def getiCDF(self, xx):
     """
     A Arcisine inverse cumulative density function.
     
     :param Arcsine self:
         An instance of Arcisine class.
     :param xx:
         A matrix of points at which the inverse cumulative density function needs to be evaluated.
     :return:
         Inverse cumulative density function values of the Arcisine distribution.
     """
     return arcsine.ppf(xx)
 def getiCDF(self, xx):
     """
     A Arcisine inverse cumulative density function.
     
     :param Arcsine self:
         An instance of Arcisine class.
     :param xx:
         A matrix of points at which the inverse cumulative density function needs to be evaluated.
     :return:
         Inverse cumulative density function values of the Arcisine distribution.
     """
     return arcsine.ppf(xx)
Example #3
0
from scipy.stats import arcsine
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 1)

# Calculate a few first moments:

mean, var, skew, kurt = arcsine.stats(moments='mvsk')

# Display the probability density function (``pdf``):

x = np.linspace(arcsine.ppf(0.01),
                arcsine.ppf(0.99), 100)
ax.plot(x, arcsine.pdf(x),
       'r-', lw=5, alpha=0.6, label='arcsine pdf')

# Alternatively, the distribution object can be called (as a function)
# to fix the shape, location and scale parameters. This returns a "frozen"
# RV object holding the given parameters fixed.

# Freeze the distribution and display the frozen ``pdf``:

rv = arcsine()
ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

# Check accuracy of ``cdf`` and ``ppf``:

vals = arcsine.ppf([0.001, 0.5, 0.999])
np.allclose([0.001, 0.5, 0.999], arcsine.cdf(vals))
# True

# Generate random numbers: