does not support the return_all option.' % method, RuntimeWarning) # check gradient vector if meth == 'trust-constr': if type(jac) is bool: if jac: fun = MemoizeJac(fun) jac = fun.derivative else: jac = '2-point' elif jac is None: jac = '2-point' elif not callable(jac) and jac not in ('2-point', '3-point', 'cs'): raise ValueError("Unsupported jac definition.") else: if jac in ('2-point', '3-point', 'cs'): if jac in ('3-point', 'cs'): warn("Only 'trust-constr' method accept %s " "options for 'jac'. Using '2-point' instead." % jac) jac = None elif not callable(jac): if bool(jac): fun = MemoizeJac(fun) jac = fun.derivative else: jac = None # set default tolerances if tol is not None: options = dict(options) if meth == 'nelder-mead': options.setdefault('xatol', tol) options.setdefault('fatol', tol) if meth in ('newton-cg', 'powell', 'tnc'): options.setdefault('xtol', tol) if meth in ('powell', 'l-bfgs-b', 'tnc', 'slsqp'): options.setdefault('ftol', tol) if meth in ('bfgs', 'cg', 'l-bfgs-b', 'tnc', 'dogleg', 'trust-ncg', 'trust-exact', 'trust-krylov'): options.setdefault('gtol', tol) if meth in ('cobyla', '_custom'): options.setdefault('tol', tol) if meth == 'trust-constr': options.setdefault('xtol', tol) options.setdefault('gtol', tol) options.setdefault('barrier_tol', tol) if bounds is not None: bounds = standardize_bounds(bounds, x0, meth) if constraints is not None: constraints = standardize_constraints(constraints, x0, meth) if meth == '_custom': return method(fun, x0, args=args, jac=jac, hess=hess, hessp=hessp, bounds=bounds, constraints=constraints, callback=callback, **options) elif meth == 'nelder-mead': return _minimize_neldermead(fun, x0, args, callback, **options) elif meth == 'powell': return _minimize_powell(fun, x0, args, callback, **options) elif meth == 'cg': return _minimize_cg(fun, x0, args, jac, callback, **options) elif meth == 'bfgs': return _minimize_bfgs(fun, x0, args, jac, callback, **options) elif meth == 'newton-cg': return _minimize_newtoncg(fun, x0, args, jac, hess, hessp, callback, **options) elif meth == 'l-bfgs-b': return _minimize_lbfgsb(fun, x0, args, jac, bounds, callback=callback, **options) elif meth == 'tnc': return _minimize_tnc(fun, x0, args, jac, bounds, callback=callback, **options) elif meth == 'cobyla': return _minimize_cobyla(fun, x0, args, constraints, **options) elif meth == 'slsqp': return _minimize_slsqp(fun, x0, args, jac, bounds, constraints, callback=callback, **options) elif meth == 'trust-constr': return _minimize_trustregion_constr(fun, x0, args, jac, hess, hessp, bounds, constraints, callback=callback, **options) elif meth == 'dogleg': return _minimize_dogleg(fun, x0, args, jac, hess, callback=callback, **options) elif meth == 'trust-ncg': return _minimize_trust_ncg(fun, x0, args, jac, hess, hessp, callback=callback, **options) elif meth == 'trust-krylov': return _minimize_trust_krylov(fun, x0, args, jac, hess, hessp, callback=callback, **options) elif meth == 'trust-exact': return _minimize_trustregion_exact(fun, x0, args, jac, hess, callback=callback, **options) else: raise ValueError('Unknown solver %s' % method)
def ssdist(XA, XB, indicesB, indptr, indicesA=None, metric="euclidean", p=None, V=None, VI=None, w=None, gap_open=None, gap_ext=None, mat=None, normalized=None, out=None): """ Computes sparse submatrix of distances between within/between collections of observations See Notes for common calling conventions. Parameters ---------- XA : ndarray An :math:`m_A` by :math:`n` array of :math:`m_A` original observations in an :math:`n`-dimensional space. Inputs are converted to float type. XB : ndarray An :math:`m_B` by :math:`n` array of :math:`m_B` original observations in an :math:`n`-dimensional space. Inputs are converted to float type. indices: ndarray An array of index pointers to rows in XB indptr: ndarray An array of length :math:`m_A + 1` metric : str or callable, optional The distance metric to use. If a string, the distance function can be "braycurtis", "canberra", "chebyshev", "cityblock", "correlation", "cosine", "dice", "euclidean", "hamming", "jaccard", "kulsinski", "mahalanobis", "matching", "minkowski", "rogerstanimoto", "russellrao", "seuclidean", "sokalmichener", "sokalsneath", "sqeuclidean", "wminkowski", "yule". p : double, optional The p-norm to apply Only for Minkowski, weighted and unweighted. Default: 2. w : ndarray, optional The weight vector. Only for weighted Minkowski. Mandatory V : ndarray, optional The variance vector Only for standardized Euclidean. Default: var(vstack([XA, XB]), axis=0, ddof=1) VI : ndarray, optional The inverse of the covariance matrix Only for Mahalanobis. Default: inv(cov(vstack([XA, XB]).T)).T Returns ------- Y : sparse matrix Sparse submatrix of distance matrix in csr format. Raises ------ ValueError An exception is thrown if `XA` and `XB` do not have the same number of columns. Notes ----- The following are common calling conventions: 1. ``Y = cdist(XA, XB, indptr, "euclidean")`` Computes the distance between points using Euclidean distance (2-norm) as the distance metric between the points. 2. ``Y = cdist(XA, XB, "minkowski", p)`` Computes the distances using the Minkowski distance :math:`||u-v||_p` (:math:`p`-norm) where :math:`p \\geq 1`. 3. ``Y = cdist(XA, XB, "cityblock")`` Computes the city block or Manhattan distance between the points. 4. ``Y = cdist(XA, XB, "seuclidean", V=None)`` Computes the standardized Euclidean The standardized Euclidean distance between two n-vectors ``u`` and ``v`` is .. math:: \\sqrt{\\sum {(u_i-v_i)^2 / V[x_i]}}. V is the variance vector; V[i] is the variance computed over all the i"th components of the points. If not passed, it is automatically computed. 5. ``Y = cdist(XA, XB, "sqeuclidean")`` Computes the squared Euclidean distance :math:`||u-v||_2^2` between the vectors. 6. ``Y = cdist(XA, XB, "cosine")`` Computes the cosine distance between vectors u and v, .. math:: 1 - \\frac{u \\cdot v} {{||u||}_2 {||v||}_2} where :math:`||*||_2` is the 2-norm of its argument ``*``, and :math:`u \\cdot v` is the dot product of :math:`u` and :math:`v`. 7. ``Y = cdist(XA, XB, indptr, indptr, "correlation")`` Computes the correlation distance between vectors u and v. This is .. math:: 1 - \\frac{(u - \\bar{u}) \\cdot (v - \\bar{v})} {{||(u - \\bar{u})||}_2 {||(v - \\bar{v})||}_2} where :math:`\\bar{v}` is the mean of the elements of vector v, and :math:`x \\cdot y` is the dot product of :math:`x` and :math:`y`. 8. ``Y = cdist(XA, XB, indptr, indptr, "hamming")`` Computes the normalized Hamming distance, or the proportion of those vector elements between two n-vectors ``u`` and ``v`` which disagree. To save memory, the matrix ``X`` can be of type boolean. 9. ``Y = cdist(XA, XB, indptr, "jaccard")`` Computes the Jaccard distance between the points. Given two vectors, ``u`` and ``v``, the Jaccard distance is the proportion of those elements ``u[i]`` and ``v[i]`` that disagree where at least one of them is non-zero. 10. ``Y = cdist(XA, XB, indptr, "chebyshev")`` Computes the Chebyshev distance between the points. The Chebyshev distance between two n-vectors ``u`` and ``v`` is the maximum norm-1 distance between their respective elements. More precisely, the distance is given by .. math:: d(u,v) = \\max_i {|u_i-v_i|}. 11. ``Y = cdist(XA, XB, indptr, "canberra")`` Computes the Canberra distance between the points. The Canberra distance between two points ``u`` and ``v`` is .. math:: d(u,v) = \\sum_i \\frac{|u_i-v_i|} {|u_i|+|v_i|}. 12. ``Y = cdist(XA, XB, indptr, "braycurtis")`` Computes the Bray-Curtis distance between the points. The Bray-Curtis distance between two points ``u`` and ``v`` is .. math:: d(u,v) = \\frac{\\sum_i (|u_i-v_i|)} {\\sum_i (|u_i+v_i|)} 13. ``Y = cdist(XA, XB, indptr, "mahalanobis", VI=None)`` Computes the Mahalanobis distance between the points. The Mahalanobis distance between two points ``u`` and ``v`` is :math:`\\sqrt{(u-v)(1/V)(u-v)^T}` where :math:`(1/V)` (the ``VI`` variable) is the inverse covariance. If ``VI`` is not None, ``VI`` will be used as the inverse covariance matrix. 14. ``Y = cdist(XA, XB, indptr, "yule")`` Computes the Yule distance between the boolean vectors. (see `yule` function documentation) 15. ``Y = cdist(XA, XB, indptr, "matching")`` Synonym for "hamming". 16. ``Y = cdist(XA, XB, indptr, "dice")`` Computes the Dice distance between the boolean vectors. (see `dice` function documentation) 17. ``Y = cdist(XA, XB, indptr, "kulsinski")`` Computes the Kulsinski distance between the boolean vectors. (see `kulsinski` function documentation) 18. ``Y = cdist(XA, XB, indptr, "rogerstanimoto")`` Computes the Rogers-Tanimoto distance between the boolean vectors. (see `rogerstanimoto` function documentation) 19. ``Y = cdist(XA, XB, indptr, "russellrao")`` Computes the Russell-Rao distance between the boolean vectors. (see `russellrao` function documentation) 20. ``Y = cdist(XA, XB, indptr, "sokalmichener")`` Computes the Sokal-Michener distance between the boolean vectors. (see `sokalmichener` function documentation) 21. ``Y = cdist(XA, XB, indptr, "sokalsneath")`` Computes the Sokal-Sneath distance between the vectors. (see `sokalsneath` function documentation) 22. ``Y = cdist(XA, XB, indptr, "wminkowski")`` Computes the weighted Minkowski distance between the vectors. (see `wminkowski` function documentation) 22. ``Y = cdist(..., "edit")`` Computes the edit distance between the strings. (see `edit` function documentation) 22. ``Y = ssdist(..., "blosum")`` Computes a positive alignment distance between the strings based on the blosum62 matrix.(see `blosum` function documentation) 22. ``Y = ssdist(..., "pam250")`` Computes a positive alignment distance between the strings based on the pam250 matrix. (see `pam250` function documentation) 22. ``Y = ssdist(..., "align")`` Computes a positive alignment distance between the strings using a user specified align matrix. (see `align` function documentation) 23. ``Y = cdist(XA, XB, indptr, f)`` Computes the distance between all pairs of vectors in X using the user supplied 2-arity function f. For example, Euclidean distance between the vectors could be computed as follows:: dm = cdist(XA, XB, indptr, lambda u, v: np.sqrt(((u-v)**2).sum())) Note that you should avoid passing a reference to one of the distance functions defined in this library. For example,:: dm = cdist(XA, XB, indptr, sokalsneath) would calculate the pair-wise distances between the vectors in X using the Python function `sokalsneath`. This would result in sokalsneath being called :math:`{n \\choose 2}` times, which is inefficient. Instead, the optimized C version is more efficient, and we call it using the following syntax:: dm = cdist(XA, XB, indptr, "sokalsneath") Examples -------- Find the Euclidean distances between four 2-D coordinates: >>> from scipy.spatial import distance >>> coords = [(35.0456, -85.2672), ... (35.1174, -89.9711), ... (35.9728, -83.9422), ... (36.1667, -86.7833)] >>> cdist(coords, coords, "euclidean") array([[ 0. , 4.7044, 1.6172, 1.8856], [ 4.7044, 0. , 6.0893, 3.3561], [ 1.6172, 6.0893, 0. , 2.8477], [ 1.8856, 3.3561, 2.8477, 0. ]]) Find the Manhattan distance from a 3-D point to the corners of the unit cube: >>> a = np.array([[0, 0, 0], ... [0, 0, 1], ... [0, 1, 0], ... [0, 1, 1], ... [1, 0, 0], ... [1, 0, 1], ... [1, 1, 0], ... [1, 1, 1]]) >>> b = np.array([[ 0.1, 0.2, 0.4]]) >>> cdist(a, b, "cityblock") array([[ 0.7], [ 0.9], [ 1.3], [ 1.5], [ 1.5], [ 1.7], [ 2.1], [ 2.3]]) """ # You can also call this as: # Y = cdist(XA, XB, indptr, "test_abc") # where "abc" is the metric being tested. This computes the distance # between all pairs of vectors in XA and XB using the distance metric "abc" # but with a more succinct, verifiable, but less efficient implementation. # Store input arguments to check whether we can modify later. input_XA, input_XB = XA, XB input_indicesB = indicesB if indicesA is None: indicesA = np.arange(XA.shape[0]) if not isinstance(XA, np.ndarray): XA = np.asarray(XA, order="C") if not isinstance(XB, np.ndarray): XB = np.asarray(XB, order="C") if not isinstance(indicesB, np.ndarray): indicesB = np.asarray(indicesB) if not isinstance(indicesA, np.ndarray): indicesA = np.asarray(indicesA) if not isinstance(indptr, np.ndarray): indptr = np.asarray(indptr) # The C code doesn"t do striding. XA, indicesA = _subset_array_if_base_present(XA, indicesA) XB, indicesB = _subset_array_if_base_present(XB, indicesB) sA = XA.shape sB = XB.shape sindptr = indptr.shape if XA.dtype != np.str: if len(sA) != 2: raise ValueError("XA must be a 2-dimensional array.") if len(sB) != 2: raise ValueError("XB must be a 2-dimensional array.") if sA[1] != sB[1]: raise ValueError("XA and XB must have the same number of columns " "(i.e. feature dimension.)") if len(sindptr) != 1: raise ValueError("Index pointers must be a 1-dimensional array.") if (indptr[-1] != indicesB.shape[0] or sindptr[0] != indicesA.shape[0] + 1): raise ValueError("Index pointer array has incorrect/incompatible " "shape.") else: if len(sindptr) != 1: raise ValueError("Index pointers must be a 1-dimensional array.") if sindptr[0] != indicesA.shape[0] or indptr[-1] != indicesB.shape[0]: raise ValueError("Index pointer array has incorrect/incompatible " "shape.") mA = indicesA.shape[0] mB = indicesB.shape[0] n = sA[1] if out is None: dm = np.zeros(mB, dtype=np.double) else: if not out.flags.contiguous: raise ValueError("Output array must be contiguous") if out.shape != (mB, ): raise ValueError("Output array has incorrect shape") if out.dtype != np.double: raise ValueError("Output array must have double dtype") dm = out # validate input for multi-args metrics if (metric in ["minkowski", "mi", "m", "pnorm", "test_minkowski"] or metric == minkowski): p = _validate_minkowski_args(p) _filter_deprecated_kwargs(w=w, V=V, VI=VI, gap_open=gap_open, gap_ext=gap_ext, mat=mat, normalized=normalized) elif (metric in ["wminkowski", "wmi", "wm", "wpnorm", "test_wminkowski"] or metric == wminkowski): p, w = _validate_wminkowski_args(p, w) _filter_deprecated_kwargs(V=V, VI=VI, gap_open=gap_open, gap_ext=gap_ext, mat=mat, normalized=normalized) elif (metric in ["seuclidean", "se", "s", "test_seuclidean"] or metric == seuclidean): V = _validate_seuclidean_args(np.vstack([XA, XB]), n, V) _filter_deprecated_kwargs(p=p, w=w, VI=VI, gap_open=gap_open, gap_ext=gap_ext, mat=mat, normalized=normalized) elif (metric in ["mahalanobis", "mahal", "mah", "test_mahalanobis"] or metric == mahalanobis): VI = _validate_mahalanobis_args(np.vstack([XA, XB]), mA + mB, n, VI) _filter_deprecated_kwargs(p=p, w=w, V=V, gap_open=gap_open, gap_ext=gap_ext, mat=mat, normalized=normalized) elif (metric in ["edit", "levenshtein", "blosum", "pam", "blosum62", "pam250"] or metric in [levenshtein, blosum62, pam250]): gap_open, gap_ext = _validate_alignment_args(gap_open, gap_ext, normalized) _filter_deprecated_kwargs(p=p, V=V, w=w, VI=VI, mat=mat) matrix_dtype = None elif (metric in ["align", "alignment"] or metric == alignment): gap_open, gap_ext = _validate_alignment_args(gap_open, gap_ext, normalized) mat, matrix_dtype = _validate_score_matrix(mat) _filter_deprecated_kwargs(p=p, V=V, w=w, VI=VI) else: _filter_deprecated_kwargs(p=p, w=w, V=V, VI=VI, gap_open=gap_open, gap_ext=gap_ext, mat=mat, normalized=normalized) if callable(metric): # metrics that expects only doubles: if metric in [ braycurtis, canberra, chebyshev, cityblock, correlation, cosine, euclidean, mahalanobis, minkowski, sqeuclidean, seuclidean, wminkowski ]: XA, indicesA = _convert_to_double(XA) XB, indicesB = _convert_to_double(XB) # metrics that expects only bools: elif metric in [ dice, kulsinski, rogerstanimoto, russellrao, sokalmichener, sokalsneath, yule ]: XA, indicesA = _convert_to_bool(XA) XB, indicesB = _convert_to_bool(XB) # metrics that may receive multiple types: elif metric in [matching, hamming, jaccard]: if XA.dtype == bool: XA, indicesA = _convert_to_bool(XA) XB, indicesB = _convert_to_bool(XB) else: XA, indicesA = _convert_to_double(XA) XB, indicesB = _convert_to_double(XB) # metrics that expects multiple args if metric == minkowski: metric = partial(minkowski, p=p) elif metric == wminkowski: metric = partial(wminkowski, p=p, w=w) elif metric == seuclidean: metric = partial(seuclidean, V=V) elif metric == mahalanobis: metric = partial(mahalanobis, VI=VI) for i in range(indicesA.shape[0]): ii = indicesA[i] for j in range(indptr[i], indptr[i + 1]): dm[j] = metric(XA[ii, :], XB[indicesB[j], :]) elif isinstance(metric, string_types): mstr = metric.lower() try: validate, ssdist_fn = _SIMPLE_ssdist[mstr] XA, indicesA = validate(XA, indicesA) XB, indicesB = validate(XB, indicesB) ssdist_fn(XA, XB, indicesA, indicesB, indptr, dm) indices = input_indicesB - np.min(input_indicesB) return csr_matrix((dm, indices, indptr), copy=False) except KeyError: pass if mstr in ["matching", "hamming", "hamm", "ha", "h"]: if XA.dtype == bool: XA = _convert_to_bool(XA, indicesA) XB = _convert_to_bool(XB, indicesB) _ssdist_wrap.ssdist_hamming_bool_wrap(XA, XB, indicesA, indicesB, indptr, dm) else: XA = _convert_to_double(XA) XB = _convert_to_double(XB) _ssdist_wrap.ssdist_hamming_wrap(XA, XB, indicesA, indicesB, indptr, dm) elif mstr in ["jaccard", "jacc", "ja", "j"]: if XA.dtype == bool: XA = _convert_to_bool(XA) XB = _convert_to_bool(XB) _ssdist_wrap.ssdist_jaccard_bool_wrap(XA, XB, indicesA, indicesB, indptr, dm) else: XA = _convert_to_double(XA) XB = _convert_to_double(XB) _ssdist_wrap.ssdist_jaccard_wrap(XA, XB, indicesA, indicesB, indptr, dm) elif mstr in ["minkowski", "mi", "m", "pnorm"]: XA = _convert_to_double(XA) XB = _convert_to_double(XB) _ssdist_wrap.ssdist_minkowski_wrap(XA, XB, indicesA, indicesB, indptr, dm, p=p) elif mstr in ["wminkowski", "wmi", "wm", "wpnorm"]: XA = _convert_to_double(XA) XB = _convert_to_double(XB) _ssdist_wrap.ssdist_weighted_minkowski_wrap(XA, XB, indicesA, indicesB, indptr, dm, p=p, w=w) elif mstr in ["seuclidean", "se", "s"]: XA = _convert_to_double(XA) XB = _convert_to_double(XB) _ssdist_wrap.ssdist_seuclidean_wrap(XA, XB, indicesA, indicesB, indptr, dm, V=V) elif mstr in ["cosine", "cos"]: XA = _convert_to_double(XA) XB = _convert_to_double(XB) _ssdist_cosine(XA, XB, indicesA, indicesB, indptr, dm) elif mstr in ["correlation", "co"]: XA = _convert_to_double(XA) XB = _convert_to_double(XB) XA, indicesA = _subset_array_if_is_parent(input_XA, XA, indicesA) XB, indicesB = _subset_array_if_is_parent(input_XB, XB, indicesB) XA -= XA.mean(axis=1)[:, np.newaxis] XB -= XB.mean(axis=1)[:, np.newaxis] _ssdist_cosine(XA, XB, indicesA, indicesB, indptr, dm) elif mstr in ["aitchison", "simplex", "clr"]: XA = _convert_to_double(XA) XB = _convert_to_double(XB) XA, indicesA = _subset_array_if_is_parent(input_XA, XA, indicesA) XB, indicesB = _subset_array_if_is_parent(input_XB, XB, indicesB) # check positive if not (XA >= 0).all(): raise ValueError("All values in XA must be greater than or " "equal to zero.") if not (XB >= 0).all(): raise ValueError("All values in XB must be greater than or " "equal to zero.") # check normalized sumA = XA.sum(axis=-1) sumB = XA.sum(axis=-1) if not np.allclose(sumA, 1.): XA /= sumA[:, np.newaxis] if not np.allclose(sumB, 1.): XB /= sumB[:, np.newaxis] XA = np.log(XA, out=XA) XB = np.log(XB, out=XB) XA -= XA.mean(axis=-1)[:, np.newaxis] XB -= XB.mean(axis=-1)[:, np.newaxis] _ssdist_wrap.ssdist_euclidean(XA, XB, indicesA, indicesB, indptr, dm) elif mstr in ["mahalanobis", "mahal", "mah"]: XA = _convert_to_double(XA) XB = _convert_to_double(XB) _ssdist_wrap.ssdist_mahalanobis_wrap(XA, XB, indicesA, indicesB, indptr, dm, VI=VI) elif mstr in _string_names: XA = _convert_to_str(XA) XB = _convert_to_str(XB) _validate_string_dtypes(XA, XB, indicesA, indicesB) key = (mstr, normalized, "o" if XA.dtype == np.object_ else "s") if matrix_dtype is not None: key += ({int: "l", float: "d"}[matrix_dtype], ) _ssdist_fn = _STRING_ssdist[key] args = (XA, XB, indicesA, indicesB, indptr, dm) kwargs = [gap_open, gap_ext, mat] args += tuple(kwarg for kwarg in kwargs if kwarg is not None) _ssdist_fn(*args) elif mstr.startswith("test_"): if mstr in _TEST_METRICS: kwargs = {"p": p, "w": w, "V": V, "VI": VI} dm = ssdist(XA, XB, indicesB, indicesA, _TEST_METRICS[mstr], **kwargs) else: raise ValueError("Unknown \"Test\" Distance Metric: %s" % mstr[5:]) else: raise ValueError("Unknown Distance Metric: %s" % mstr) else: raise TypeError("2nd argument metric must be a string identifier " "or a function.") indices = input_indicesB - np.min(input_indicesB) return csr_matrix((dm, indices, indptr), copy=False)
def resample(x, num, t=None, axis=0, window=None): """ Resample `x` to `num` samples using Fourier method along the given axis. The resampled signal starts at the same value as `x` but is sampled with a spacing of ``len(x) / num * (spacing of x)``. Because a Fourier method is used, the signal is assumed to be periodic. Parameters ---------- x : array_like The data to be resampled. num : int The number of samples in the resampled signal. t : array_like, optional If `t` is given, it is assumed to be the sample positions associated with the signal data in `x`. axis : int, optional The axis of `x` that is resampled. Default is 0. window : array_like, callable, string, float, or tuple, optional Specifies the window applied to the signal in the Fourier domain. See below for details. Returns ------- resampled_x or (resampled_x, resampled_t) Either the resampled array, or, if `t` was given, a tuple containing the resampled array and the corresponding resampled positions. Notes ----- The argument `window` controls a Fourier-domain window that tapers the Fourier spectrum before zero-padding to alleviate ringing in the resampled values for sampled signals you didn't intend to be interpreted as band-limited. If `window` is a function, then it is called with a vector of inputs indicating the frequency bins (i.e. fftfreq(x.shape[axis]) ). If `window` is an array of the same length as `x.shape[axis]` it is assumed to be the window to be applied directly in the Fourier domain (with dc and low-frequency first). For any other type of `window`, the function `scipy.signal.get_window` is called to generate the window. The first sample of the returned vector is the same as the first sample of the input vector. The spacing between samples is changed from ``dx`` to ``dx * len(x) / num``. If `t` is not None, then it represents the old sample positions, and the new sample positions will be returned as well as the new samples. As noted, `resample` uses FFT transformations, which can be very slow if the number of input samples is large and prime, see `scipy.fftpack.fft`. """ x = np.asarray(x) X = fft(x, axis=axis) Nx = x.shape[axis] if window is not None: if callable(window): W = window(fftfreq(Nx)) elif isinstance(window, np.ndarray): if window.shape != (Nx,): raise ValueError('window must have the same length as data') W = window else: W = ifftshift(get_window(window, Nx)) newshape = [1] * x.ndim newshape[axis] = len(W) W.shape = newshape X = X * W sl = [slice(None)] * len(x.shape) newshape = list(x.shape) newshape[axis] = num N = int(np.minimum(num, Nx)) Y = np.zeros(newshape, 'D') sl[axis] = slice(0, (N + 1) // 2) Y[sl] = X[sl] sl[axis] = slice(-(N - 1) // 2, None) Y[sl] = X[sl] y = ifft(Y, axis=axis) * (float(num) / float(Nx)) if x.dtype.char not in ['F', 'D']: y = y.real if t is None: return y else: new_t = np.arange(0, num) * (t[1] - t[0]) * Nx / float(num) + t[0] return y, new_t
def root(fun, x0, args=(), method='hybr', jac=None, tol=None, callback=None, options=None): """ Find a root of a vector function. Parameters ---------- fun : callable A vector function to find a root of. x0 : ndarray Initial guess. args : tuple, optional Extra arguments passed to the objective function and its Jacobian. method : str, optional Type of solver. Should be one of - 'hybr' :ref:`(see here) <optimize.root-hybr>` - 'lm' :ref:`(see here) <optimize.root-lm>` - 'broyden1' :ref:`(see here) <optimize.root-broyden1>` - 'broyden2' :ref:`(see here) <optimize.root-broyden2>` - 'anderson' :ref:`(see here) <optimize.root-anderson>` - 'linearmixing' :ref:`(see here) <optimize.root-linearmixing>` - 'diagbroyden' :ref:`(see here) <optimize.root-diagbroyden>` - 'excitingmixing' :ref:`(see here) <optimize.root-excitingmixing>` - 'krylov' :ref:`(see here) <optimize.root-krylov>` - 'df-sane' :ref:`(see here) <optimize.root-dfsane>` jac : bool or callable, optional If `jac` is a Boolean and is True, `fun` is assumed to return the value of Jacobian along with the objective function. If False, the Jacobian will be estimated numerically. `jac` can also be a callable returning the Jacobian of `fun`. In this case, it must accept the same arguments as `fun`. tol : float, optional Tolerance for termination. For detailed control, use solver-specific options. callback : function, optional Optional callback function. It is called on every iteration as ``callback(x, f)`` where `x` is the current solution and `f` the corresponding residual. For all methods but 'hybr' and 'lm'. options : dict, optional A dictionary of solver options. E.g. `xtol` or `maxiter`, see :obj:`show_options()` for details. Returns ------- sol : OptimizeResult The solution represented as a ``OptimizeResult`` object. Important attributes are: ``x`` the solution array, ``success`` a Boolean flag indicating if the algorithm exited successfully and ``message`` which describes the cause of the termination. See `OptimizeResult` for a description of other attributes. See also -------- show_options : Additional options accepted by the solvers Notes ----- This section describes the available solvers that can be selected by the 'method' parameter. The default method is *hybr*. Method *hybr* uses a modification of the Powell hybrid method as implemented in MINPACK [1]_. Method *lm* solves the system of nonlinear equations in a least squares sense using a modification of the Levenberg-Marquardt algorithm as implemented in MINPACK [1]_. Method *df-sane* is a derivative-free spectral method. [3]_ Methods *broyden1*, *broyden2*, *anderson*, *linearmixing*, *diagbroyden*, *excitingmixing*, *krylov* are inexact Newton methods, with backtracking or full line searches [2]_. Each method corresponds to a particular Jacobian approximations. See `nonlin` for details. - Method *broyden1* uses Broyden's first Jacobian approximation, it is known as Broyden's good method. - Method *broyden2* uses Broyden's second Jacobian approximation, it is known as Broyden's bad method. - Method *anderson* uses (extended) Anderson mixing. - Method *Krylov* uses Krylov approximation for inverse Jacobian. It is suitable for large-scale problem. - Method *diagbroyden* uses diagonal Broyden Jacobian approximation. - Method *linearmixing* uses a scalar Jacobian approximation. - Method *excitingmixing* uses a tuned diagonal Jacobian approximation. .. warning:: The algorithms implemented for methods *diagbroyden*, *linearmixing* and *excitingmixing* may be useful for specific problems, but whether they will work may depend strongly on the problem. .. versionadded:: 0.11.0 References ---------- .. [1] More, Jorge J., Burton S. Garbow, and Kenneth E. Hillstrom. 1980. User Guide for MINPACK-1. .. [2] C. T. Kelley. 1995. Iterative Methods for Linear and Nonlinear Equations. Society for Industrial and Applied Mathematics. <http://www.siam.org/books/kelley/fr16/index.php> .. [3] W. La Cruz, J.M. Martinez, M. Raydan. Math. Comp. 75, 1429 (2006). Examples -------- The following functions define a system of nonlinear equations and its jacobian. >>> def fun(x): ... return [x[0] + 0.5 * (x[0] - x[1])**3 - 1.0, ... 0.5 * (x[1] - x[0])**3 + x[1]] >>> def jac(x): ... return np.array([[1 + 1.5 * (x[0] - x[1])**2, ... -1.5 * (x[0] - x[1])**2], ... [-1.5 * (x[1] - x[0])**2, ... 1 + 1.5 * (x[1] - x[0])**2]]) A solution can be obtained as follows. >>> from scipy import optimize >>> sol = optimize.root(fun, [0, 0], jac=jac, method='hybr') >>> sol.x array([ 0.8411639, 0.1588361]) """ if not isinstance(args, tuple): args = (args,) meth = method.lower() if options is None: options = {} if callback is not None and meth in ('hybr', 'lm'): warn('Method %s does not accept callback.' % method, RuntimeWarning) # fun also returns the jacobian if not callable(jac) and meth in ('hybr', 'lm'): if bool(jac): fun = MemoizeJac(fun) jac = fun.derivative else: jac = None # set default tolerances if tol is not None: options = dict(options) if meth in ('hybr', 'lm'): options.setdefault('xtol', tol) elif meth in ('df-sane',): options.setdefault('ftol', tol) elif meth in ('broyden1', 'broyden2', 'anderson', 'linearmixing', 'diagbroyden', 'excitingmixing', 'krylov'): options.setdefault('xtol', tol) options.setdefault('xatol', np.inf) options.setdefault('ftol', np.inf) options.setdefault('fatol', np.inf) if meth == 'hybr': sol = _root_hybr(fun, x0, args=args, jac=jac, **options) elif meth == 'lm': sol = _root_leastsq(fun, x0, args=args, jac=jac, **options) elif meth == 'df-sane': _warn_jac_unused(jac, method) sol = _root_df_sane(fun, x0, args=args, callback=callback, **options) elif meth in ('broyden1', 'broyden2', 'anderson', 'linearmixing', 'diagbroyden', 'excitingmixing', 'krylov'): _warn_jac_unused(jac, method) sol = _root_nonlin_solve(fun, x0, args=args, jac=jac, _method=meth, _callback=callback, **options) else: raise ValueError('Unknown solver %s' % method) return sol
def cdist(XA, XB, metric='euclidean', p=2, V=None, VI=None, w=None): timer = MyTimer.MyTimerCLS() timer.refresh('enter cidst') XA = np.asarray(XA, order='c') XB = np.asarray(XB, order='c') timer.refresh('asarray') # The C code doesn't do striding. XA = _copy_array_if_base_present(_convert_to_double(XA)) XB = _copy_array_if_base_present(_convert_to_double(XB)) timer.refresh('_copy_array_if_base_present') s = XA.shape sB = XB.shape timer.refresh('get shape') if len(s) != 2: raise ValueError('XA must be a 2-dimensional array.') if len(sB) != 2: raise ValueError('XB must be a 2-dimensional array.') if s[1] != sB[1]: raise ValueError('XA and XB must have the same number of columns ' '(i.e. feature dimension.)') timer.refresh('error check') mA = s[0] mB = sB[0] n = s[1] timer.refresh('get dim') dm = np.zeros((mA, mB), dtype=np.double) timer.refresh(' np.zeros ') if callable(metric): if metric == minkowski: for i in xrange(0, mA): for j in xrange(0, mB): dm[i, j] = minkowski(XA[i, :], XB[j, :], p) elif metric == wminkowski: for i in xrange(0, mA): for j in xrange(0, mB): dm[i, j] = wminkowski(XA[i, :], XB[j, :], p, w) elif metric == seuclidean: for i in xrange(0, mA): for j in xrange(0, mB): dm[i, j] = seuclidean(XA[i, :], XB[j, :], V) elif metric == mahalanobis: for i in xrange(0, mA): for j in xrange(0, mB): dm[i, j] = mahalanobis(XA[i, :], XB[j, :], V) else: for i in xrange(0, mA): for j in xrange(0, mB): dm[i, j] = metric(XA[i, :], XB[j, :]) timer.refresh(' if callable ') print 'cool' elif isinstance(metric, string_types): mstr = metric.lower() timer.refresh('else') try: validate, cdist_fn = _SIMPLE_CDIST[mstr] XA = validate(XA) XB = validate(XB) cdist_fn(XA, XB, dm) return dm except KeyError: pass timer.refresh(' try') if mstr in ['hamming', 'hamm', 'ha', 'h']: if XA.dtype == bool: XA = _convert_to_bool(XA) XB = _convert_to_bool(XB) _distance_wrap.cdist_hamming_bool_wrap(XA, XB, dm) else: XA = _convert_to_double(XA) XB = _convert_to_double(XB) _distance_wrap.cdist_hamming_wrap(XA, XB, dm) elif mstr in ['jaccard', 'jacc', 'ja', 'j']: if XA.dtype == bool: XA = _convert_to_bool(XA) XB = _convert_to_bool(XB) _distance_wrap.cdist_jaccard_bool_wrap(XA, XB, dm) else: XA = _convert_to_double(XA) XB = _convert_to_double(XB) _distance_wrap.cdist_jaccard_wrap(XA, XB, dm) elif mstr in ['minkowski', 'mi', 'm', 'pnorm']: timer.refresh('before _convert_to_double') XA = _convert_to_double(XA) XB = _convert_to_double(XB) timer.refresh('_convert_to_double') _distance_wrap.cdist_minkowski_wrap(XA, XB, dm, p) timer.refresh('after minkowski') elif mstr in ['wminkowski', 'wmi', 'wm', 'wpnorm']: timer.refresh('before _convert_to_double') XA = _convert_to_double(XA) XB = _convert_to_double(XB) timer.refresh('_convert_to_double') w = _convert_to_double(w) _distance_wrap.cdist_weighted_minkowski_wrap(XA, XB, dm, p, w) elif mstr in ['seuclidean', 'se', 's']: XA = _convert_to_double(XA) XB = _convert_to_double(XB) if V is not None: V = np.asarray(V, order='c') if V.dtype != np.double: raise TypeError('Variance vector V must contain doubles.') if len(V.shape) != 1: raise ValueError('Variance vector V must be ' 'one-dimensional.') if V.shape[0] != n: raise ValueError('Variance vector V must be of the same ' 'dimension as the vectors on which the ' 'distances are computed.') # The C code doesn't do striding. VV = _copy_array_if_base_present(_convert_to_double(V)) else: VV = np.var(np.vstack([XA, XB]), axis=0, ddof=1) _distance_wrap.cdist_seuclidean_wrap(XA, XB, VV, dm) elif mstr in ['cosine', 'cos']: XA = _convert_to_double(XA) XB = _convert_to_double(XB) _cosine_cdist(XA, XB, dm) elif mstr in ['correlation', 'co']: XA = _convert_to_double(XA) XB = _convert_to_double(XB) XA -= XA.mean(axis=1)[:, np.newaxis] XB -= XB.mean(axis=1)[:, np.newaxis] _cosine_cdist(XA, XB, dm) elif mstr in ['mahalanobis', 'mahal', 'mah']: XA = _convert_to_double(XA) XB = _convert_to_double(XB) if VI is not None: VI = _convert_to_double(np.asarray(VI, order='c')) VI = _copy_array_if_base_present(VI) else: m = mA + mB if m <= n: # There are fewer observations than the dimension of # the observations. raise ValueError("The number of observations (%d) is too " "small; the covariance matrix is " "singular. For observations with %d " "dimensions, at least %d observations " "are required." % (m, n, n + 1)) X = np.vstack([XA, XB]) V = np.atleast_2d(np.cov(X.T)) del X VI = np.linalg.inv(V).T.copy() # (u-v)V^(-1)(u-v)^T _distance_wrap.cdist_mahalanobis_wrap(XA, XB, VI, dm) elif metric == 'test_euclidean': dm = cdist(XA, XB, euclidean) elif metric == 'test_seuclidean': if V is None: V = np.var(np.vstack([XA, XB]), axis=0, ddof=1) else: V = np.asarray(V, order='c') dm = cdist(XA, XB, lambda u, v: seuclidean(u, v, V)) elif metric == 'test_sqeuclidean': dm = cdist(XA, XB, lambda u, v: sqeuclidean(u, v)) elif metric == 'test_braycurtis': dm = cdist(XA, XB, braycurtis) elif metric == 'test_mahalanobis': if VI is None: X = np.vstack([XA, XB]) V = np.cov(X.T) VI = np.linalg.inv(V) X = None del X else: VI = np.asarray(VI, order='c') VI = _copy_array_if_base_present(VI) # (u-v)V^(-1)(u-v)^T dm = cdist(XA, XB, (lambda u, v: mahalanobis(u, v, VI))) elif metric == 'test_canberra': dm = cdist(XA, XB, canberra) elif metric == 'test_cityblock': dm = cdist(XA, XB, cityblock) elif metric == 'test_minkowski': dm = cdist(XA, XB, minkowski, p=p) elif metric == 'test_wminkowski': dm = cdist(XA, XB, wminkowski, p=p, w=w) elif metric == 'test_correlation': dm = cdist(XA, XB, correlation) elif metric == 'test_hamming': dm = cdist(XA, XB, hamming) elif metric == 'test_jaccard': dm = cdist(XA, XB, jaccard) elif metric == 'test_chebyshev' or metric == 'test_chebychev': dm = cdist(XA, XB, chebyshev) elif metric == 'test_yule': dm = cdist(XA, XB, yule) elif metric == 'test_matching': dm = cdist(XA, XB, matching) elif metric == 'test_dice': dm = cdist(XA, XB, dice) elif metric == 'test_kulsinski': dm = cdist(XA, XB, kulsinski) elif metric == 'test_rogerstanimoto': dm = cdist(XA, XB, rogerstanimoto) elif metric == 'test_russellrao': dm = cdist(XA, XB, russellrao) elif metric == 'test_sokalsneath': dm = cdist(XA, XB, sokalsneath) elif metric == 'test_sokalmichener': dm = cdist(XA, XB, sokalmichener) else: raise ValueError('Unknown Distance Metric: %s' % mstr) else: raise TypeError('2nd argument metric must be a string identifier ' 'or a function.') timer.refresh('before return') return dm, timer
def schur(a, output='real', lwork=None, overwrite_a=False, sort=None, check_finite=True): """ Compute Schur decomposition of a matrix. The Schur decomposition is:: A = Z T Z^H where Z is unitary and T is either upper-triangular, or for real Schur decomposition (output='real'), quasi-upper triangular. In the quasi-triangular form, 2x2 blocks describing complex-valued eigenvalue pairs may extrude from the diagonal. Parameters ---------- a : (M, M) array_like Matrix to decompose output : {'real', 'complex'}, optional Construct the real or complex Schur decomposition (for real matrices). lwork : int, optional Work array size. If None or -1, it is automatically computed. overwrite_a : bool, optional Whether to overwrite data in a (may improve performance). sort : {None, callable, 'lhp', 'rhp', 'iuc', 'ouc'}, optional Specifies whether the upper eigenvalues should be sorted. A callable may be passed that, given a eigenvalue, returns a boolean denoting whether the eigenvalue should be sorted to the top-left (True). Alternatively, string parameters may be used:: 'lhp' Left-hand plane (x.real < 0.0) 'rhp' Right-hand plane (x.real > 0.0) 'iuc' Inside the unit circle (x*x.conjugate() <= 1.0) 'ouc' Outside the unit circle (x*x.conjugate() > 1.0) Defaults to None (no sorting). check_finite : bool, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns ------- T : (M, M) ndarray Schur form of A. It is real-valued for the real Schur decomposition. Z : (M, M) ndarray An unitary Schur transformation matrix for A. It is real-valued for the real Schur decomposition. sdim : int If and only if sorting was requested, a third return value will contain the number of eigenvalues satisfying the sort condition. Raises ------ LinAlgError Error raised under three conditions: 1. The algorithm failed due to a failure of the QR algorithm to compute all eigenvalues 2. If eigenvalue sorting was requested, the eigenvalues could not be reordered due to a failure to separate eigenvalues, usually because of poor conditioning 3. If eigenvalue sorting was requested, roundoff errors caused the leading eigenvalues to no longer satisfy the sorting condition See also -------- rsf2csf : Convert real Schur form to complex Schur form Examples -------- >>> from scipy.linalg import schur, eigvals >>> A = np.array([[0, 2, 2], [0, 1, 2], [1, 0, 1]]) >>> T, Z = schur(A) >>> T array([[ 2.65896708, 1.42440458, -1.92933439], [ 0. , -0.32948354, -0.49063704], [ 0. , 1.31178921, -0.32948354]]) >>> Z array([[0.72711591, -0.60156188, 0.33079564], [0.52839428, 0.79801892, 0.28976765], [0.43829436, 0.03590414, -0.89811411]]) >>> T2, Z2 = schur(A, output='complex') >>> T2 array([[ 2.65896708, -1.22839825+1.32378589j, 0.42590089+1.51937378j], [ 0. , -0.32948354+0.80225456j, -0.59877807+0.56192146j], [ 0. , 0. , -0.32948354-0.80225456j]]) >>> eigvals(T2) array([2.65896708, -0.32948354+0.80225456j, -0.32948354-0.80225456j]) An arbitrary custom eig-sorting condition, having positive imaginary part, which is satisfied by only one eigenvalue >>> T3, Z3, sdim = schur(A, output='complex', sort=lambda x: x.imag > 0) >>> sdim 1 """ if output not in ['real', 'complex', 'r', 'c']: raise ValueError("argument must be 'real', or 'complex'") if check_finite: a1 = asarray_chkfinite(a) else: a1 = asarray(a) if len(a1.shape) != 2 or (a1.shape[0] != a1.shape[1]): raise ValueError('expected square matrix') typ = a1.dtype.char if output in ['complex', 'c'] and typ not in ['F', 'D']: if typ in _double_precision: a1 = a1.astype('D') typ = 'D' else: a1 = a1.astype('F') typ = 'F' overwrite_a = overwrite_a or (_datacopied(a1, a)) gees, = get_lapack_funcs(('gees',), (a1,)) if lwork is None or lwork == -1: # get optimal work array result = gees(lambda x: None, a1, lwork=-1) lwork = result[-2][0].real.astype(numpy.int) if sort is None: sort_t = 0 sfunction = lambda x: None else: sort_t = 1 if callable(sort): sfunction = sort elif sort == 'lhp': sfunction = lambda x: (x.real < 0.0) elif sort == 'rhp': sfunction = lambda x: (x.real >= 0.0) elif sort == 'iuc': sfunction = lambda x: (abs(x) <= 1.0) elif sort == 'ouc': sfunction = lambda x: (abs(x) > 1.0) else: raise ValueError("'sort' parameter must either be 'None', or a " "callable, or one of ('lhp','rhp','iuc','ouc')") result = gees(sfunction, a1, lwork=lwork, overwrite_a=overwrite_a, sort_t=sort_t) info = result[-1] if info < 0: raise ValueError('illegal value in {}-th argument of internal gees' ''.format(-info)) elif info == a1.shape[0] + 1: raise LinAlgError('Eigenvalues could not be separated for reordering.') elif info == a1.shape[0] + 2: raise LinAlgError('Leading eigenvalues do not satisfy sort condition.') elif info > 0: raise LinAlgError("Schur form not found. Possibly ill-conditioned.") if sort_t == 0: return result[0], result[-3] else: return result[0], result[-3], result[1]
def root_scalar(f, args=(), method=None, bracket=None, fprime=None, fprime2=None, x0=None, x1=None, xtol=None, rtol=None, maxiter=None, options=None): """ Find a root of a scalar function. Parameters ---------- f : callable A function to find a root of. args : tuple, optional Extra arguments passed to the objective function and its derivative(s). method : str, optional Type of solver. Should be one of - 'bisect' :ref:`(see here) <optimize.root_scalar-bisect>` - 'brentq' :ref:`(see here) <optimize.root_scalar-brentq>` - 'brenth' :ref:`(see here) <optimize.root_scalar-brenth>` - 'ridder' :ref:`(see here) <optimize.root_scalar-ridder>` - 'toms748' :ref:`(see here) <optimize.root_scalar-toms748>` - 'newton' :ref:`(see here) <optimize.root_scalar-newton>` - 'secant' :ref:`(see here) <optimize.root_scalar-secant>` - 'halley' :ref:`(see here) <optimize.root_scalar-halley>` bracket: A sequence of 2 floats, optional An interval bracketing a root. `f(x, *args)` must have different signs at the two endpoints. x0 : float, optional Initial guess. x1 : float, optional A second guess. fprime : bool or callable, optional If `fprime` is a boolean and is True, `f` is assumed to return the value of the objective function and of the derivative. `fprime` can also be a callable returning the derivative of `f`. In this case, it must accept the same arguments as `f`. fprime2 : bool or callable, optional If `fprime2` is a boolean and is True, `f` is assumed to return the value of the objective function and of the first and second derivatives. `fprime2` can also be a callable returning the second derivative of `f`. In this case, it must accept the same arguments as `f`. xtol : float, optional Tolerance (absolute) for termination. rtol : float, optional Tolerance (relative) for termination. maxiter : int, optional Maximum number of iterations. options : dict, optional A dictionary of solver options. E.g. ``k``, see :obj:`show_options()` for details. Returns ------- sol : RootResults The solution represented as a ``RootResults`` object. Important attributes are: ``root`` the solution , ``converged`` a boolean flag indicating if the algorithm exited successfully and ``flag`` which describes the cause of the termination. See `RootResults` for a description of other attributes. See also -------- show_options : Additional options accepted by the solvers root : Find a root of a vector function. Notes ----- This section describes the available solvers that can be selected by the 'method' parameter. The default is to use the best method available for the situation presented. If a bracket is provided, it may use one of the bracketing methods. If a derivative and an initial value are specified, it may select one of the derivative-based methods. If no method is judged applicable, it will raise an Exception. Examples -------- Find the root of a simple cubic >>> from scipy import optimize >>> def f(x): ... return (x**3 - 1) # only one real root at x = 1 >>> def fprime(x): ... return 3*x**2 The `brentq` method takes as input a bracket >>> sol = optimize.root_scalar(f, bracket=[0, 3], method='brentq') >>> sol.root, sol.iterations, sol.function_calls (1.0, 10, 11) The `newton` method takes as input a single point and uses the derivative(s) >>> sol = optimize.root_scalar(f, x0=0.2, fprime=fprime, method='newton') >>> sol.root, sol.iterations, sol.function_calls (1.0, 11, 22) The function can provide the value and derivative(s) in a single call. >>> def f_p_pp(x): ... return (x**3 - 1), 3*x**2, 6*x >>> sol = optimize.root_scalar(f_p_pp, x0=0.2, fprime=True, method='newton') >>> sol.root, sol.iterations, sol.function_calls (1.0, 11, 11) >>> sol = optimize.root_scalar(f_p_pp, x0=0.2, fprime=True, fprime2=True, method='halley') >>> sol.root, sol.iterations, sol.function_calls (1.0, 7, 8) """ if not isinstance(args, tuple): args = (args,) if options is None: options = {} # fun also returns the derivative(s) is_memoized = False if fprime2 is not None and not callable(fprime2): if bool(fprime2): f = MemoizeDer(f) is_memoized = True fprime2 = f.fprime2 fprime = f.fprime else: fprime2 = None if fprime is not None and not callable(fprime): if bool(fprime): f = MemoizeDer(f) is_memoized = True fprime = f.fprime else: fprime = None # respect solver-specific default tolerances - only pass in if actually set kwargs = {} for k in ['xtol', 'rtol', 'maxiter']: v = locals().get(k) if v is not None: kwargs[k] = v # Set any solver-specific options if options: kwargs.update(options) # Always request full_output from the underlying method as _root_scalar # always returns a RootResults object kwargs.update(full_output=True, disp=False) # Pick a method if not specified. # Use the "best" method available for the situation. if not method: if bracket: method = 'brentq' elif x0 is not None: if fprime: if fprime2: method = 'halley' else: method = 'newton' else: method = 'secant' if not method: raise ValueError('Unable to select a solver as neither bracket ' 'nor starting point provided.') meth = method.lower() map2underlying = {'halley': 'newton', 'secant': 'newton'} try: methodc = getattr(optzeros, map2underlying.get(meth, meth)) except AttributeError: raise ValueError('Unknown solver %s' % meth) if meth in ['bisect', 'ridder', 'brentq', 'brenth', 'toms748']: if not isinstance(bracket, (list, tuple, np.ndarray)): raise ValueError('Bracket needed for %s' % method) a, b = bracket[:2] r, sol = methodc(f, a, b, args=args, **kwargs) elif meth in ['secant']: if x0 is None: raise ValueError('x0 must not be None for %s' % method) if x1 is None: raise ValueError('x1 must not be None for %s' % method) if 'xtol' in kwargs: kwargs['tol'] = kwargs.pop('xtol') r, sol = methodc(f, x0, args=args, fprime=None, fprime2=None, x1=x1, **kwargs) elif meth in ['newton']: if x0 is None: raise ValueError('x0 must not be None for %s' % method) if not fprime: raise ValueError('fprime must be specified for %s' % method) if 'xtol' in kwargs: kwargs['tol'] = kwargs.pop('xtol') r, sol = methodc(f, x0, args=args, fprime=fprime, fprime2=None, **kwargs) elif meth in ['halley']: if x0 is None: raise ValueError('x0 must not be None for %s' % method) if not fprime: raise ValueError('fprime must be specified for %s' % method) if not fprime2: raise ValueError('fprime2 must be specified for %s' % method) if 'xtol' in kwargs: kwargs['tol'] = kwargs.pop('xtol') r, sol = methodc(f, x0, args=args, fprime=fprime, fprime2=fprime2, **kwargs) else: raise ValueError('Unknown solver %s' % method) if is_memoized: # Replace the function_calls count with the memoized count. # Avoids double and triple-counting. n_calls = f.n_calls sol.function_calls = n_calls return sol
def minimize_scalar(fun, bracket=None, bounds=None, args=(), method='brent', tol=None, options=None): """Minimization of scalar function of one variable. Parameters ---------- fun : callable Objective function. Scalar function, must return a scalar. bracket : sequence, optional For methods 'brent' and 'golden', `bracket` defines the bracketing interval and can either have three items ``(a, b, c)`` so that ``a < b < c`` and ``fun(b) < fun(a), fun(c)`` or two items ``a`` and ``c`` which are assumed to be a starting interval for a downhill bracket search (see `bracket`); it doesn't always mean that the obtained solution will satisfy ``a <= x <= c``. bounds : sequence, optional For method 'bounded', `bounds` is mandatory and must have two items corresponding to the optimization bounds. args : tuple, optional Extra arguments passed to the objective function. method : str or callable, optional Type of solver. Should be one of: - 'Brent' :ref:`(see here) <optimize.minimize_scalar-brent>` - 'Bounded' :ref:`(see here) <optimize.minimize_scalar-bounded>` - 'Golden' :ref:`(see here) <optimize.minimize_scalar-golden>` - custom - a callable object (added in version 0.14.0), see below tol : float, optional Tolerance for termination. For detailed control, use solver-specific options. options : dict, optional A dictionary of solver options. maxiter : int Maximum number of iterations to perform. disp : bool Set to True to print convergence messages. See :func:`show_options()` for solver-specific options. Returns ------- res : OptimizeResult The optimization result represented as a ``OptimizeResult`` object. Important attributes are: ``x`` the solution array, ``success`` a Boolean flag indicating if the optimizer exited successfully and ``message`` which describes the cause of the termination. See `OptimizeResult` for a description of other attributes. See also -------- minimize : Interface to minimization algorithms for scalar multivariate functions show_options : Additional options accepted by the solvers Notes ----- This section describes the available solvers that can be selected by the 'method' parameter. The default method is *Brent*. Method :ref:`Brent <optimize.minimize_scalar-brent>` uses Brent's algorithm to find a local minimum. The algorithm uses inverse parabolic interpolation when possible to speed up convergence of the golden section method. Method :ref:`Golden <optimize.minimize_scalar-golden>` uses the golden section search technique. It uses analog of the bisection method to decrease the bracketed interval. It is usually preferable to use the *Brent* method. Method :ref:`Bounded <optimize.minimize_scalar-bounded>` can perform bounded minimization. It uses the Brent method to find a local minimum in the interval x1 < xopt < x2. **Custom minimizers** It may be useful to pass a custom minimization method, for example when using some library frontend to minimize_scalar. You can simply pass a callable as the ``method`` parameter. The callable is called as ``method(fun, args, **kwargs, **options)`` where ``kwargs`` corresponds to any other parameters passed to `minimize` (such as `bracket`, `tol`, etc.), except the `options` dict, which has its contents also passed as `method` parameters pair by pair. The method shall return an ``OptimizeResult`` object. The provided `method` callable must be able to accept (and possibly ignore) arbitrary parameters; the set of parameters accepted by `minimize` may expand in future versions and then these parameters will be passed to the method. You can find an example in the scipy.optimize tutorial. .. versionadded:: 0.11.0 Examples -------- Consider the problem of minimizing the following function. >>> def f(x): ... return (x - 2) * x * (x + 2)**2 Using the *Brent* method, we find the local minimum as: >>> from scipy.optimize import minimize_scalar >>> res = minimize_scalar(f) >>> res.x 1.28077640403 Using the *Bounded* method, we find a local minimum with specified bounds as: >>> res = minimize_scalar(f, bounds=(-3, -1), method='bounded') >>> res.x -2.0000002026 """ if not isinstance(args, tuple): args = (args,) if callable(method): meth = "_custom" else: meth = method.lower() if options is None: options = {} if tol is not None: options = dict(options) if meth == 'bounded' and 'xatol' not in options: warn("Method 'bounded' does not support relative tolerance in x; " "defaulting to absolute tolerance.", RuntimeWarning) options['xatol'] = tol elif meth == '_custom': options.setdefault('tol', tol) else: options.setdefault('xtol', tol) if meth == '_custom': return method(fun, args=args, bracket=bracket, bounds=bounds, **options) elif meth == 'brent': return _minimize_scalar_brent(fun, bracket, args, **options) elif meth == 'bounded': if bounds is None: raise ValueError('The `bounds` parameter is mandatory for ' 'method `bounded`.') return _minimize_scalar_bounded(fun, bounds, args, **options) elif meth == 'golden': return _minimize_scalar_golden(fun, bracket, args, **options) else: raise ValueError('Unknown solver %s' % method)
def fmin_cobyla(func, x0, cons, args=(), consargs=None, rhobeg=1.0, rhoend=1e-4, maxfun=1000, disp=None, catol=2e-4): """ Minimize a function using the Constrained Optimization BY Linear Approximation (COBYLA) method. This method wraps a FORTRAN implementation of the algorithm. Parameters ---------- func : callable Function to minimize. In the form func(x, \\*args). x0 : ndarray Initial guess. cons : sequence Constraint functions; must all be ``>=0`` (a single function if only 1 constraint). Each function takes the parameters `x` as its first argument, and it can return either a single number or an array or list of numbers. args : tuple, optional Extra arguments to pass to function. consargs : tuple, optional Extra arguments to pass to constraint functions (default of None means use same extra arguments as those passed to func). Use ``()`` for no extra arguments. rhobeg : float, optional Reasonable initial changes to the variables. rhoend : float, optional Final accuracy in the optimization (not precisely guaranteed). This is a lower bound on the size of the trust region. disp : {0, 1, 2, 3}, optional Controls the frequency of output; 0 implies no output. maxfun : int, optional Maximum number of function evaluations. catol : float, optional Absolute tolerance for constraint violations. Returns ------- x : ndarray The argument that minimises `f`. See also -------- minimize: Interface to minimization algorithms for multivariate functions. See the 'COBYLA' `method` in particular. Notes ----- This algorithm is based on linear approximations to the objective function and each constraint. We briefly describe the algorithm. Suppose the function is being minimized over k variables. At the jth iteration the algorithm has k+1 points v_1, ..., v_(k+1), an approximate solution x_j, and a radius RHO_j. (i.e. linear plus a constant) approximations to the objective function and constraint functions such that their function values agree with the linear approximation on the k+1 points v_1,.., v_(k+1). This gives a linear program to solve (where the linear approximations of the constraint functions are constrained to be non-negative). However the linear approximations are likely only good approximations near the current simplex, so the linear program is given the further requirement that the solution, which will become x_(j+1), must be within RHO_j from x_j. RHO_j only decreases, never increases. The initial RHO_j is rhobeg and the final RHO_j is rhoend. In this way COBYLA's iterations behave like a trust region algorithm. Additionally, the linear program may be inconsistent, or the approximation may give poor improvement. For details about how these issues are resolved, as well as how the points v_i are updated, refer to the source code or the references below. References ---------- Powell M.J.D. (1994), "A direct search optimization method that models the objective and constraint functions by linear interpolation.", in Advances in Optimization and Numerical Analysis, eds. S. Gomez and J-P Hennart, Kluwer Academic (Dordrecht), pp. 51-67 Powell M.J.D. (1998), "Direct search algorithms for optimization calculations", Acta Numerica 7, 287-336 Powell M.J.D. (2007), "A view of algorithms for optimization without derivatives", Cambridge University Technical Report DAMTP 2007/NA03 Examples -------- Minimize the objective function f(x,y) = x*y subject to the constraints x**2 + y**2 < 1 and y > 0:: >>> def objective(x): ... return x[0]*x[1] ... >>> def constr1(x): ... return 1 - (x[0]**2 + x[1]**2) ... >>> def constr2(x): ... return x[1] ... >>> from scipy.optimize import fmin_cobyla >>> fmin_cobyla(objective, [0.0, 0.1], [constr1, constr2], rhoend=1e-7) array([-0.70710685, 0.70710671]) The exact solution is (-sqrt(2)/2, sqrt(2)/2). """ err = "cons must be a sequence of callable functions or a single"\ " callable function." try: len(cons) except TypeError: if callable(cons): cons = [cons] else: raise TypeError(err) else: for thisfunc in cons: if not callable(thisfunc): raise TypeError(err) if consargs is None: consargs = args # build constraints con = tuple({'type': 'ineq', 'fun': c, 'args': consargs} for c in cons) # options opts = {'rhobeg': rhobeg, 'tol': rhoend, 'disp': disp, 'maxiter': maxfun, 'catol': catol} sol = _minimize_cobyla(func, x0, args, constraints=con, **opts) if disp and not sol['success']: print("COBYLA failed to find a solution: %s" % (sol.message,)) return sol['x']
