def getiCDF(self, xx): """ A Arcisine inverse cumulative density function. :param Arcsine self: An instance of Arcisine class. :param xx: A matrix of points at which the inverse cumulative density function needs to be evaluated. :return: Inverse cumulative density function values of the Arcisine distribution. """ return arcsine.ppf(xx)
from scipy.stats import arcsine import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1) # Calculate a few first moments: mean, var, skew, kurt = arcsine.stats(moments='mvsk') # Display the probability density function (``pdf``): x = np.linspace(arcsine.ppf(0.01), arcsine.ppf(0.99), 100) ax.plot(x, arcsine.pdf(x), 'r-', lw=5, alpha=0.6, label='arcsine pdf') # Alternatively, the distribution object can be called (as a function) # to fix the shape, location and scale parameters. This returns a "frozen" # RV object holding the given parameters fixed. # Freeze the distribution and display the frozen ``pdf``: rv = arcsine() ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf') # Check accuracy of ``cdf`` and ``ppf``: vals = arcsine.ppf([0.001, 0.5, 0.999]) np.allclose([0.001, 0.5, 0.999], arcsine.cdf(vals)) # True # Generate random numbers: