def test_Model(): """ """ M = sb.Model() x = np.linspace(0.1, 0.9, 22) target_mu = 0.5 target_sigma = 1 target_y = sb.cumgauss(x, target_mu, target_sigma) F = M.fit(x, target_y, initial=[target_mu, target_sigma]) npt.assert_equal(F.predict(x), target_y)
def test_cum_gauss(): sigma = 1 mu = 0 x = np.linspace(-1, 1, 12) y = sb.cumgauss(x, mu, sigma) # A basic test that the input and output have the same shape: npt.assert_equal(y.shape, x.shape) # The function evaluated over items symmetrical about mu should be # symmetrical relative to 0 and 1: npt.assert_equal(y[0], 1 - y[-1]) # Approximately 68% of the Gaussian distribution is in mu +/- sigma, so # the value of the cumulative Gaussian at mu - sigma should be # approximately equal to (1 - 0.68/2). Note the low precision! npt.assert_almost_equal(y[0], (1 - 0.68) / 2, decimal=2)
def test_cum_gauss(): sigma = 1 mu = 0 x = np.linspace(-1, 1, 12) y = sb.cumgauss(x, mu, sigma) # A basic test that the input and output have the same shape: npt.assert_equal(y.shape , x.shape) # The function evaluated over items symmetrical about mu should be # symmetrical relative to 0 and 1: npt.assert_equal(y[0], 1 - y[-1]) # Approximately 68% of the Gaussian distribution is in mu +/- sigma, so # the value of the cumulative Gaussian at mu - sigma should be # approximately equal to (1 - 0.68/2). Note the low precision! npt.assert_almost_equal(y[0], (1 - 0.68) / 2, decimal=2)