def binned_statistic_dd(sample, values, statistic='mean', bins=10, range=None, expand_binnumbers=False): """ Compute a multidimensional binned statistic for a set of data. This is a generalization of a histogramdd function. A histogram divides the space into bins, and returns the count of the number of points in each bin. This function allows the computation of the sum, mean, median, or other statistic of the values within each bin. Parameters ---------- sample : array_like Data to histogram passed as a sequence of D arrays of length N, or as an (N,D) array. values : (N,) array_like or list of (N,) array_like The data on which the statistic will be computed. This must be the same shape as `x`, or a list of sequences - each with the same shape as `x`. If `values` is such a list, the statistic will be computed on each independently. statistic : string or callable, optional The statistic to compute (default is 'mean'). The following statistics are available: * 'mean' : compute the mean of values for points within each bin. Empty bins will be represented by NaN. * 'median' : compute the median of values for points within each bin. Empty bins will be represented by NaN. * 'count' : compute the count of points within each bin. This is identical to an unweighted histogram. `values` array is not referenced. * 'sum' : compute the sum of values for points within each bin. This is identical to a weighted histogram. * function : a user-defined function which takes a 1D array of values, and outputs a single numerical statistic. This function will be called on the values in each bin. Empty bins will be represented by function([]), or NaN if this returns an error. bins : sequence or int, optional The bin specification must be in one of the following forms: * A sequence of arrays describing the bin edges along each dimension. * The number of bins for each dimension (nx, ny, ... = bins). * The number of bins for all dimensions (nx = ny = ... = bins). range : sequence, optional A sequence of lower and upper bin edges to be used if the edges are not given explicitely in `bins`. Defaults to the minimum and maximum values along each dimension. expand_binnumbers : bool, optional 'False' (default): the returned `binnumber` is a shape (N,) array of linearized bin indices. 'True': the returned `binnumber` is 'unraveled' into a shape (D,N) ndarray, where each row gives the bin numbers in the corresponding dimension. See the `binnumber` returned value, and the `Examples` section of `binned_statistic_2d`. .. versionadded:: 0.17.0 Returns ------- statistic : ndarray, shape(nx1, nx2, nx3,...) The values of the selected statistic in each two-dimensional bin. bin_edges : list of ndarrays A list of D arrays describing the (nxi + 1) bin edges for each dimension. binnumber : (N,) array of ints or (D,N) ndarray of ints This assigns to each element of `sample` an integer that represents the bin in which this observation falls. The representation depends on the `expand_binnumbers` argument. See `Notes` for details. See Also -------- numpy.digitize, numpy.histogramdd, binned_statistic, binned_statistic_2d Notes ----- Binedges: All but the last (righthand-most) bin is half-open in each dimension. In other words, if `bins` is ``[1, 2, 3, 4]``, then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which *includes* 4. `binnumber`: This returned argument assigns to each element of `sample` an integer that represents the bin in which it belongs. The representation depends on the `expand_binnumbers` argument. If 'False' (default): The returned `binnumber` is a shape (N,) array of linearized indices mapping each element of `sample` to its corresponding bin (using row-major ordering). If 'True': The returned `binnumber` is a shape (D,N) ndarray where each row indicates bin placements for each dimension respectively. In each dimension, a binnumber of `i` means the corresponding value is between (bin_edges[D][i-1], bin_edges[D][i]), for each dimension 'D'. .. versionadded:: 0.11.0 """ known_stats = ['mean', 'median', 'count', 'sum', 'std'] if not callable(statistic) and statistic not in known_stats: raise ValueError('invalid statistic %r' % (statistic,)) # `Ndim` is the number of dimensions (e.g. `2` for `binned_statistic_2d`) # `Dlen` is the length of elements along each dimension. # This code is based on np.histogramdd try: # `sample` is an ND-array. Dlen, Ndim = sample.shape except (AttributeError, ValueError): # `sample` is a sequence of 1D arrays. sample = np.atleast_2d(sample).T Dlen, Ndim = sample.shape # Store initial shape of `values` to preserve it in the output values = np.asarray(values) input_shape = list(values.shape) # Make sure that `values` is 2D to iterate over rows values = np.atleast_2d(values) Vdim, Vlen = values.shape # Make sure `values` match `sample` if(statistic != 'count' and Vlen != Dlen): raise AttributeError('The number of `values` elements must match the ' 'length of each `sample` dimension.') nbin = np.empty(Ndim, int) # Number of bins in each dimension edges = Ndim * [None] # Bin edges for each dim (will be 2D array) dedges = Ndim * [None] # Spacing between edges (will be 2D array) try: M = len(bins) if M != Ndim: raise AttributeError('The dimension of bins must be equal ' 'to the dimension of the sample x.') except TypeError: bins = Ndim * [bins] # Select range for each dimension # Used only if number of bins is given. if range is None: smin = np.atleast_1d(np.array(sample.min(axis=0), float)) smax = np.atleast_1d(np.array(sample.max(axis=0), float)) else: smin = np.zeros(Ndim) smax = np.zeros(Ndim) for i in xrange(Ndim): smin[i], smax[i] = range[i] # Make sure the bins have a finite width. for i in xrange(len(smin)): if smin[i] == smax[i]: smin[i] = smin[i] - .5 smax[i] = smax[i] + .5 # Create edge arrays for i in xrange(Ndim): if np.isscalar(bins[i]): nbin[i] = bins[i] + 2 # +2 for outlier bins edges[i] = np.linspace(smin[i], smax[i], nbin[i] - 1) else: edges[i] = np.asarray(bins[i], float) nbin[i] = len(edges[i]) + 1 # +1 for outlier bins dedges[i] = np.diff(edges[i]) nbin = np.asarray(nbin) # Compute the bin number each sample falls into, in each dimension sampBin = {} for i in xrange(Ndim): sampBin[i] = np.digitize(sample[:, i], edges[i]) # Using `digitize`, values that fall on an edge are put in the right bin. # For the rightmost bin, we want values equal to the right # edge to be counted in the last bin, and not as an outlier. for i in xrange(Ndim): # Find the rounding precision decimal = int(-np.log10(dedges[i].min())) + 6 # Find which points are on the rightmost edge. on_edge = np.where(np.around(sample[:, i], decimal) == np.around(edges[i][-1], decimal))[0] # Shift these points one bin to the left. sampBin[i][on_edge] -= 1 # Compute the sample indices in the flattened statistic matrix. ni = nbin.argsort() # `binnumbers` is which bin (in linearized `Ndim` space) each sample goes binnumbers = np.zeros(Dlen, int) for i in xrange(0, Ndim - 1): binnumbers += sampBin[ni[i]] * nbin[ni[i + 1:]].prod() binnumbers += sampBin[ni[-1]] result = np.empty([Vdim, nbin.prod()], float) if statistic == 'mean': result.fill(np.nan) flatcount = np.bincount(binnumbers, None) a = flatcount.nonzero() for vv in xrange(Vdim): flatsum = np.bincount(binnumbers, values[vv]) result[vv, a] = flatsum[a] / flatcount[a] elif statistic == 'std': result.fill(0) flatcount = np.bincount(binnumbers, None) a = flatcount.nonzero() for vv in xrange(Vdim): flatsum = np.bincount(binnumbers, values[vv]) flatsum2 = np.bincount(binnumbers, values[vv] ** 2) result[vv, a] = np.sqrt(flatsum2[a] / flatcount[a] - (flatsum[a] / flatcount[a]) ** 2) elif statistic == 'count': result.fill(0) flatcount = np.bincount(binnumbers, None) a = np.arange(len(flatcount)) result[:, a] = flatcount[np.newaxis, :] elif statistic == 'sum': result.fill(0) for vv in xrange(Vdim): flatsum = np.bincount(binnumbers, values[vv]) a = np.arange(len(flatsum)) result[vv, a] = flatsum elif statistic == 'median': result.fill(np.nan) for i in np.unique(binnumbers): for vv in xrange(Vdim): result[vv, i] = np.median(values[vv, binnumbers == i]) elif callable(statistic): with warnings.catch_warnings(): # Numpy generates a warnings for mean/std/... with empty list warnings.filterwarnings('ignore', category=RuntimeWarning) old = np.seterr(invalid='ignore') try: null = statistic([]) except: null = np.nan np.seterr(**old) result.fill(null) for i in np.unique(binnumbers): for vv in xrange(Vdim): result[vv, i] = statistic(values[vv, binnumbers == i]) # Shape into a proper matrix result = result.reshape(np.append(Vdim, np.sort(nbin))) for i in xrange(nbin.size): j = ni.argsort()[i] # Accomodate the extra `Vdim` dimension-zero with `+1` result = result.swapaxes(i+1, j+1) ni[i], ni[j] = ni[j], ni[i] # Remove outliers (indices 0 and -1 for each bin-dimension). core = [slice(None)] + Ndim * [slice(1, -1)] result = result[core] # Unravel binnumbers into an ndarray, each row the bins for each dimension if(expand_binnumbers and Ndim > 1): binnumbers = np.asarray(np.unravel_index(binnumbers, nbin)) if np.any(result.shape[1:] != nbin - 2): raise RuntimeError('Internal Shape Error') # Reshape to have output (`reulst`) match input (`values`) shape result = result.reshape(input_shape[:-1] + list(nbin-2)) return BinnedStatisticddResult(result, edges, binnumbers)
def test_nan_and_call(*args, **kwargs): if any((np.isnan(arg).any() for arg in args if not callable(arg))): # call my version return func(*args, **kwargs) # call scipy version return getattr(sci_dist, func.__name__)(*args, **kwargs)
def root(fun, x0, args=(), method='hybr', jac=None, tol=None, callback=None, options=None): """ Find a root of a vector function. Parameters ---------- fun : callable A vector function to find a root of. x0 : ndarray Initial guess. args : tuple, optional Extra arguments passed to the objective function and its Jacobian. method : str, optional Type of solver. Should be one of - 'hybr' :ref:`(see here) <optimize.root-hybr>` - 'lm' :ref:`(see here) <optimize.root-lm>` - 'broyden1' :ref:`(see here) <optimize.root-broyden1>` - 'broyden2' :ref:`(see here) <optimize.root-broyden2>` - 'anderson' :ref:`(see here) <optimize.root-anderson>` - 'linearmixing' :ref:`(see here) <optimize.root-linearmixing>` - 'diagbroyden' :ref:`(see here) <optimize.root-diagbroyden>` - 'excitingmixing' :ref:`(see here) <optimize.root-excitingmixing>` - 'krylov' :ref:`(see here) <optimize.root-krylov>` - 'df-sane' :ref:`(see here) <optimize.root-dfsane>` jac : bool or callable, optional If `jac` is a Boolean and is True, `fun` is assumed to return the value of Jacobian along with the objective function. If False, the Jacobian will be estimated numerically. `jac` can also be a callable returning the Jacobian of `fun`. In this case, it must accept the same arguments as `fun`. tol : float, optional Tolerance for termination. For detailed control, use solver-specific options. callback : function, optional Optional callback function. It is called on every iteration as ``callback(x, f)`` where `x` is the current solution and `f` the corresponding residual. For all methods but 'hybr' and 'lm'. options : dict, optional A dictionary of solver options. E.g. `xtol` or `maxiter`, see :obj:`show_options()` for details. Returns ------- sol : OptimizeResult The solution represented as a ``OptimizeResult`` object. Important attributes are: ``x`` the solution array, ``success`` a Boolean flag indicating if the algorithm exited successfully and ``message`` which describes the cause of the termination. See `OptimizeResult` for a description of other attributes. See also -------- show_options : Additional options accepted by the solvers Notes ----- This section describes the available solvers that can be selected by the 'method' parameter. The default method is *hybr*. Method *hybr* uses a modification of the Powell hybrid method as implemented in MINPACK [1]_. Method *lm* solves the system of nonlinear equations in a least squares sense using a modification of the Levenberg-Marquardt algorithm as implemented in MINPACK [1]_. Method *df-sane* is a derivative-free spectral method. [3]_ Methods *broyden1*, *broyden2*, *anderson*, *linearmixing*, *diagbroyden*, *excitingmixing*, *krylov* are inexact Newton methods, with backtracking or full line searches [2]_. Each method corresponds to a particular Jacobian approximations. See `nonlin` for details. - Method *broyden1* uses Broyden's first Jacobian approximation, it is known as Broyden's good method. - Method *broyden2* uses Broyden's second Jacobian approximation, it is known as Broyden's bad method. - Method *anderson* uses (extended) Anderson mixing. - Method *Krylov* uses Krylov approximation for inverse Jacobian. It is suitable for large-scale problem. - Method *diagbroyden* uses diagonal Broyden Jacobian approximation. - Method *linearmixing* uses a scalar Jacobian approximation. - Method *excitingmixing* uses a tuned diagonal Jacobian approximation. .. warning:: The algorithms implemented for methods *diagbroyden*, *linearmixing* and *excitingmixing* may be useful for specific problems, but whether they will work may depend strongly on the problem. .. versionadded:: 0.11.0 References ---------- .. [1] More, Jorge J., Burton S. Garbow, and Kenneth E. Hillstrom. 1980. User Guide for MINPACK-1. .. [2] C. T. Kelley. 1995. Iterative Methods for Linear and Nonlinear Equations. Society for Industrial and Applied Mathematics. <http://www.siam.org/books/kelley/fr16/index.php> .. [3] W. La Cruz, J.M. Martinez, M. Raydan. Math. Comp. 75, 1429 (2006). Examples -------- The following functions define a system of nonlinear equations and its jacobian. >>> def fun(x): ... return [x[0] + 0.5 * (x[0] - x[1])**3 - 1.0, ... 0.5 * (x[1] - x[0])**3 + x[1]] >>> def jac(x): ... return np.array([[1 + 1.5 * (x[0] - x[1])**2, ... -1.5 * (x[0] - x[1])**2], ... [-1.5 * (x[1] - x[0])**2, ... 1 + 1.5 * (x[1] - x[0])**2]]) A solution can be obtained as follows. >>> from scipy import optimize >>> sol = optimize.root(fun, [0, 0], jac=jac, method='hybr') >>> sol.x array([ 0.8411639, 0.1588361]) """ if not isinstance(args, tuple): args = (args, ) meth = method.lower() if options is None: options = {} if callback is not None and meth in ('hybr', 'lm'): warn('Method %s does not accept callback.' % method, RuntimeWarning) # fun also returns the jacobian if not callable(jac) and meth in ('hybr', 'lm'): if bool(jac): fun = MemoizeJac(fun) jac = fun.derivative else: jac = None # set default tolerances if tol is not None: options = dict(options) if meth in ('hybr', 'lm'): options.setdefault('xtol', tol) elif meth in ('df-sane', ): options.setdefault('ftol', tol) elif meth in ('broyden1', 'broyden2', 'anderson', 'linearmixing', 'diagbroyden', 'excitingmixing', 'krylov'): options.setdefault('xtol', tol) options.setdefault('xatol', np.inf) options.setdefault('ftol', np.inf) options.setdefault('fatol', np.inf) if meth == 'hybr': sol = _root_hybr(fun, x0, args=args, jac=jac, **options) elif meth == 'lm': sol = _root_leastsq(fun, x0, args=args, jac=jac, **options) elif meth == 'df-sane': _warn_jac_unused(jac, method) sol = _root_df_sane(fun, x0, args=args, callback=callback, **options) elif meth in ('broyden1', 'broyden2', 'anderson', 'linearmixing', 'diagbroyden', 'excitingmixing', 'krylov'): _warn_jac_unused(jac, method) sol = _root_nonlin_solve(fun, x0, args=args, jac=jac, _method=meth, _callback=callback, **options) else: raise ValueError('Unknown solver %s' % method) return sol
def minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None): """Minimization of scalar function of one or more variables. In general, the optimization problems are of the form:: minimize f(x) subject to g_i(x) >= 0, i = 1,...,m h_j(x) = 0, j = 1,...,p where x is a vector of one or more variables. ``g_i(x)`` are the inequality constraints. ``h_j(x)`` are the equality constrains. Optionally, the lower and upper bounds for each element in x can also be specified using the `bounds` argument. Parameters ---------- fun : callable The objective function to be minimized. Must be in the form ``f(x, *args)``. The optimizing argument, ``x``, is a 1-D array of points, and ``args`` is a tuple of any additional fixed parameters needed to completely specify the function. x0 : ndarray Initial guess. ``len(x0)`` is the dimensionality of the minimization problem. args : tuple, optional Extra arguments passed to the objective function and its derivatives (Jacobian, Hessian). method : str or callable, optional Type of solver. Should be one of - 'Nelder-Mead' :ref:`(see here) <optimize.minimize-neldermead>` - 'Powell' :ref:`(see here) <optimize.minimize-powell>` - 'CG' :ref:`(see here) <optimize.minimize-cg>` - 'BFGS' :ref:`(see here) <optimize.minimize-bfgs>` - 'Newton-CG' :ref:`(see here) <optimize.minimize-newtoncg>` - 'L-BFGS-B' :ref:`(see here) <optimize.minimize-lbfgsb>` - 'TNC' :ref:`(see here) <optimize.minimize-tnc>` - 'COBYLA' :ref:`(see here) <optimize.minimize-cobyla>` - 'SLSQP' :ref:`(see here) <optimize.minimize-slsqp>` - 'dogleg' :ref:`(see here) <optimize.minimize-dogleg>` - 'trust-ncg' :ref:`(see here) <optimize.minimize-trustncg>` - 'trust-exact' :ref:`(see here) <optimize.minimize-trustexact>` - custom - a callable object (added in version 0.14.0), see below for description. If not given, chosen to be one of ``BFGS``, ``L-BFGS-B``, ``SLSQP``, depending if the problem has constraints or bounds. jac : bool or callable, optional Jacobian (gradient) of objective function. Only for CG, BFGS, Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg. If `jac` is a Boolean and is True, `fun` is assumed to return the gradient along with the objective function. If False, the gradient will be estimated numerically. `jac` can also be a callable returning the gradient of the objective. In this case, it must accept the same arguments as `fun`. hess, hessp : callable, optional Hessian (matrix of second-order derivatives) of objective function or Hessian of objective function times an arbitrary vector p. Only for Newton-CG, dogleg, trust-ncg. Only one of `hessp` or `hess` needs to be given. If `hess` is provided, then `hessp` will be ignored. If neither `hess` nor `hessp` is provided, then the Hessian product will be approximated using finite differences on `jac`. `hessp` must compute the Hessian times an arbitrary vector. bounds : sequence, optional Bounds for variables (only for L-BFGS-B, TNC and SLSQP). ``(min, max)`` pairs for each element in ``x``, defining the bounds on that parameter. Use None for one of ``min`` or ``max`` when there is no bound in that direction. constraints : dict or sequence of dict, optional Constraints definition (only for COBYLA and SLSQP). Each constraint is defined in a dictionary with fields: type : str Constraint type: 'eq' for equality, 'ineq' for inequality. fun : callable The function defining the constraint. jac : callable, optional The Jacobian of `fun` (only for SLSQP). args : sequence, optional Extra arguments to be passed to the function and Jacobian. Equality constraint means that the constraint function result is to be zero whereas inequality means that it is to be non-negative. Note that COBYLA only supports inequality constraints. tol : float, optional Tolerance for termination. For detailed control, use solver-specific options. options : dict, optional A dictionary of solver options. All methods accept the following generic options: maxiter : int Maximum number of iterations to perform. disp : bool Set to True to print convergence messages. For method-specific options, see :func:`show_options()`. callback : callable, optional Called after each iteration, as ``callback(xk)``, where ``xk`` is the current parameter vector. Returns ------- res : OptimizeResult The optimization result represented as a ``OptimizeResult`` object. Important attributes are: ``x`` the