Beispiel #1
0
def _generate_pfa_regressor(result, indep_vars, featurizer):
    # Create mock SGDRegressor for sklearn_to_pfa
    estimator = SGDRegressor()
    estimator.intercept_ = [result['intercept']]
    # NOTE: linearly dependent columns will be assigned 0
    estimator.coef_ = [
        result.get(c, {'coef': 0.})['coef'] for c in featurizer.columns
        if c != 'intercept'
    ]

    types = [(var['name'], var['type']['name']) for var in indep_vars]
    return sklearn_to_pfa(estimator, types, featurizer.generate_pretty_pfa())
Beispiel #2
0
 def get_SGDRegressor(self):
     sr = SGDRegressor(fit_intercept = False)
     sr.coef_ = self.coef_
     sr.intercept_ = 0.
     self.t_ = 0
     return sr