Beispiel #1
0
    def get_test_params(cls, parameter_set="default"):
        """Return testing parameter settings for the estimator.

        Parameters
        ----------
        parameter_set : str, default="default"
            Name of the set of test parameters to return, for use in tests. If no
            special parameters are defined for a value, will return `"default"` set.
            For classifiers, a "default" set of parameters should be provided for
            general testing, and a "results_comparison" set for comparing against
            previously recorded results if the general set does not produce suitable
            probabilities to compare against.

        Returns
        -------
        params : dict or list of dict, default={}
            Parameters to create testing instances of the class.
            Each dict are parameters to construct an "interesting" test instance, i.e.,
            `MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance.
            `create_test_instance` uses the first (or only) dictionary in `params`.
        """
        from sktime.classification.dictionary_based import ContractableBOSS
        from sktime.classification.interval_based import CanonicalIntervalForest
        from sktime.classification.interval_based import (
            TimeSeriesForestClassifier as TSFC,
        )

        if parameter_set == "results_comparison":
            cboss = ContractableBOSS(
                n_parameter_samples=4, max_ensemble_size=2, random_state=0
            )
            cif = CanonicalIntervalForest(
                n_estimators=2, n_intervals=4, att_subsample_size=4, random_state=0
            )
            return {"estimators": [("cBOSS", cboss, 5), ("CIF", cif, [3, 4])]}
        else:
            return {
                "estimators": [
                    ("tsf1", TSFC(n_estimators=2), 0),
                    ("tsf2", TSFC(n_estimators=2), 0),
                ]
            }
Beispiel #2
0
                                                       check_inverse=False)
TRANSFORMERS = [
    (
        "transformer1",
        SeriesToSeriesRowTransformer(SERIES_TO_SERIES_TRANSFORMER,
                                     check_transformer=False),
    ),
    (
        "transformer2",
        SeriesToSeriesRowTransformer(SERIES_TO_SERIES_TRANSFORMER,
                                     check_transformer=False),
    ),
]
REGRESSOR = LinearRegression()
ANOMALY_DETECTOR = KNN()
TIME_SERIES_CLASSIFIER = TSFC(n_estimators=3)
TIME_SERIES_CLASSIFIERS = [
    ("tsf1", TIME_SERIES_CLASSIFIER),
    ("tsf2", TIME_SERIES_CLASSIFIER),
]
FORECASTER = NaiveForecaster()
FORECASTERS = [("f1", FORECASTER), ("f2", FORECASTER)]
STEPS = [
    ("transformer", TabularToSeriesAdaptor(StandardScaler())),
    ("forecaster", NaiveForecaster()),
]
ESTIMATOR_TEST_PARAMS = {
    ColumnEnsembleForecaster: {
        "forecasters": FORECASTER
    },
    OnlineEnsembleForecaster: {