solution array, ``success`` a Boolean flag indicating if the optimizer exited successfully and ``message`` which describes the cause of the termination. See `OptimizeResult` for a description of other attributes. See also -------- minimize_scalar : Interface to minimization algorithms for scalar univariate functions show_options : Additional options accepted by the solvers Notes ----- This section describes the available solvers that can be selected by the 'method' parameter. The default method is *BFGS*. **Unconstrained minimization** Method :ref:`Nelder-Mead <optimize.minimize-neldermead>` uses the Simplex algorithm [1]_, [2]_. This algorithm is robust in many applications. However, if numerical computation of derivative can be trusted, other algorithms using the first and/or second derivatives information might be preferred for their better performance in general. Method :ref:`Powell <optimize.minimize-powell>` is a modification of Powell's method [3]_, [4]_ which is a conjugate direction method. It performs sequential one-dimensional minimizations along each vector of the directions set (`direc` field in `options` and `info`), which is updated at each iteration of the main minimization loop. The function need not be differentiable, and no derivatives are taken. Method :ref:`CG <optimize.minimize-cg>` uses a nonlinear conjugate gradient algorithm by Polak and Ribiere, a variant of the Fletcher-Reeves method described in [5]_ pp. 120-122. Only the first derivatives are used. Method :ref:`BFGS <optimize.minimize-bfgs>` uses the quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) [5]_ pp. 136. It uses the first derivatives only. BFGS has proven good performance even for non-smooth optimizations. This method also returns an approximation of the Hessian inverse, stored as `hess_inv` in the OptimizeResult object. Method :ref:`Newton-CG <optimize.minimize-newtoncg>` uses a Newton-CG algorithm [5]_ pp. 168 (also known as the truncated Newton method). It uses a CG method to the compute the search direction. See also *TNC* method for a box-constrained minimization with a similar algorithm. Suitable for large-scale problems. Method :ref:`dogleg <optimize.minimize-dogleg>` uses the dog-leg trust-region algorithm [5]_ for unconstrained minimization. This algorithm requires the gradient and Hessian; furthermore the Hessian is required to be positive definite. Method :ref:`trust-ncg <optimize.minimize-trustncg>` uses the Newton conjugate gradient trust-region algorithm [5]_ for unconstrained minimization. This algorithm requires the gradient and either the Hessian or a function that computes the product of the Hessian with a given vector. Suitable for large-scale problems. Method :ref:`trust-exact <optimize.minimize-trustexact>` is a trust-region method for unconstrained minimization in which quadratic subproblems are solved almost exactly [13]_. This algorithm requires the gradient and the Hessian (which is *not* required to be positive definite). It is, in many situations, the Newton method to converge in fewer iteraction and the most recommended for small and medium-size problems. **Constrained minimization** Method :ref:`L-BFGS-B <optimize.minimize-lbfgsb>` uses the L-BFGS-B algorithm [6]_, [7]_ for bound constrained minimization. Method :ref:`TNC <optimize.minimize-tnc>` uses a truncated Newton algorithm [5]_, [8]_ to minimize a function with variables subject to bounds. This algorithm uses gradient information; it is also called Newton Conjugate-Gradient. It differs from the *Newton-CG* method described above as it wraps a C implementation and allows each variable to be given upper and lower bounds. Method :ref:`COBYLA <optimize.minimize-cobyla>` uses the Constrained Optimization BY Linear Approximation (COBYLA) method [9]_, [10]_, [11]_. The algorithm is based on linear approximations to the objective function and each constraint. The method wraps a FORTRAN implementation of the algorithm. The constraints functions 'fun' may return either a single number or an array or list of numbers. Method :ref:`SLSQP <optimize.minimize-slsqp>` uses Sequential Least SQuares Programming to minimize a function of several variables with any combination of bounds, equality and inequality constraints. The method wraps the SLSQP Optimization subroutine originally implemented by Dieter Kraft [12]_. Note that the wrapper handles infinite values in bounds by converting them into large floating values. **Custom minimizers** It may be useful to pass a custom minimization method, for example when using a frontend to this method such as `scipy.optimize.basinhopping` or a different library. You can simply pass a callable as the ``method`` parameter. The callable is called as ``method(fun, x0, args, **kwargs, **options)`` where ``kwargs`` corresponds to any other parameters passed to `minimize` (such as `callback`, `hess`, etc.), except the `options` dict, which has its contents also passed as `method` parameters pair by pair. Also, if `jac` has been passed as a bool type, `jac` and `fun` are mangled so that `fun` returns just the function values and `jac` is converted to a function returning the Jacobian. The method shall return an ``OptimizeResult`` object. The provided `method` callable must be able to accept (and possibly ignore) arbitrary parameters; the set of parameters accepted by `minimize` may expand in future versions and then these parameters will be passed to the method. You can find an example in the scipy.optimize tutorial. .. versionadded:: 0.11.0 References ---------- .. [1] Nelder, J A, and R Mead. 1965. A Simplex Method for Function Minimization. The Computer Journal 7: 308-13. .. [2] Wright M H. 1996. Direct search methods: Once scorned, now respectable, in Numerical Analysis 1995: Proceedings of the 1995 Dundee Biennial Conference in Numerical Analysis (Eds. D F Griffiths and G A Watson). Addison Wesley Longman, Harlow, UK. 191-208. .. [3] Powell, M J D. 1964. An efficient method for finding the minimum of a function of several variables without calculating derivatives. The Computer Journal 7: 155-162. .. [4] Press W, S A Teukolsky, W T Vetterling and B P Flannery. Numerical Recipes (any edition), Cambridge University Press. .. [5] Nocedal, J, and S J Wright. 2006. Numerical Optimization. Springer New York. .. [6] Byrd, R H and P Lu and J. Nocedal. 1995. A Limited Memory Algorithm for Bound Constrained Optimization. SIAM Journal on Scientific and Statistical Computing 16 (5): 1190-1208. .. [7] Zhu, C and R H Byrd and J Nocedal. 1997. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization. ACM Transactions on Mathematical Software 23 (4): 550-560. .. [8] Nash, S G. Newton-Type Minimization Via the Lanczos Method. 1984. SIAM Journal of Numerical Analysis 21: 770-778. .. [9] Powell, M J D. A direct search optimization method that models the objective and constraint functions by linear interpolation. 1994. Advances in Optimization and Numerical Analysis, eds. S. Gomez and J-P Hennart, Kluwer Academic (Dordrecht), 51-67. .. [10] Powell M J D. Direct search algorithms for optimization calculations. 1998. Acta Numerica 7: 287-336. .. [11] Powell M J D. A view of algorithms for optimization without derivatives. 2007.Cambridge University Technical Report DAMTP 2007/NA03 .. [12] Kraft, D. A software package for sequential quadratic programming. 1988. Tech. Rep. DFVLR-FB 88-28, DLR German Aerospace Center -- Institute for Flight Mechanics, Koln, Germany. .. [13] Conn, A. R., Gould, N. I., and Toint, P. L. Trust region methods. 2000. Siam. pp. 169-200. Examples -------- Let us consider the problem of minimizing the Rosenbrock function. This function (and its respective derivatives) is implemented in `rosen` (resp. `rosen_der`, `rosen_hess`) in the `scipy.optimize`. >>> from scipy.optimize import minimize, rosen, rosen_der A simple application of the *Nelder-Mead* method is: >>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2] >>> res = minimize(rosen, x0, method='Nelder-Mead', tol=1e-6) >>> res.x array([ 1., 1., 1., 1., 1.]) Now using the *BFGS* algorithm, using the first derivative and a few options: >>> res = minimize(rosen, x0, method='BFGS', jac=rosen_der, ... options={'gtol': 1e-6, 'disp': True}) Optimization terminated successfully. Current function value: 0.000000 Iterations: 33 Function evaluations: 35 Gradient evaluations: 35 >>> res.x array([ 1., 1., 1., 1., 1.]) >>> print(res.message) Optimization terminated successfully. >>> res.hess_inv array([[ 0.00749589, 0.01255155, 0.02396251, 0.04750988, 0.09495377], # may vary [ 0.01255155, 0.02510441, 0.04794055, 0.09502834, 0.18996269], [ 0.02396251, 0.04794055, 0.09631614, 0.19092151, 0.38165151], [ 0.04750988, 0.09502834, 0.19092151, 0.38341252, 0.7664427 ], [ 0.09495377, 0.18996269, 0.38165151, 0.7664427, 1.53713523]]) Next, consider a minimization problem with several constraints (namely Example 16.4 from [5]_). The objective function is: >>> fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2 There are three constraints defined as: >>> cons = ({'type': 'ineq', 'fun': lambda x: x[0] - 2 * x[1] + 2}, ... {'type': 'ineq', 'fun': lambda x: -x[0] - 2 * x[1] + 6}, ... {'type': 'ineq', 'fun': lambda x: -x[0] + 2 * x[1] + 2}) And variables must be positive, hence the following bounds: >>> bnds = ((0, None), (0, None)) The optimization problem is solved using the SLSQP method as: >>> res = minimize(fun, (2, 0), method='SLSQP', bounds=bnds, ... constraints=cons) It should converge to the theoretical solution (1.4 ,1.7). """ x0 = np.asarray(x0) if x0.dtype.kind in np.typecodes["AllInteger"]: x0 = np.asarray(x0, dtype=float) if not isinstance(args, tuple): args = (args,) if method is None: # Select automatically if constraints: method = 'SLSQP' elif bounds is not None: method = 'L-BFGS-B' else: method = 'BFGS' if callable(method): meth = "_custom" else: meth = method.lower() if options is None: options = {} # check if optional parameters are supported by the selected method # - jac if meth in ['nelder-mead', 'powell', 'cobyla'] and bool(jac): warn('Method %s does not use gradient information (jac).' % method, RuntimeWarning) # - hess if meth not in ('newton-cg', 'dogleg', 'trust-ncg', 'trust-exact', '_custom') and hess is not None: warn('Method %s does not use Hessian information (hess).' % method, RuntimeWarning) # - hessp if meth not in ('newton-cg', 'dogleg', 'trust-ncg', '_custom') and hessp is not None: warn('Method %s does not use Hessian-vector product ' 'information (hessp).' % method, RuntimeWarning) # - constraints or bounds if (meth in ['nelder-mead', 'powell', 'cg', 'bfgs', 'newton-cg', 'dogleg', 'trust-ncg'] and (bounds is not None or np.any(constraints))): warn('Method %s cannot handle constraints nor bounds.' % method, RuntimeWarning) if meth in ['l-bfgs-b', 'tnc'] and np.any(constraints): warn('Method %s cannot handle constraints.' % method, RuntimeWarning) if meth == 'cobyla' and bounds is not None: warn('Method %s cannot handle bounds.' % method, RuntimeWarning) # - callback if (meth in ['cobyla'] and callback is not None): warn('Method %s does not support callback.' % method, RuntimeWarning) # - return_all if (meth in ['l-bfgs-b', 'tnc', 'cobyla', 'slsqp'] and options.get('return_all', False)): warn('Method %s does not support the return_all option.' % method, RuntimeWarning) # fun also returns the jacobian if not callable(jac): if bool(jac): fun = MemoizeJac(fun) jac = fun.derivative else: jac = None # set default tolerances if tol is not None: options = dict(options) if meth == 'nelder-mead': options.setdefault('xatol', tol) options.setdefault('fatol', tol) if meth in ['newton-cg', 'powell', 'tnc']: options.setdefault('xtol', tol) if meth in ['powell', 'l-bfgs-b', 'tnc', 'slsqp']: options.setdefault('ftol', tol) if meth in ['bfgs', 'cg', 'l-bfgs-b', 'tnc', 'dogleg', 'trust-ncg', 'trust-exact']: options.setdefault('gtol', tol) if meth in ['cobyla', '_custom']: options.setdefault('tol', tol) if meth == '_custom': return method(fun, x0, args=args, jac=jac, hess=hess, hessp=hessp, bounds=bounds, constraints=constraints, callback=callback, **options) elif meth == 'nelder-mead': return _minimize_neldermead(fun, x0, args, callback, **options) elif meth == 'powell': return _minimize_powell(fun, x0, args, callback, **options) elif meth == 'cg': return _minimize_cg(fun, x0, args, jac, callback, **options) elif meth == 'bfgs': return _minimize_bfgs(fun, x0, args, jac, callback, **options) elif meth == 'newton-cg': return _minimize_newtoncg(fun, x0, args, jac, hess, hessp, callback, **options) elif meth == 'l-bfgs-b': return _minimize_lbfgsb(fun, x0, args, jac, bounds, callback=callback, **options) elif meth == 'tnc': return _minimize_tnc(fun, x0, args, jac, bounds, callback=callback, **options) elif meth == 'cobyla': return _minimize_cobyla(fun, x0, args, constraints, **options) elif meth == 'slsqp': return _minimize_slsqp(fun, x0, args, jac, bounds, constraints, callback=callback, **options) elif meth == 'dogleg': return _minimize_dogleg(fun, x0, args, jac, hess, callback=callback, **options) elif meth == 'trust-ncg': return _minimize_trust_ncg(fun, x0, args, jac, hess, hessp, callback=callback, **options) elif meth == 'trust-exact': return _minimize_trustregion_exact(fun, x0, args, jac, hess, callback=callback, **options) else: raise ValueError('Unknown solver %s' % method)
class Rbf(object): """ Rbf(*args) A class for radial basis function approximation/interpolation of n-dimensional scattered data. Parameters ---------- *args : arrays x, y, z, ..., d, where x, y, z, ... are the coordinates of the nodes and d is the array of values at the nodes function : str or callable, optional The radial basis function, based on the radius, r, given by the norm (default is Euclidean distance); the default is 'multiquadric':: 'multiquadric': sqrt((r/self.epsilon)**2 + 1) 'inverse': 1.0/sqrt((r/self.epsilon)**2 + 1) 'gaussian': exp(-(r/self.epsilon)**2) 'linear': r 'cubic': r**3 'quintic': r**5 'thin_plate': r**2 * log(r) If callable, then it must take 2 arguments (self, r). The epsilon parameter will be available as self.epsilon. Other keyword arguments passed in will be available as well. epsilon : float, optional Adjustable constant for gaussian or multiquadrics functions - defaults to approximate average distance between nodes (which is a good start). smooth : float, optional Values greater than zero increase the smoothness of the approximation. 0 is for interpolation (default), the function will always go through the nodal points in this case. norm : callable, optional A function that returns the 'distance' between two points, with inputs as arrays of positions (x, y, z, ...), and an output as an array of distance. E.g, the default:: def euclidean_norm(x1, x2): return sqrt( ((x1 - x2)**2).sum(axis=0) ) which is called with x1=x1ndims,newaxis,:] and x2=x2ndims,:,newaxis] such that the result is a matrix of the distances from each point in x1 to each point in x2. Examples -------- >>> from scipy.interpolate import Rbf >>> x, y, z, d = np.random.rand(4, 50) >>> rbfi = Rbf(x, y, z, d) # radial basis function interpolator instance >>> xi = yi = zi = np.linspace(0, 1, 20) >>> di = rbfi(xi, yi, zi) # interpolated values >>> di.shape (20,) """ def _euclidean_norm(self, x1, x2): return np.sqrt(((x1 - x2)**2).sum(axis=0)) def _h_multiquadric(self, r): return np.sqrt((1.0/self.epsilon*r)**2 + 1) def _h_inverse_multiquadric(self, r): return 1.0/np.sqrt((1.0/self.epsilon*r)**2 + 1) def _h_gaussian(self, r): return np.exp(-(1.0/self.epsilon*r)**2) def _h_linear(self, r): return r def _h_cubic(self, r): return r**3 def _h_quintic(self, r): return r**5 def _h_thin_plate(self, r): return xlogy(r**2, r) # Setup self._function and do smoke test on initial r def _init_function(self, r): if isinstance(self.function, str): self.function = self.function.lower() _mapped = {'inverse': 'inverse_multiquadric', 'inverse multiquadric': 'inverse_multiquadric', 'thin-plate': 'thin_plate'} if self.function in _mapped: self.function = _mappedself.function] func_name = "_h_" + self.function if hasattr(self, func_name): self._function = getattr(self, func_name) else: functionlist = x3:] for x in dir(self) if x.startswith('_h_')] raise ValueError("function must be a callable or one of " + ", ".join(functionlist)) self._function = getattr(self, "_h_"+self.function) elif callable(self.function): allow_one = False if hasattr(self.function, 'func_code') or \ hasattr(self.function, '__code__'): val = self.function allow_one = True elif hasattr(self.function, "im_func"): val = get_method_function(self.function) elif hasattr(self.function, "__call__"): val = get_method_function(self.function.__call__) else: raise ValueError("Cannot determine number of arguments to function") argcount = get_function_code(val).co_argcount if allow_one and argcount == 1: self._function = self.function elif argcount == 2: if sys.version_info0] >= 3: self._function = self.function.__get__(self, Rbf) else: import new self._function = new.instancemethod(self.function, self, Rbf)
def binned_statistic_dd(sample, values, statistic='mean', bins=10, range=None): """ Compute a multidimensional binned statistic for a set of data. This is a generalization of a histogramdd function. A histogram divides the space into bins, and returns the count of the number of points in each bin. This function allows the computation of the sum, mean, median, or other statistic of the values within each bin. Parameters ---------- sample : array_like Data to histogram passed as a sequence of D arrays of length N, or as an (N,D) array. values : array_like The values on which the statistic will be computed. This must be the same shape as x. statistic : string or callable, optional The statistic to compute (default is 'mean'). The following statistics are available: * 'mean' : compute the mean of values for points within each bin. Empty bins will be represented by NaN. * 'median' : compute the median of values for points within each bin. Empty bins will be represented by NaN. * 'count' : compute the count of points within each bin. This is identical to an unweighted histogram. `values` array is not referenced. * 'sum' : compute the sum of values for points within each bin. This is identical to a weighted histogram. * function : a user-defined function which takes a 1D array of values, and outputs a single numerical statistic. This function will be called on the values in each bin. Empty bins will be represented by function([]), or NaN if this returns an error. bins : sequence or int, optional The bin specification: * A sequence of arrays describing the bin edges along each dimension. * The number of bins for each dimension (nx, ny, ... =bins) * The number of bins for all dimensions (nx=ny=...=bins). range : sequence, optional A sequence of lower and upper bin edges to be used if the edges are not given explicitely in `bins`. Defaults to the minimum and maximum values along each dimension. Returns ------- statistic : ndarray, shape(nx1, nx2, nx3,...) The values of the selected statistic in each two-dimensional bin bin_edges : list of ndarrays A list of D arrays describing the (nxi + 1) bin edges for each dimension binnumber : 1-D ndarray of ints This assigns to each observation an integer that represents the bin in which this observation falls. Array has the same length as values. See Also -------- np.histogramdd, binned_statistic, binned_statistic_2d Notes ----- .. versionadded:: 0.11.0 """ known_stats = ['mean', 'median', 'count', 'sum', 'std'] if not callable(statistic) and statistic not in known_stats: raise ValueError('invalid statistic %r' % (statistic,)) # This code is based on np.histogramdd try: # Sample is an ND-array. N, D = sample.shape except (AttributeError, ValueError): # Sample is a sequence of 1D arrays. sample = np.atleast_2d(sample).T N, D = sample.shape nbin = np.empty(D, int) edges = D * [None] dedges = D * [None] try: M = len(bins) if M != D: raise AttributeError('The dimension of bins must be equal ' 'to the dimension of the sample x.') except TypeError: bins = D * [bins] # Select range for each dimension # Used only if number of bins is given. if range is None: smin = np.atleast_1d(np.array(sample.min(0), float)) smax = np.atleast_1d(np.array(sample.max(0), float)) else: smin = np.zeros(D) smax = np.zeros(D) for i in np.arange(D): smin[i], smax[i] = range[i] # Make sure the bins have a finite width. for i in np.arange(len(smin)): if smin[i] == smax[i]: smin[i] = smin[i] - .5 smax[i] = smax[i] + .5 # Create edge arrays for i in np.arange(D): if np.isscalar(bins[i]): nbin[i] = bins[i] + 2 # +2 for outlier bins edges[i] = np.linspace(smin[i], smax[i], nbin[i] - 1) else: edges[i] = np.asarray(bins[i], float) nbin[i] = len(edges[i]) + 1 # +1 for outlier bins dedges[i] = np.diff(edges[i]) nbin = np.asarray(nbin) # Compute the bin number each sample falls into. Ncount = {} for i in np.arange(D): Ncount[i] = np.digitize(sample[:, i], edges[i]) # Using digitize, values that fall on an edge are put in the right bin. # For the rightmost bin, we want values equal to the right # edge to be counted in the last bin, and not as an outlier. for i in np.arange(D): # Rounding precision decimal = int(-np.log10(dedges[i].min())) + 6 # Find which points are on the rightmost edge. on_edge = np.where(np.around(sample[:, i], decimal) == np.around(edges[i][-1], decimal))[0] # Shift these points one bin to the left. Ncount[i][on_edge] -= 1 # Compute the sample indices in the flattened statistic matrix. ni = nbin.argsort() xy = np.zeros(N, int) for i in np.arange(0, D - 1): xy += Ncount[ni[i]] * nbin[ni[i + 1:]].prod() xy += Ncount[ni[-1]] result = np.empty(nbin.prod(), float) if statistic == 'mean': result.fill(np.nan) flatcount = np.bincount(xy, None) flatsum = np.bincount(xy, values) a = flatcount.nonzero() result[a] = flatsum[a] / flatcount[a] elif statistic == 'std': result.fill(0) flatcount = np.bincount(xy, None) flatsum = np.bincount(xy, values) flatsum2 = np.bincount(xy, values ** 2) a = flatcount.nonzero() result[a] = np.sqrt(flatsum2[a] / flatcount[a] - (flatsum[a] / flatcount[a]) ** 2) elif statistic == 'count': result.fill(0) flatcount = np.bincount(xy, None) a = np.arange(len(flatcount)) result[a] = flatcount elif statistic == 'sum': result.fill(0) flatsum = np.bincount(xy, values) a = np.arange(len(flatsum)) result[a] = flatsum elif statistic == 'median': result.fill(np.nan) for i in np.unique(xy): result[i] = np.median(values[xy == i]) elif callable(statistic): with warnings.catch_warnings(): # Numpy generates a warnings for mean/std/... with empty list warnings.filterwarnings('ignore', category=RuntimeWarning) old = np.seterr(invalid='ignore') try: null = statistic([]) except: null = np.nan np.seterr(**old) result.fill(null) for i in np.unique(xy): result[i] = statistic(values[xy == i]) # Shape into a proper matrix result = result.reshape(np.sort(nbin)) for i in np.arange(nbin.size): j = ni.argsort()[i] result = result.swapaxes(i, j) ni[i], ni[j] = ni[j], ni[i] # Remove outliers (indices 0 and -1 for each dimension). core = D * [slice(1, -1)] result = result[core] if (result.shape != nbin - 2).any(): raise RuntimeError('Internal Shape Error') return BinnedStatisticddResult(result, edges, xy)
def schur(a, output='real', lwork=None, overwrite_a=False, sort=None, check_finite=True): """ Compute Schur decomposition of a matrix. The Schur decomposition is:: A = Z T Z^H where Z is unitary and T is either upper-triangular, or for real Schur decomposition (output='real'), quasi-upper triangular. In the quasi-triangular form, 2x2 blocks describing complex-valued eigenvalue pairs may extrude from the diagonal. Parameters ---------- a : (M, M) array_like Matrix to decompose output : {'real', 'complex'}, optional Construct the real or complex Schur decomposition (for real matrices). lwork : int, optional Work array size. If None or -1, it is automatically computed. overwrite_a : bool, optional Whether to overwrite data in a (may improve performance). sort : {None, callable, 'lhp', 'rhp', 'iuc', 'ouc'}, optional Specifies whether the upper eigenvalues should be sorted. A callable may be passed that, given a eigenvalue, returns a boolean denoting whether the eigenvalue should be sorted to the top-left (True). Alternatively, string parameters may be used:: 'lhp' Left-hand plane (x.real < 0.0) 'rhp' Right-hand plane (x.real > 0.0) 'iuc' Inside the unit circle (x*x.conjugate() <= 1.0) 'ouc' Outside the unit circle (x*x.conjugate() > 1.0) Defaults to None (no sorting). check_finite : boolean, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns ------- T : (M, M) ndarray Schur form of A. It is real-valued for the real Schur decomposition. Z : (M, M) ndarray An unitary Schur transformation matrix for A. It is real-valued for the real Schur decomposition. sdim : int If and only if sorting was requested, a third return value will contain the number of eigenvalues satisfying the sort condition. Raises ------ LinAlgError Error raised under three conditions: 1. The algorithm failed due to a failure of the QR algorithm to compute all eigenvalues 2. If eigenvalue sorting was requested, the eigenvalues could not be reordered due to a failure to separate eigenvalues, usually because of poor conditioning 3. If eigenvalue sorting was requested, roundoff errors caused the leading eigenvalues to no longer satisfy the sorting condition See also -------- rsf2csf : Convert real Schur form to complex Schur form """ if output not in ['real','complex','r','c']: raise ValueError("argument must be 'real', or 'complex'") if check_finite: a1 = asarray_chkfinite(a) else: a1 = asarray(a) if len(a1.shape) != 2 or (a1.shape[0] != a1.shape[1]): raise ValueError('expected square matrix') typ = a1.dtype.char if output in ['complex','c'] and typ not in ['F','D']: if typ in _double_precision: a1 = a1.astype('D') typ = 'D' else: a1 = a1.astype('F') typ = 'F' overwrite_a = overwrite_a or (_datacopied(a1, a)) gees, = get_lapack_funcs(('gees',), (a1,)) if lwork is None or lwork == -1: # get optimal work array result = gees(lambda x: None, a1, lwork=-1) lwork = result[-2][0].real.astype(numpy.int) if sort is None: sort_t = 0 sfunction = lambda x: None else: sort_t = 1 if callable(sort): sfunction = sort elif sort == 'lhp': sfunction = lambda x: (numpy.real(x) < 0.0) elif sort == 'rhp': sfunction = lambda x: (numpy.real(x) >= 0.0) elif sort == 'iuc': sfunction = lambda x: (abs(x) <= 1.0) elif sort == 'ouc': sfunction = lambda x: (abs(x) > 1.0) else: raise ValueError("sort parameter must be None, a callable, or " + "one of ('lhp','rhp','iuc','ouc')") result = gees(sfunction, a1, lwork=lwork, overwrite_a=overwrite_a, sort_t=sort_t) info = result[-1] if info < 0: raise ValueError('illegal value in %d-th argument of internal gees' % -info) elif info == a1.shape[0] + 1: raise LinAlgError('Eigenvalues could not be separated for reordering.') elif info == a1.shape[0] + 2: raise LinAlgError('Leading eigenvalues do not satisfy sort condition.') elif info > 0: raise LinAlgError("Schur form not found. Possibly ill-conditioned.") if sort_t == 0: return result[0], result[-3] else: return result[0], result[-3], result[1]
def fmin_cobyla(func, x0, cons, args=(), consargs=None, rhobeg=1.0, rhoend=1e-4, iprint=1, maxfun=1000, disp=None, catol=2e-4): """ Minimize a function using the Constrained Optimization BY Linear Approximation (COBYLA) method. This method wraps a FORTRAN implementation of the algorithm. Parameters ---------- func : callable Function to minimize. In the form func(x, \\*args). x0 : ndarray Initial guess. cons : sequence Constraint functions; must all be ``>=0`` (a single function if only 1 constraint). Each function takes the parameters `x` as its first argument, and it can return either a single number or an array or list of numbers. args : tuple, optional Extra arguments to pass to function. consargs : tuple, optional Extra arguments to pass to constraint functions (default of None means use same extra arguments as those passed to func). Use ``()`` for no extra arguments. rhobeg : float, optional Reasonable initial changes to the variables. rhoend : float, optional Final accuracy in the optimization (not precisely guaranteed). This is a lower bound on the size of the trust region. iprint : {0, 1, 2, 3}, optional Controls the frequency of output; 0 implies no output. Deprecated. disp : {0, 1, 2, 3}, optional Over-rides the iprint interface. Preferred. maxfun : int, optional Maximum number of function evaluations. catol : float, optional Absolute tolerance for constraint violations. Returns ------- x : ndarray The argument that minimises `f`. See also -------- minimize: Interface to minimization algorithms for multivariate functions. See the 'COBYLA' `method` in particular. Notes ----- This algorithm is based on linear approximations to the objective function and each constraint. We briefly describe the algorithm. Suppose the function is being minimized over k variables. At the jth iteration the algorithm has k+1 points v_1, ..., v_(k+1), an approximate solution x_j, and a radius RHO_j. (i.e. linear plus a constant) approximations to the objective function and constraint functions such that their function values agree with the linear approximation on the k+1 points v_1,.., v_(k+1). This gives a linear program to solve (where the linear approximations of the constraint functions are constrained to be non-negative). However the linear approximations are likely only good approximations near the current simplex, so the linear program is given the further requirement that the solution, which will become x_(j+1), must be within RHO_j from x_j. RHO_j only decreases, never increases. The initial RHO_j is rhobeg and the final RHO_j is rhoend. In this way COBYLA's iterations behave like a trust region algorithm. Additionally, the linear program may be inconsistent, or the approximation may give poor improvement. For details about how these issues are resolved, as well as how the points v_i are updated, refer to the source code or the references below. References ---------- Powell M.J.D. (1994), "A direct search optimization method that models the objective and constraint functions by linear interpolation.", in Advances in Optimization and Numerical Analysis, eds. S. Gomez and J-P Hennart, Kluwer Academic (Dordrecht), pp. 51-67 Powell M.J.D. (1998), "Direct search algorithms for optimization calculations", Acta Numerica 7, 287-336 Powell M.J.D. (2007), "A view of algorithms for optimization without derivatives", Cambridge University Technical Report DAMTP 2007/NA03 Examples -------- Minimize the objective function f(x,y) = x*y subject to the constraints x**2 + y**2 < 1 and y > 0:: >>> def objective(x): ... return x[0]*x[1] ... >>> def constr1(x): ... return 1 - (x[0]**2 + x[1]**2) ... >>> def constr2(x): ... return x[1] ... >>> from scipy.optimize import fmin_cobyla >>> fmin_cobyla(objective, [0.0, 0.1], [constr1, constr2], rhoend=1e-7) array([-0.70710685, 0.70710671]) The exact solution is (-sqrt(2)/2, sqrt(2)/2). """ err = "cons must be a sequence of callable functions or a single"\ " callable function." try: len(cons) except TypeError: if callable(cons): cons = [cons] else: raise TypeError(err) else: for thisfunc in cons: if not callable(thisfunc): raise TypeError(err) if consargs is None: consargs = args # build constraints con = tuple({'type': 'ineq', 'fun': c, 'args': consargs} for c in cons) # options if disp is not None: iprint = disp opts = {'rhobeg': rhobeg, 'tol': rhoend, 'iprint': iprint, 'disp': iprint != 0, 'maxiter': maxfun, 'catol': catol} sol = _minimize_cobyla(func, x0, args, constraints=con, **opts) if iprint > 0 and not sol['success']: print("COBYLA failed to find a solution: %s" % (sol.message,)) return sol['x']
def binned_statistic_dd(sample, values, statistic='mean', bins=10, range=None): """ Compute a multidimensional binned statistic for a set of data. This is a generalization of a histogramdd function. A histogram divides the space into bins, and returns the count of the number of points in each bin. This function allows the computation of the sum, mean, median, or other statistic of the values within each bin. Parameters ---------- sample : array_like Data to histogram passed as a sequence of D arrays of length N, or as an (N,D) array. values : array_like The values on which the statistic will be computed. This must be the same shape as x. statistic : string or callable, optional The statistic to compute (default is 'mean'). The following statistics are available: * 'mean' : compute the mean of values for points within each bin. Empty bins will be represented by NaN. * 'median' : compute the median of values for points within each bin. Empty bins will be represented by NaN. * 'count' : compute the count of points within each bin. This is identical to an unweighted histogram. `values` array is not referenced. * 'sum' : compute the sum of values for points within each bin. This is identical to a weighted histogram. * function : a user-defined function which takes a 1D array of values, and outputs a single numerical statistic. This function will be called on the values in each bin. Empty bins will be represented by function([]), or NaN if this returns an error. bins : sequence or int, optional The bin specification: * A sequence of arrays describing the bin edges along each dimension. * The number of bins for each dimension (nx, ny, ... =bins) * The number of bins for all dimensions (nx=ny=...=bins). range : sequence, optional A sequence of lower and upper bin edges to be used if the edges are not given explicitely in `bins`. Defaults to the minimum and maximum values along each dimension. Returns ------- statistic : ndarray, shape(nx1, nx2, nx3,...) The values of the selected statistic in each two-dimensional bin edges : list of ndarrays A list of D arrays describing the (nxi + 1) bin edges for each dimension binnumber : 1-D ndarray of ints This assigns to each observation an integer that represents the bin in which this observation falls. Array has the same length as values. See Also -------- np.histogramdd, binned_statistic, binned_statistic_2d Notes ----- .. versionadded:: 0.11.0 """ if type(statistic) == str: if statistic not in ['mean', 'median', 'count', 'sum', 'std']: raise ValueError('unrecognized statistic "%s"' % statistic) elif callable(statistic): pass else: raise ValueError("statistic not understood") # This code is based on np.histogramdd try: # Sample is an ND-array. N, D = sample.shape except (AttributeError, ValueError): # Sample is a sequence of 1D arrays. sample = np.atleast_2d(sample).T N, D = sample.shape nbin = np.empty(D, int) edges = D * [None] dedges = D * [None] try: M = len(bins) if M != D: raise AttributeError('The dimension of bins must be equal ' 'to the dimension of the sample x.') except TypeError: bins = D * [bins] # Select range for each dimension # Used only if number of bins is given. if range is None: smin = np.atleast_1d(np.array(sample.min(0), float)) smax = np.atleast_1d(np.array(sample.max(0), float)) else: smin = np.zeros(D) smax = np.zeros(D) for i in np.arange(D): smin[i], smax[i] = range[i] # Make sure the bins have a finite width. for i in np.arange(len(smin)): if smin[i] == smax[i]: smin[i] = smin[i] - .5 smax[i] = smax[i] + .5 # Create edge arrays for i in np.arange(D): if np.isscalar(bins[i]): nbin[i] = bins[i] + 2 # +2 for outlier bins edges[i] = np.linspace(smin[i], smax[i], nbin[i] - 1) else: edges[i] = np.asarray(bins[i], float) nbin[i] = len(edges[i]) + 1 # +1 for outlier bins dedges[i] = np.diff(edges[i]) nbin = np.asarray(nbin) # Compute the bin number each sample falls into. Ncount = {} for i in np.arange(D): Ncount[i] = np.digitize(sample[:, i], edges[i]) # Using digitize, values that fall on an edge are put in the right bin. # For the rightmost bin, we want values equal to the right # edge to be counted in the last bin, and not as an outlier. for i in np.arange(D): # Rounding precision decimal = int(-np.log10(dedges[i].min())) + 6 # Find which points are on the rightmost edge. on_edge = np.where( np.around(sample[:, i], decimal) == np.around( edges[i][-1], decimal))[0] # Shift these points one bin to the left. Ncount[i][on_edge] -= 1 # Compute the sample indices in the flattened statistic matrix. ni = nbin.argsort() xy = np.zeros(N, int) for i in np.arange(0, D - 1): xy += Ncount[ni[i]] * nbin[ni[i + 1:]].prod() xy += Ncount[ni[-1]] result = np.empty(nbin.prod(), float) if statistic == 'mean': result.fill(np.nan) flatcount = np.bincount(xy, None) flatsum = np.bincount(xy, values) a = flatcount.nonzero() result[a] = flatsum[a] / flatcount[a] elif statistic == 'std': result.fill(0) flatcount = np.bincount(xy, None) flatsum = np.bincount(xy, values) flatsum2 = np.bincount(xy, values**2) a = flatcount.nonzero() result[a] = np.sqrt(flatsum2[a] / flatcount[a] - (flatsum[a] / flatcount[a])**2) elif statistic == 'count': result.fill(0) flatcount = np.bincount(xy, None) a = np.arange(len(flatcount)) result[a] = flatcount elif statistic == 'sum': result.fill(0) flatsum = np.bincount(xy, values) a = np.arange(len(flatsum)) result[a] = flatsum elif statistic == 'median': result.fill(np.nan) for i in np.unique(xy): result[i] = np.median(values[xy == i]) elif callable(statistic): with warnings.catch_warnings(): # Numpy generates a warnings for mean/std/... with empty list warnings.filterwarnings('ignore', category=RuntimeWarning) old = np.seterr(invalid='ignore') try: null = statistic([]) except: null = np.nan np.seterr(**old) result.fill(null) for i in np.unique(xy): result[i] = statistic(values[xy == i]) # Shape into a proper matrix result = result.reshape(np.sort(nbin)) for i in np.arange(nbin.size): j = ni.argsort()[i] result = result.swapaxes(i, j) ni[i], ni[j] = ni[j], ni[i] # Remove outliers (indices 0 and -1 for each dimension). core = D * [slice(1, -1)] result = result[core] if (result.shape != nbin - 2).any(): raise RuntimeError('Internal Shape Error') return result, edges, xy
