Beispiel #1
0
    def ppf(self, x):
        """
        Computes the percent point function of the distribution at the point(s)
        x. It is defined as the inverse of the CDF. y = ppf(x) can be
        interpreted as the argument y for which the value of the cdf(x) is equal
        to y. Essentially that means the random varable y is the place on the
        distribution the CDF evaluates to x.

        Parameters
        ----------
        x: array, dtype=float, shape=(m x n), bounds=(0,1)
            The value(s) at which the user would like the ppf evaluated.
            If an array is passed in, the ppf is evaluated at every point
            in the array and an array of the same size is returned.

        Returns
        -------
        ppf: array, dtype=float, shape=(m x n)
            The ppf at each point in x.
        """
        vals = np.ceil(bdtrik(x, self.n, self.p))
        vals1 = vals - 1
        temp = bdtr(vals1, self.n, self.p)
        ppf = np.where((temp >= x), vals1, vals)
        return ppf
Beispiel #2
0
    def ppf(self, x):
        """
        Computes the percent point function of the distribution at the point(s)
        x. It is defined as the inverse of the CDF. y = ppf(x) can be
        interpreted as the argument y for which the value of the cdf(x) is equal
        to y. Essentially that means the random varable y is the place on the
        distribution the CDF evaluates to x.

        Parameters
        ----------
        x: array, dtype=float, shape=(m x n), bounds=(0,1)
            The value(s) at which the user would like the ppf evaluated.
            If an array is passed in, the ppf is evaluated at every point
            in the array and an array of the same size is returned.

        Returns
        -------
        ppf: array, dtype=float, shape=(m x n)
            The ppf at each point in x.
        """
        vals = np.ceil(bdtrik(x, self.n, self.p))
        vals1 = vals - 1
        temp = bdtr(vals1, self.n, self.p)
        ppf = np.where((temp >= x), vals1, vals)
        return ppf
Beispiel #3
0
    def quantile(self, *q):
        """Quantile Function

        Also known as the inverse cumulative Distribution function, this function
        takes known quantiles and returns the associated `X` value from the 
        support domain.

        .. math::
            \begin{cases}
                0      &\text{if } 0 \leq q \lt p
                1      &\text{if } p \leq q \lt 1
            \end{cases}

        Parameters
        ----------
        q : numpy.ndarray, float
            The probabilities within domain [0, 1]

        Returns
        -------
        numpy.ndarray
            The `X` values from the support domain associated with the input
            quantiles.
        """
        # check array for numpy structure
        q = check_array(q, reduce_args=True, ensure_1d=True)

        out = np.ceil(sc.bdtrik(q, 1, self.bias))
        return np.where(self.bias >= q, 0, out)
Beispiel #4
0
    def quantile(self, *q):
        # check array for numpy structure
        q = check_array(q, reduce_args=True, ensure_1d=True)

        # get the upper value of X (ceiling)
        X_up = np.ceil(sc.bdtrik(q, self.n_trials, self.bias))

        # get the lower value of X (floor)
        X_down = np.maximum(X_up - 1, 0)

        # recompute quantiles to validate transformation
        q_test = sc.bdtr(X_down, self.n_trials, self.bias)

        # when q_test is greater than true, shift output down
        out = np.where(q_test >= q, X_down, X_up).astype(int)

        # return only in-bound values
        return np.where(self.support.contains(out), out, np.nan)
 def _ppf(self, q, n, p):
     vals = ceil(special.bdtrik(q, n, p))
     vals1 = np.maximum(vals - 1, 0)
     temp = special.bdtr(vals1, n, p)
     return np.where(temp >= q, vals1, vals)
Beispiel #6
0
def bdtrik_comp(y, n, p):
    return bdtrik(1-y, n, p)
Beispiel #7
0
def bdtrik_comp(y, n, p):
    return bdtrik(1-y, n, p)
 def _ppf(self, q, n, p):
     vals = ceil(special.bdtrik(q, n, p))
     vals1 = np.maximum(vals - 1, 0)
     temp = special.bdtr(vals1, n, p)
     return np.where(temp >= q, vals1, vals)
Beispiel #9
0
 def _ppf(self, q_data, size, prob):
     return numpy.ceil(special.bdtrik(q_data, numpy.floor(size), prob))