def get_test_params(cls, parameter_set="default"): """Return testing parameter settings for the estimator. Parameters ---------- parameter_set : str, default="default" Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return `"default"` set. For classifiers, a "default" set of parameters should be provided for general testing, and a "results_comparison" set for comparing against previously recorded results if the general set does not produce suitable probabilities to compare against. Returns ------- params : dict or list of dict, default={} Parameters to create testing instances of the class. Each dict are parameters to construct an "interesting" test instance, i.e., `MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance. `create_test_instance` uses the first (or only) dictionary in `params`. """ from sktime.classification.dictionary_based import ContractableBOSS from sktime.classification.interval_based import CanonicalIntervalForest from sktime.classification.interval_based import ( TimeSeriesForestClassifier as TSFC, ) if parameter_set == "results_comparison": cboss = ContractableBOSS( n_parameter_samples=4, max_ensemble_size=2, random_state=0 ) cif = CanonicalIntervalForest( n_estimators=2, n_intervals=4, att_subsample_size=4, random_state=0 ) return {"estimators": [("cBOSS", cboss, 5), ("CIF", cif, [3, 4])]} else: return { "estimators": [ ("tsf1", TSFC(n_estimators=2), 0), ("tsf2", TSFC(n_estimators=2), 0), ] }
check_inverse=False) TRANSFORMERS = [ ( "transformer1", SeriesToSeriesRowTransformer(SERIES_TO_SERIES_TRANSFORMER, check_transformer=False), ), ( "transformer2", SeriesToSeriesRowTransformer(SERIES_TO_SERIES_TRANSFORMER, check_transformer=False), ), ] REGRESSOR = LinearRegression() ANOMALY_DETECTOR = KNN() TIME_SERIES_CLASSIFIER = TSFC(n_estimators=3) TIME_SERIES_CLASSIFIERS = [ ("tsf1", TIME_SERIES_CLASSIFIER), ("tsf2", TIME_SERIES_CLASSIFIER), ] FORECASTER = NaiveForecaster() FORECASTERS = [("f1", FORECASTER), ("f2", FORECASTER)] STEPS = [ ("transformer", TabularToSeriesAdaptor(StandardScaler())), ("forecaster", NaiveForecaster()), ] ESTIMATOR_TEST_PARAMS = { ColumnEnsembleForecaster: { "forecasters": FORECASTER }, OnlineEnsembleForecaster: {