def asjacobian(J): """ Convert given object to one suitable for use as a Jacobian. """ spsolve = scipy.sparse.linalg.spsolve if isinstance(J, Jacobian): return J elif inspect.isclass(J) and issubclass(J, Jacobian): return J() elif isinstance(J, np.ndarray): if J.ndim > 2: raise ValueError('array must have rank <= 2') J = np.atleast_2d(np.asarray(J)) if J.shape[0] != J.shape[1]: raise ValueError('array must be square') return Jacobian(matvec=lambda v: dot(J, v), rmatvec=lambda v: dot(J.conj().T, v), solve=lambda v: solve(J, v), rsolve=lambda v: solve(J.conj().T, v), dtype=J.dtype, shape=J.shape) elif scipy.sparse.isspmatrix(J): if J.shape[0] != J.shape[1]: raise ValueError('matrix must be square') return Jacobian(matvec=lambda v: J*v, rmatvec=lambda v: J.conj().T * v, solve=lambda v: spsolve(J, v), rsolve=lambda v: spsolve(J.conj().T, v), dtype=J.dtype, shape=J.shape) elif hasattr(J, 'shape') and hasattr(J, 'dtype') and hasattr(J, 'solve'): return Jacobian(matvec=getattr(J, 'matvec'), rmatvec=getattr(J, 'rmatvec'), solve=J.solve, rsolve=getattr(J, 'rsolve'), update=getattr(J, 'update'), setup=getattr(J, 'setup'), dtype=J.dtype, shape=J.shape) elif callable(J): # Assume it's a function J(x) that returns the Jacobian class Jac(Jacobian): def update(self, x, F): self.x = x def solve(self, v, tol=0): m = J(self.x) if isinstance(m, np.ndarray): return solve(m, v) elif scipy.sparse.isspmatrix(m): return spsolve(m, v) else: raise ValueError("Unknown matrix type") def matvec(self, v): m = J(self.x) if isinstance(m, np.ndarray): return dot(m, v) elif scipy.sparse.isspmatrix(m): return m*v else: raise ValueError("Unknown matrix type") def rsolve(self, v, tol=0): m = J(self.x) if isinstance(m, np.ndarray): return solve(m.conj().T, v) elif scipy.sparse.isspmatrix(m): return spsolve(m.conj().T, v) else: raise ValueError("Unknown matrix type") def rmatvec(self, v): m = J(self.x) if isinstance(m, np.ndarray): return dot(m.conj().T, v) elif scipy.sparse.isspmatrix(m): return m.conj().T * v else: raise ValueError("Unknown matrix type") return Jac() elif isinstance(J, str): return dict(broyden1=BroydenFirst, broyden2=BroydenSecond, anderson=Anderson, diagbroyden=DiagBroyden, linearmixing=LinearMixing, excitingmixing=ExcitingMixing, krylov=KrylovJacobian)[J]() else: raise TypeError('Cannot convert object to a Jacobian')
def minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None): """Minimization of scalar function of one or more variables. Parameters ---------- fun : callable The objective function to be minimized. ``fun(x, *args) -> float`` where x is an 1-D array with shape (n,) and `args` is a tuple of the fixed parameters needed to completely specify the function. x0 : ndarray, shape (n,) Initial guess. Array of real elements of size (n,), where 'n' is the number of independent variables. args : tuple, optional Extra arguments passed to the objective function and its derivatives (`fun`, `jac` and `hess` functions). method : str or callable, optional Type of solver. Should be one of - 'Nelder-Mead' :ref:`(see here) <optimize.minimize-neldermead>` - 'Powell' :ref:`(see here) <optimize.minimize-powell>` - 'CG' :ref:`(see here) <optimize.minimize-cg>` - 'BFGS' :ref:`(see here) <optimize.minimize-bfgs>` - 'Newton-CG' :ref:`(see here) <optimize.minimize-newtoncg>` - 'L-BFGS-B' :ref:`(see here) <optimize.minimize-lbfgsb>` - 'TNC' :ref:`(see here) <optimize.minimize-tnc>` - 'COBYLA' :ref:`(see here) <optimize.minimize-cobyla>` - 'SLSQP' :ref:`(see here) <optimize.minimize-slsqp>` - 'trust-constr':ref:`(see here) <optimize.minimize-trustconstr>` - 'dogleg' :ref:`(see here) <optimize.minimize-dogleg>` - 'trust-ncg' :ref:`(see here) <optimize.minimize-trustncg>` - 'trust-exact' :ref:`(see here) <optimize.minimize-trustexact>` - 'trust-krylov' :ref:`(see here) <optimize.minimize-trustkrylov>` - custom - a callable object (added in version 0.14.0), see below for description. If not given, chosen to be one of ``BFGS``, ``L-BFGS-B``, ``SLSQP``, depending if the problem has constraints or bounds. jac : {callable, '2-point', '3-point', 'cs', bool}, optional Method for computing the gradient vector. Only for CG, BFGS, Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg, trust-krylov, trust-exact and trust-constr. If it is a callable, it should be a function that returns the gradient vector: ``jac(x, *args) -> array_like, shape (n,)`` where x is an array with shape (n,) and `args` is a tuple with the fixed parameters. Alternatively, the keywords {'2-point', '3-point', 'cs'} select a finite difference scheme for numerical estimation of the gradient. Options '3-point' and 'cs' are available only to 'trust-constr'. If `jac` is a Boolean and is True, `fun` is assumed to return the gradient along with the objective function. If False, the gradient will be estimated using '2-point' finite difference estimation. hess : {callable, '2-point', '3-point', 'cs', HessianUpdateStrategy}, optional Method for computing the Hessian matrix. Only for Newton-CG, dogleg, trust-ncg, trust-krylov, trust-exact and trust-constr. If it is callable, it should return the Hessian matrix: ``hess(x, *args) -> {LinearOperator, spmatrix, array}, (n, n)`` where x is a (n,) ndarray and `args` is a tuple with the fixed parameters. LinearOperator and sparse matrix returns are allowed only for 'trust-constr' method. Alternatively, the keywords {'2-point', '3-point', 'cs'} select a finite difference scheme for numerical estimation. Or, objects implementing `HessianUpdateStrategy` interface can be used to approximate the Hessian. Available quasi-Newton methods implementing this interface are: - `BFGS`; - `SR1`. Whenever the gradient is estimated via finite-differences, the Hessian cannot be estimated with options {'2-point', '3-point', 'cs'} and needs to be estimated using one of the quasi-Newton strategies. Finite-difference options {'2-point', '3-point', 'cs'} and `HessianUpdateStrategy` are available only for 'trust-constr' method. hessp : callable, optional Hessian of objective function times an arbitrary vector p. Only for Newton-CG, trust-ncg, trust-krylov, trust-constr. Only one of `hessp` or `hess` needs to be given. If `hess` is provided, then `hessp` will be ignored. `hessp` must compute the Hessian times an arbitrary vector: ``hessp(x, p, *args) -> ndarray shape (n,)`` where x is a (n,) ndarray, p is an arbitrary vector with dimension (n,) and `args` is a tuple with the fixed parameters. bounds : sequence or `Bounds`, optional Bounds on variables for L-BFGS-B, TNC, SLSQP and trust-constr methods. There are two ways to specify the bounds: 1. Instance of `Bounds` class. 2. Sequence of ``(min, max)`` pairs for each element in `x`. None is used to specify no bound. constraints : {Constraint, dict} or List of {Constraint, dict}, optional Constraints definition (only for COBYLA, SLSQP and trust-constr). Constraints for 'trust-constr' are defined as a single object or a list of objects specifying constraints to the optimization problem. Available constraints are: - `LinearConstraint` - `NonlinearConstraint` Constraints for COBYLA, SLSQP are defined as a list of dictionaries. Each dictionary with fields: type : str Constraint type: 'eq' for equality, 'ineq' for inequality. fun : callable The function defining the constraint. jac : callable, optional The Jacobian of `fun` (only for SLSQP). args : sequence, optional Extra arguments to be passed to the function and Jacobian. Equality constraint means that the constraint function result is to be zero whereas inequality means that it is to be non-negative. Note that COBYLA only supports inequality constraints. tol : float, optional Tolerance for termination. For detailed control, use solver-specific options. options : dict, optional A dictionary of solver options. All methods accept the following generic options: maxiter : int Maximum number of iterations to perform. disp : bool Set to True to print convergence messages. For method-specific options, see :func:`show_options()`. callback : callable, optional Called after each iteration. For 'trust-constr' it is a callable with the signature: ``callback(xk, OptimizeResult state) -> bool`` where ``xk`` is the current parameter vector. and ``state`` is an `OptimizeResult` object, with the same fields as the ones from the return. If callback returns True the algorithm execution is terminated. For all the other methods, the signature is: ``callback(xk)`` where ``xk`` is the current parameter vector. Returns ------- res : OptimizeResult The optimization result represented as a ``OptimizeResult`` object. Important attributes are: ``x`` the solution array, ``success`` a Boolean flag indicating if the optimizer exited successfully and ``message`` which describes the cause of the termination. See `OptimizeResult` for a description of other attributes. See also -------- minimize_scalar : Interface to minimization algorithms for scalar univariate functions show_options : Additional options accepted by the solvers Notes ----- This section describes the available solvers that can be selected by the 'method' parameter. The default method is *BFGS*. **Unconstrained minimization** Method :ref:`Nelder-Mead <optimize.minimize-neldermead>` uses the Simplex algorithm [1]_, [2]_. This algorithm is robust in many applications. However, if numerical computation of derivative can be trusted, other algorithms using the first and/or second derivatives information might be preferred for their better performance in general. Method :ref:`Powell <optimize.minimize-powell>` is a modification of Powell's method [3]_, [4]_ which is a conjugate direction method. It performs sequential one-dimensional minimizations along each vector of the directions set (`direc` field in `options` and `info`), which is updated at each iteration of the main minimization loop. The function need not be differentiable, and no derivatives are taken. Method :ref:`CG <optimize.minimize-cg>` uses a nonlinear conjugate gradient algorithm by Polak and Ribiere, a variant of the Fletcher-Reeves method described in [5]_ pp. 120-122. Only the first derivatives are used. Method :ref:`BFGS <optimize.minimize-bfgs>` uses the quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) [5]_ pp. 136. It uses the first derivatives only. BFGS has proven good performance even for non-smooth optimizations. This method also returns an approximation of the Hessian inverse, stored as `hess_inv` in the OptimizeResult object. Method :ref:`Newton-CG <optimize.minimize-newtoncg>` uses a Newton-CG algorithm [5]_ pp. 168 (also known as the truncated Newton method). It uses a CG method to the compute the search direction. See also *TNC* method for a box-constrained minimization with a similar algorithm. Suitable for large-scale problems. Method :ref:`dogleg <optimize.minimize-dogleg>` uses the dog-leg trust-region algorithm [5]_ for unconstrained minimization. This algorithm requires the gradient and Hessian; furthermore the Hessian is required to be positive definite. Method :ref:`trust-ncg <optimize.minimize-trustncg>` uses the Newton conjugate gradient trust-region algorithm [5]_ for unconstrained minimization. This algorithm requires the gradient and either the Hessian or a function that computes the product of the Hessian with a given vector. Suitable for large-scale problems. Method :ref:`trust-krylov <optimize.minimize-trustkrylov>` uses the Newton GLTR trust-region algorithm [14]_, [15]_ for unconstrained minimization. This algorithm requires the gradient and either the Hessian or a function that computes the product of the Hessian with a given vector. Suitable for large-scale problems. On indefinite problems it requires usually less iterations than the `trust-ncg` method and is recommended for medium and large-scale problems. Method :ref:`trust-exact <optimize.minimize-trustexact>` is a trust-region method for unconstrained minimization in which quadratic subproblems are solved almost exactly [13]_. This algorithm requires the gradient and the Hessian (which is *not* required to be positive definite). It is, in many situations, the Newton method to converge in fewer iteraction and the most recommended for small and medium-size problems. **Bound-Constrained minimization** Method :ref:`L-BFGS-B <optimize.minimize-lbfgsb>` uses the L-BFGS-B algorithm [6]_, [7]_ for bound constrained minimization. Method :ref:`TNC <optimize.minimize-tnc>` uses a truncated Newton algorithm [5]_, [8]_ to minimize a function with variables subject to bounds. This algorithm uses gradient information; it is also called Newton Conjugate-Gradient. It differs from the *Newton-CG* method described above as it wraps a C implementation and allows each variable to be given upper and lower bounds. **Constrained Minimization** Method :ref:`COBYLA <optimize.minimize-cobyla>` uses the Constrained Optimization BY Linear Approximation (COBYLA) method [9]_, [10]_, [11]_. The algorithm is based on linear approximations to the objective function and each constraint. The method wraps a FORTRAN implementation of the algorithm. The constraints functions 'fun' may return either a single number or an array or list of numbers. Method :ref:`SLSQP <optimize.minimize-slsqp>` uses Sequential Least SQuares Programming to minimize a function of several variables with any combination of bounds, equality and inequality constraints. The method wraps the SLSQP Optimization subroutine originally implemented by Dieter Kraft [12]_. Note that the wrapper handles infinite values in bounds by converting them into large floating values. Method :ref:`trust-constr <optimize.minimize-trustconstr>` is a trust-region algorithm for constrained optimization. It swiches between two implementations depending on the problem definition. It is the most versatile constrained minimization algorithm implemented in SciPy and the most appropriate for large-scale problems. For equality constrained problems it is an implementation of Byrd-Omojokun Trust-Region SQP method described in [17]_ and in [5]_, p. 549. When inequality constraints are imposed as well, it swiches to the trust-region interior point method described in [16]_. This interior point algorithm, in turn, solves inequality constraints by introducing slack variables and solving a sequence of equality-constrained barrier problems for progressively smaller values of the barrier parameter. The previously described equality constrained SQP method is used to solve the subproblems with increasing levels of accuracy as the iterate gets closer to a solution. **Finite-Difference Options** For Method :ref:`trust-constr <optimize.minimize-trustconstr>` the gradient and the Hessian may be approximated using three finite-difference schemes: {'2-point', '3-point', 'cs'}. The scheme 'cs' is, potentially, the most accurate but it requires the function to correctly handles complex inputs and to be differentiable in the complex plane. The scheme '3-point' is more accurate than '2-point' but requires twice as much operations. **Custom minimizers** It may be useful to pass a custom minimization method, for example when using a frontend to this method such as `scipy.optimize.basinhopping` or a different library. You can simply pass a callable as the ``method`` parameter. The callable is called as ``method(fun, x0, args, **kwargs, **options)`` where ``kwargs`` corresponds to any other parameters passed to `minimize` (such as `callback`, `hess`, etc.), except the `options` dict, which has its contents also passed as `method` parameters pair by pair. Also, if `jac` has been passed as a bool type, `jac` and `fun` are mangled so that `fun` returns just the function values and `jac` is converted to a function returning the Jacobian. The method shall return an `OptimizeResult` object. The provided `method` callable must be able to accept (and possibly ignore) arbitrary parameters; the set of parameters accepted by `minimize` may expand in future versions and then these parameters will be passed to the method. You can find an example in the scipy.optimize tutorial. .. versionadded:: 0.11.0 References ---------- .. [1] Nelder, J A, and R Mead. 1965. A Simplex Method for Function Minimization. The Computer Journal 7: 308-13. .. [2] Wright M H. 1996. Direct search methods: Once scorned, now respectable, in Numerical Analysis 1995: Proceedings of the 1995 Dundee Biennial Conference in Numerical Analysis (Eds. D F Griffiths and G A Watson). Addison Wesley Longman, Harlow, UK. 191-208. .. [3] Powell, M J D. 1964. An efficient method for finding the minimum of a function of several variables without calculating derivatives. The Computer Journal 7: 155-162. .. [4] Press W, S A Teukolsky, W T Vetterling and B P Flannery. Numerical Recipes (any edition), Cambridge University Press. .. [5] Nocedal, J, and S J Wright. 2006. Numerical Optimization. Springer New York. .. [6] Byrd, R H and P Lu and J. Nocedal. 1995. A Limited Memory Algorithm for Bound Constrained Optimization. SIAM Journal on Scientific and Statistical Computing 16 (5): 1190-1208. .. [7] Zhu, C and R H Byrd and J Nocedal. 1997. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization. ACM Transactions on Mathematical Software 23 (4): 550-560. .. [8] Nash, S G. Newton-Type Minimization Via the Lanczos Method. 1984. SIAM Journal of Numerical Analysis 21: 770-778. .. [9] Powell, M J D. A direct search optimization method that models the objective and constraint functions by linear interpolation. 1994. Advances in Optimization and Numerical Analysis, eds. S. Gomez and J-P Hennart, Kluwer Academic (Dordrecht), 51-67. .. [10] Powell M J D. Direct search algorithms for optimization calculations. 1998. Acta Numerica 7: 287-336. .. [11] Powell M J D. A view of algorithms for optimization without derivatives. 2007.Cambridge University Technical Report DAMTP 2007/NA03 .. [12] Kraft, D. A software package for sequential quadratic programming. 1988. Tech. Rep. DFVLR-FB 88-28, DLR German Aerospace Center -- Institute for Flight Mechanics, Koln, Germany. .. [13] Conn, A. R., Gould, N. I., and Toint, P. L. Trust region methods. 2000. Siam. pp. 169-200. .. [14] F. Lenders, C. Kirches, A. Potschka: "trlib: A vector-free implementation of the GLTR method for iterative solution of the trust region problem", https://arxiv.org/abs/1611.04718 .. [15] N. Gould, S. Lucidi, M. Roma, P. Toint: "Solving the Trust-Region Subproblem using the Lanczos Method", SIAM J. Optim., 9(2), 504--525, (1999). .. [16] Byrd, Richard H., Mary E. Hribar, and Jorge Nocedal. 1999. An interior point algorithm for large-scale nonlinear programming. SIAM Journal on Optimization 9.4: 877-900. .. [17] Lalee, Marucha, Jorge Nocedal, and Todd Plantega. 