def load_datasets(dataset_name, save_path='data/', url=None): if dataset_name == 'synthetic': gene_dataset = SyntheticDataset() elif dataset_name == 'cortex': gene_dataset = CortexDataset() elif dataset_name == 'brain_large': gene_dataset = BrainLargeDataset(save_path=save_path) elif dataset_name == 'retina': gene_dataset = RetinaDataset(save_path=save_path) elif dataset_name == 'cbmc': gene_dataset = CbmcDataset(save_path=save_path) elif dataset_name == 'brain_small': gene_dataset = BrainSmallDataset(save_path=save_path) elif dataset_name == 'hemato': gene_dataset = HematoDataset(save_path='data/HEMATO/') elif dataset_name == 'pbmc': gene_dataset = PbmcDataset(save_path=save_path) elif dataset_name[-5:] == ".loom": gene_dataset = LoomDataset(filename=dataset_name, save_path=save_path, url=url) elif dataset_name[-5:] == ".h5ad": gene_dataset = AnnDataset(dataset_name, save_path=save_path, url=url) elif ".csv" in dataset_name: gene_dataset = CsvDataset(dataset_name, save_path=save_path) else: raise "No such dataset available" return gene_dataset
def load_datasets(dataset_name, save_path="data/", url=None): if dataset_name == "synthetic": gene_dataset = SyntheticDataset() elif dataset_name == "cortex": gene_dataset = CortexDataset() elif dataset_name == "brain_large": gene_dataset = BrainLargeDataset(save_path=save_path) elif dataset_name == "retina": gene_dataset = RetinaDataset(save_path=save_path) elif dataset_name == "cbmc": gene_dataset = CbmcDataset(save_path=save_path) elif dataset_name == "brain_small": gene_dataset = BrainSmallDataset(save_path=save_path) elif dataset_name == "hemato": gene_dataset = HematoDataset(save_path="data/HEMATO/") elif dataset_name == "pbmc": gene_dataset = PbmcDataset(save_path=save_path) elif dataset_name[-5:] == ".loom": gene_dataset = LoomDataset(filename=dataset_name, save_path=save_path, url=url) elif dataset_name[-5:] == ".h5ad": gene_dataset = AnnDataset(dataset_name, save_path=save_path, url=url) elif ".csv" in dataset_name: gene_dataset = CsvDataset(dataset_name, save_path=save_path) else: raise Exception("No such dataset available") return gene_dataset
def test_cbmc(): cbmc_dataset = CbmcDataset(save_path='tests/data/citeSeq/') trainer = base_benchmark(cbmc_dataset) trainer.train_set.nn_overlap_score(k=5)
def test_cbmc(save_path): cbmc_dataset = CbmcDataset(save_path=os.path.join(save_path, 'citeSeq/')) trainer = base_benchmark(cbmc_dataset) trainer.train_set.nn_overlap_score(k=5)
def test_cbmc(): cbmc_dataset = CbmcDataset(save_path='tests/data/citeSeq/') base_benchmark(cbmc_dataset)