Beispiel #1
0
def load_datasets(dataset_name, save_path='data/', url=None):
    if dataset_name == 'synthetic':
        gene_dataset = SyntheticDataset()
    elif dataset_name == 'cortex':
        gene_dataset = CortexDataset()
    elif dataset_name == 'brain_large':
        gene_dataset = BrainLargeDataset(save_path=save_path)
    elif dataset_name == 'retina':
        gene_dataset = RetinaDataset(save_path=save_path)
    elif dataset_name == 'cbmc':
        gene_dataset = CbmcDataset(save_path=save_path)
    elif dataset_name == 'brain_small':
        gene_dataset = BrainSmallDataset(save_path=save_path)
    elif dataset_name == 'hemato':
        gene_dataset = HematoDataset(save_path='data/HEMATO/')
    elif dataset_name == 'pbmc':
        gene_dataset = PbmcDataset(save_path=save_path)
    elif dataset_name[-5:] == ".loom":
        gene_dataset = LoomDataset(filename=dataset_name,
                                   save_path=save_path,
                                   url=url)
    elif dataset_name[-5:] == ".h5ad":
        gene_dataset = AnnDataset(dataset_name, save_path=save_path, url=url)
    elif ".csv" in dataset_name:
        gene_dataset = CsvDataset(dataset_name, save_path=save_path)
    else:
        raise "No such dataset available"
    return gene_dataset
Beispiel #2
0
def load_datasets(dataset_name, save_path="data/", url=None):
    if dataset_name == "synthetic":
        gene_dataset = SyntheticDataset()
    elif dataset_name == "cortex":
        gene_dataset = CortexDataset()
    elif dataset_name == "brain_large":
        gene_dataset = BrainLargeDataset(save_path=save_path)
    elif dataset_name == "retina":
        gene_dataset = RetinaDataset(save_path=save_path)
    elif dataset_name == "cbmc":
        gene_dataset = CbmcDataset(save_path=save_path)
    elif dataset_name == "brain_small":
        gene_dataset = BrainSmallDataset(save_path=save_path)
    elif dataset_name == "hemato":
        gene_dataset = HematoDataset(save_path="data/HEMATO/")
    elif dataset_name == "pbmc":
        gene_dataset = PbmcDataset(save_path=save_path)
    elif dataset_name[-5:] == ".loom":
        gene_dataset = LoomDataset(filename=dataset_name, save_path=save_path, url=url)
    elif dataset_name[-5:] == ".h5ad":
        gene_dataset = AnnDataset(dataset_name, save_path=save_path, url=url)
    elif ".csv" in dataset_name:
        gene_dataset = CsvDataset(dataset_name, save_path=save_path)
    else:
        raise Exception("No such dataset available")
    return gene_dataset
Beispiel #3
0
def test_cbmc():
    cbmc_dataset = CbmcDataset(save_path='tests/data/citeSeq/')
    trainer = base_benchmark(cbmc_dataset)
    trainer.train_set.nn_overlap_score(k=5)
Beispiel #4
0
def test_cbmc(save_path):
    cbmc_dataset = CbmcDataset(save_path=os.path.join(save_path, 'citeSeq/'))
    trainer = base_benchmark(cbmc_dataset)
    trainer.train_set.nn_overlap_score(k=5)
Beispiel #5
0
def test_cbmc():
    cbmc_dataset = CbmcDataset(save_path='tests/data/citeSeq/')
    base_benchmark(cbmc_dataset)