1998. On the implementation of an algorithm for large-scale equality constrained optimization. SIAM Journal on Optimization 8.3: 682-706. Examples -------- Let us consider the problem of minimizing the Rosenbrock function. This function (and its respective derivatives) is implemented in `rosen` (resp. `rosen_der`, `rosen_hess`) in the `scipy.optimize`. >>> from scipy.optimize import minimize, rosen, rosen_der A simple application of the *Nelder-Mead* method is: >>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2] >>> res = minimize(rosen, x0, method='Nelder-Mead', tol=1e-6) >>> res.x array([ 1., 1., 1., 1., 1.]) Now using the *BFGS* algorithm, using the first derivative and a few options: >>> res = minimize(rosen, x0, method='BFGS', jac=rosen_der, ... options={'gtol': 1e-6, 'disp': True}) Optimization terminated successfully. Current function value: 0.000000 Iterations: 26 Function evaluations: 31 Gradient evaluations: 31 >>> res.x array([ 1., 1., 1., 1., 1.]) >>> print(res.message) Optimization terminated successfully. >>> res.hess_inv array([[ 0.00749589, 0.01255155, 0.02396251, 0.04750988, 0.09495377], # may vary [ 0.01255155, 0.02510441, 0.04794055, 0.09502834, 0.18996269], [ 0.02396251, 0.04794055, 0.09631614, 0.19092151, 0.38165151], [ 0.04750988, 0.09502834, 0.19092151, 0.38341252, 0.7664427 ], [ 0.09495377, 0.18996269, 0.38165151, 0.7664427, 1.53713523]]) Next, consider a minimization problem with several constraints (namely Example 16.4 from [5]_). The objective function is: >>> fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2 There are three constraints defined as: >>> cons = ({'type': 'ineq', 'fun': lambda x: x[0] - 2 * x[1] + 2}, ... {'type': 'ineq', 'fun': lambda x: -x[0] - 2 * x[1] + 6}, ... {'type': 'ineq', 'fun': lambda x: -x[0] + 2 * x[1] + 2}) And variables must be positive, hence the following bounds: >>> bnds = ((0, None), (0, None)) The optimization problem is solved using the SLSQP method as: >>> res = minimize(fun, (2, 0), method='SLSQP', bounds=bnds, ... constraints=cons) It should converge to the theoretical solution (1.4 ,1.7). """ x0 = np.asarray(x0) if x0.dtype.kind in np.typecodes["AllInteger"]: x0 = np.asarray(x0, dtype=float) if not isinstance(args, tuple): args = (args, ) if method is None: # Select automatically if constraints: method = 'SLSQP' elif bounds is not None: method = 'L-BFGS-B' else: method = 'BFGS' if callable(method): meth = "_custom" else: meth = method.lower() if options is None: options = {} # check if optional parameters are supported by the selected method # - jac if meth in ('nelder-mead', 'powell', 'cobyla') and bool(jac): warn('Method %s does not use gradient information (jac).' % method, RuntimeWarning) # - hess if meth not in ('newton-cg', 'dogleg', 'trust-ncg', 'trust-constr', 'trust-krylov', 'trust-exact', '_custom') and hess is not None: warn('Method %s does not use Hessian information (hess).' % method, RuntimeWarning) # - hessp if meth not in ('newton-cg', 'dogleg', 'trust-ncg', 'trust-constr', 'trust-krylov', '_custom') \ and hessp is not None: warn( 'Method %s does not use Hessian-vector product ' 'information (hessp).' % method, RuntimeWarning) # - constraints or bounds if (meth in ('nelder-mead', 'powell', 'cg', 'bfgs', 'newton-cg', 'dogleg', 'trust-ncg') and (bounds is not None or np.any(constraints))): warn('Method %s cannot handle constraints nor bounds.' % method, RuntimeWarning) if meth in ('l-bfgs-b', 'tnc') and np.any(constraints): warn('Method %s cannot handle constraints.' % method, RuntimeWarning) if meth == 'cobyla' and bounds is not None: warn('Method %s cannot handle bounds.' % method, RuntimeWarning) # - callback if (meth in ('cobyla', ) and callback is not None): warn('Method %s does not support callback.' % method, RuntimeWarning) # - return_all if (meth in ('l-bfgs-b', 'tnc', 'cobyla', 'slsqp') and options.get('return_all', False)): warn('Method %s does not support the return_all option.' % method, RuntimeWarning) # check gradient vector if meth == 'trust-constr': if type(jac) is bool: if jac: fun = MemoizeJac(fun) jac = fun.derivative else: jac = '2-point' elif jac is None: jac = '2-point' elif not callable(jac) and jac not in ('2-point', '3-point', 'cs'): raise ValueError("Unsupported jac definition.") else: if jac in ('2-point', '3-point', 'cs'): if jac in ('3-point', 'cs'): warn("Only 'trust-constr' method accept %s " "options for 'jac'. Using '2-point' instead." % jac) jac = None elif not callable(jac): if bool(jac): fun = MemoizeJac(fun) jac = fun.derivative else: jac = None # set default tolerances if tol is not None: options = dict(options) if meth == 'nelder-mead': options.setdefault('xatol', tol) options.setdefault('fatol', tol) if meth in ('newton-cg', 'powell', 'tnc'): options.setdefault('xtol', tol) if meth in ('powell', 'l-bfgs-b', 'tnc', 'slsqp'): options.setdefault('ftol', tol) if meth in ('bfgs', 'cg', 'l-bfgs-b', 'tnc', 'dogleg', 'trust-ncg', 'trust-exact', 'trust-krylov'): options.setdefault('gtol', tol) if meth in ('cobyla', '_custom'): options.setdefault('tol', tol) if meth == 'trust-constr': options.setdefault('xtol', tol) options.setdefault('gtol', tol) options.setdefault('barrier_tol', tol) if bounds is not None: bounds = standardize_bounds(bounds, x0, meth) if constraints is not None: constraints = standardize_constraints(constraints, x0, meth) if meth == '_custom': return method(fun, x0, args=args, jac=jac, hess=hess, hessp=hessp, bounds=bounds, constraints=constraints, callback=callback, **options) elif meth == 'nelder-mead': return _minimize_neldermead(fun, x0, args, callback, **options) elif meth == 'powell': return _minimize_powell(fun, x0, args, callback, **options) elif meth == 'cg': return _minimize_cg(fun, x0, args, jac, callback, **options) elif meth == 'bfgs': return _minimize_bfgs(fun, x0, args, jac, callback, **options) elif meth == 'newton-cg': return _minimize_newtoncg(fun, x0, args, jac, hess, hessp, callback, **options) elif meth == 'l-bfgs-b': return _minimize_lbfgsb(fun, x0, args, jac, bounds, callback=callback, **options) elif meth == 'tnc': return _minimize_tnc(fun, x0, args, jac, bounds, callback=callback, **options) elif meth == 'cobyla': return _minimize_cobyla(fun, x0, args, constraints, **options) elif meth == 'slsqp': return _minimize_slsqp(fun, x0, args, jac, bounds, constraints, callback=callback, **options) elif meth == 'trust-constr': return _minimize_trustregion_constr(fun, x0, args, jac, hess, hessp, bounds, constraints, callback=callback, **options) elif meth == 'dogleg': return _minimize_dogleg(fun, x0, args, jac, hess, callback=callback, **options) elif meth == 'trust-ncg': return _minimize_trust_ncg(fun, x0, args, jac, hess, hessp, callback=callback, **options) elif meth == 'trust-krylov': return _minimize_trust_krylov(fun, x0, args, jac, hess, hessp, callback=callback, **options) elif meth == 'trust-exact': return _minimize_trustregion_exact(fun, x0, args, jac, hess, callback=callback, **options) else: raise ValueError('Unknown solver %s' % method)
def binned_statistic_dd(sample, values, statistic='mean', bins=10, range=None, expand_binnumbers=False, binned_statistic_result=None): """ Compute a multidimensional binned statistic for a set of data. This is a generalization of a histogramdd function. A histogram divides the space into bins, and returns the count of the number of points in each bin. This function allows the computation of the sum, mean, median, or other statistic of the values within each bin. Parameters ---------- sample : array_like Data to histogram passed as a sequence of N arrays of length D, or as an (N,D) array. values : (N,) array_like or list of (N,) array_like The data on which the statistic will be computed. This must be the same shape as `sample`, or a list of sequences - each with the same shape as `sample`. If `values` is such a list, the statistic will be computed on each independently. statistic : string or callable, optional The statistic to compute (default is 'mean'). The following statistics are available: * 'mean' : compute the mean of values for points within each bin. Empty bins will be represented by NaN. * 'median' : compute the median of values for points within each bin. Empty bins will be represented by NaN. * 'count' : compute the count of points within each bin. This is identical to an unweighted histogram. `values` array is not referenced. * 'sum' : compute the sum of values for points within each bin. This is identical to a weighted histogram. * 'std' : compute the standard deviation within each bin. This is implicitly calculated with ddof=0. * 'min' : compute the minimum of values for points within each bin. Empty bins will be represented by NaN. * 'max' : compute the maximum of values for point within each bin. Empty bins will be represented by NaN. * function : a user-defined function which takes a 1D array of values, and outputs a single numerical statistic. This function will be called on the values in each bin. Empty bins will be represented by function([]), or NaN if this returns an error. bins : sequence or positive int, optional The bin specification must be in one of the following forms: * A sequence of arrays describing the bin edges along each dimension. * The number of bins for each dimension (nx, ny, ... = bins). * The number of bins for all dimensions (nx = ny = ... = bins). range : sequence, optional A sequence of lower and upper bin edges to be used if the edges are not given explicitly in `bins`. Defaults to the minimum and maximum values along each dimension. expand_binnumbers : bool, optional 'False' (default): the returned `binnumber` is a shape (N,) array of linearized bin indices. 'True': the returned `binnumber` is 'unraveled' into a shape (D,N) ndarray, where each row gives the bin numbers in the corresponding dimension. See the `binnumber` returned value, and the `Examples` section of `binned_statistic_2d`. binned_statistic_result : binnedStatisticddResult Result of a previous call to the function in order to reuse bin edges and bin numbers with new values and/or a different statistic. To reuse bin numbers, `expand_binnumbers` must have been set to False (the default) .. versionadded:: 0.17.0 Returns ------- statistic : ndarray, shape(nx1, nx2, nx3,...) The values of the selected statistic in each two-dimensional bin. bin_edges : list of ndarrays A list of D arrays describing the (nxi + 1) bin edges for each dimension. binnumber : (N,) array of ints or (D,N) ndarray of ints This assigns to each element of `sample` an integer that represents the bin in which this observation falls. The representation depends on the `expand_binnumbers` argument. See `Notes` for details. See Also -------- numpy.digitize, numpy.histogramdd, binned_statistic, binned_statistic_2d Notes ----- Binedges: All but the last (righthand-most) bin is half-open in each dimension. In other words, if `bins` is ``[1, 2, 3, 4]``, then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which *includes* 4. `binnumber`: This returned argument assigns to each element of `sample` an integer that represents the bin in which it belongs. The representation depends on the `expand_binnumbers` argument. If 'False' (default): The returned `binnumber` is a shape (N,) array of linearized indices mapping each element of `sample` to its corresponding bin (using row-major ordering). If 'True': The returned `binnumber` is a shape (D,N) ndarray where each row indicates bin placements for each dimension respectively. In each dimension, a binnumber of `i` means the corresponding value is between (bin_edges[D][i-1], bin_edges[D][i]), for each dimension 'D'. .. versionadded:: 0.11.0 Examples -------- >>> from scipy import stats >>> import matplotlib.pyplot as plt >>> from mpl_toolkits.mplot3d import Axes3D Take an array of 600 (x, y) coordinates as an example. `binned_statistic_dd` can handle arrays of higher dimension `D`. But a plot of dimension `D+1` is required. >>> mu = np.array([0., 1.]) >>> sigma = np.array([[1., -0.5],[-0.5, 1.5]]) >>> multinormal = stats.multivariate_normal(mu, sigma) >>> data = multinormal.rvs(size=600, random_state=235412) >>> data.shape (600, 2) Create bins and count how many arrays fall in each bin: >>> N = 60 >>> x = np.linspace(-3, 3, N) >>> y = np.linspace(-3, 4, N) >>> ret = stats.binned_statistic_dd(data, np.arange(600), bins=[x, y], ... statistic='count') >>> bincounts = ret.statistic Set the volume and the location of bars: >>> dx = x[1] - x[0] >>> dy = y[1] - y[0] >>> x, y = np.meshgrid(x[:-1]+dx/2, y[:-1]+dy/2) >>> z = 0 >>> bincounts = bincounts.ravel() >>> x = x.ravel() >>> y = y.ravel() >>> fig = plt.figure() >>> ax = fig.add_subplot(111, projection='3d') >>> with np.errstate(divide='ignore'): # silence random axes3d warning ... ax.bar3d(x, y, z, dx, dy, bincounts) Reuse bin numbers and bin edges with new values: >>> ret2 = stats.binned_statistic_dd(data, -np.arange(600), ... binned_statistic_result=ret, ... statistic='mean') """ known_stats = ['mean', 'median', 'count', 'sum', 'std', 'min', 'max'] if not callable(statistic) and statistic not in known_stats: raise ValueError('invalid statistic %r' % (statistic, )) if not np.isfinite(values).all() or not np.isfinite(sample).all: raise ValueError('%r or %r contains non-finite values.' % ( sample, values, )) # `Ndim` is the number of dimensions (e.g. `2` for `binned_statistic_2d`) # `Dlen` is the length of elements along each dimension. # This code is based on np.histogramdd try: # `sample` is an ND-array. Dlen, Ndim = sample.shape except (AttributeError, ValueError): # `sample` is a sequence of 1D arrays. sample = np.atleast_2d(sample).T Dlen, Ndim = sample.shape # Store initial shape of `values` to preserve it in the output values = np.asarray(values) input_shape = list(values.shape) # Make sure that `values` is 2D to iterate over rows values = np.atleast_2d(values) Vdim, Vlen = values.shape # Make sure `values` match `sample` if (statistic != 'count' and Vlen != Dlen): raise AttributeError('The number of `values` elements must match the ' 'length of each `sample` dimension.') try: M = len(bins) if M != Ndim: raise AttributeError('The dimension of bins must be equal ' 'to the dimension of the sample x.') except TypeError: bins = Ndim * [bins] if binned_statistic_result is None: nbin, edges, dedges = _bin_edges(sample, bins, range) binnumbers = _bin_numbers(sample, nbin, edges, dedges) else: edges = binned_statistic_result.bin_edges nbin = np.array([len(edges[i]) + 1 for i in xrange(Ndim)]) # +1 for outlier bins dedges = [np.diff(edges[i]) for i in xrange(Ndim)] binnumbers = binned_statistic_result.binnumber result = np.empty([Vdim, nbin.prod()], float) if statistic == 'mean': result.fill(np.nan) flatcount = np.bincount(binnumbers, None) a = flatcount.nonzero() for vv in xrange(Vdim): flatsum = np.bincount(binnumbers, values[vv]) result[vv, a] = flatsum[a] / flatcount[a] elif statistic == 'std': result.fill(0) flatcount = np.bincount(binnumbers, None) a = flatcount.nonzero() for i in np.unique(binnumbers): for vv in xrange(Vdim): # NOTE: take std dev by bin, np.std() is 2-pass and stable result[vv, i] = np.std(values[vv, binnumbers == i]) elif statistic == 'count': result.fill(0) flatcount = np.bincount(binnumbers, None) a = np.arange(len(flatcount)) result[:, a] = flatcount[np.newaxis, :] elif statistic == 'sum': result.fill(0) for vv in xrange(Vdim): flatsum = np.bincount(binnumbers, values[vv]) a = np.arange(len(flatsum)) result[vv, a] = flatsum elif statistic == 'median': result.fill(np.nan) for i in np.unique(binnumbers): for vv in xrange(Vdim): result[vv, i] = np.median(values[vv, binnumbers == i]) elif statistic == 'min': result.fill(np.nan) for i in np.unique(binnumbers): for vv in xrange(Vdim): result[vv, i] = np.min(values[vv, binnumbers == i]) elif statistic == 'max': result.fill(np.nan) for i in np.unique(binnumbers): for vv in xrange(Vdim): result[vv, i] = np.max(values[vv, binnumbers == i]) elif callable(statistic): with np.errstate(invalid='ignore'), suppress_warnings() as sup: sup.filter(RuntimeWarning) try: null = statistic([]) except Exception: null = np.nan result.fill(null) for i in np.unique(binnumbers): for vv in xrange(Vdim): result[vv, i] = statistic(values[vv, binnumbers == i]) # Shape into a proper matrix result = result.reshape(np.append(Vdim, nbin)) # Remove outliers (indices 0 and -1 for each bin-dimension). core = tuple([slice(None)] + Ndim * [slice(1, -1)]) result = result[core] # Unravel binnumbers into an ndarray, each row the bins for each dimension if (expand_binnumbers and Ndim > 1): binnumbers = np.asarray(np.unravel_index(binnumbers, nbin)) if np.any(result.shape[1:] != nbin - 2): raise RuntimeError('Internal Shape Error') # Reshape to have output (`reulst`) match input (`values`) shape result = result.reshape(input_shape[:-1] + list(nbin - 2)) return BinnedStatisticddResult(result, edges, binnumbers)
def pdist(X, metric='euclidean', *args, **kwargs): """ """ kwargs = _args_to_kwargs_xdist(args, kwargs, metric, "pdist") X = np.asarray(X, order='c') # The C code doesn't do striding. X = _copy_array_if_base_present(X) s = X.shape if len(s) != 2: raise ValueError('A 2-dimensional array must be passed.') m, n = s out = kwargs.pop("out", None) if out is None: dm = np.empty((m * (m - 1)) // 2, dtype=np.double) else: if out.shape != (m * (m - 1) // 2,): raise ValueError("output array has incorrect shape.") if not out.flags.c_contiguous: raise ValueError("Output array must be C-contiguous.") if out.dtype != np.double: raise ValueError("Output array must be double type.") dm = out # compute blacklist for deprecated kwargs if(metric in _METRICS['minkowski'].aka or metric in ['test_minkowski'] or metric in [minkowski]): kwargs_blacklist = ["V", "VI"] elif(metric in _METRICS['seuclidean'].aka or metric == 'test_seuclidean' or metric == seuclidean): kwargs_blacklist = ["p", "w", "VI"] elif(metric in _METRICS['mahalanobis'].aka or metric == 'test_mahalanobis' or metric == mahalanobis): kwargs_blacklist = ["p", "w", "V"] else: kwargs_blacklist = ["p", "V", "VI"] _filter_deprecated_kwargs(kwargs, kwargs_blacklist) if callable(metric): mstr = getattr(metric, '__name__', 'UnknownCustomMetric') metric_name = _METRIC_ALIAS.get(mstr, None) if metric_name is not None: X, typ, kwargs = _validate_pdist_input(X, m, n, metric_name, **kwargs) k = 0 for i in xrange(0, m - 1): for j in xrange(i + 1, m): dm[k] = metric(X[i], X[j], **kwargs) k = k + 1 elif isinstance(metric, string_types): mstr = metric.lower() # NOTE: C-version still does not support weights if "w" in kwargs and not mstr.startswith("test_"): if(mstr in _METRICS['seuclidean'].aka or mstr in _METRICS['mahalanobis'].aka): raise ValueError("metric %s incompatible with weights" % mstr) # need to use python version for weighting kwargs['out'] = out mstr = "test_%s" % mstr metric_name = _METRIC_ALIAS.get(mstr, None) if metric_name is not None: X, typ, kwargs = _validate_pdist_input(X, m, n, metric_name, **kwargs) # get pdist wrapper pdist_fn = getattr(_distance_wrap, "pdist_%s_%s_wrap" % (metric_name, typ)) pdist_fn(X, dm, **kwargs) return dm elif mstr in ['old_cosine', 'old_cos']: warnings.warn('"old_cosine" is deprecated and will be removed in ' 'a future version. Use "cosine" instead.', DeprecationWarning) X = _convert_to_double(X) norms = np.einsum('ij,ij->i', X, X, dtype=np.double) np.sqrt(norms, out=norms) nV = norms.reshape(m, 1) # The numerator u * v nm = np.dot(X, X.T) # The denom. ||u||*||v|| de = np.dot(nV, nV.T) dm = 1.0 - (nm / de) dm[xrange(0, m), xrange(0, m)] = 0.0 dm = squareform(dm) elif mstr.startswith("test_"): if mstr in _TEST_METRICS: dm = pdist(X, _TEST_METRICS[mstr], **kwargs) else: raise ValueError('Unknown "Test" Distance Metric: %s' % mstr[5:]) else: raise ValueError('Unknown Distance Metric: %s' % mstr) else: raise TypeError('2nd argument metric must be a string identifier ' 'or a function.') return dm