Beispiel #1
0
def sprt_paulis():
    """
    Just taking a look at some Paulis to see if they're being 
    reformatted correctly.
    """
    sprt = range(5)
    paulis = [sp.X([0, 2, 4]) * sp.Y([1]), sp.Z([0, 1]) * sp.X([1, 3])]
    return [mw.pauli_to_tpls(pauli, sprt) for pauli in paulis]
Beispiel #2
0
    def path_pauli(self, crd_0, crd_1, err_type):
        """
        Returns a minimum-length Pauli between two ancillas, given the
        type of error that joins the two.

        This function is awkward, because it works implicitly on the
        un-rotated surface code, first finding a "corner" (a place on
        the lattice for the path to turn 90 degrees), then producing
        two diagonal paths on the rotated lattice that go to and from
        this corner.
        """
        err_type = err_type.upper()
        if self.boundary_conditions == 'open':
            pth_0 = [(x, crd_0[1])
                     for x in short_seq(crd_0[0], crd_1[0], None)]
            pth_1 = [(crd_1[0], y)
                     for y in short_seq(crd_0[1], crd_1[1], None)]
        if self.boundary_conditions == 'rotated':
            mid_v = diag_intersection(crd_0, crd_1,
                                      self.layout.ancillas.values())

            pth_0, pth_1 = diag_pth(crd_0, mid_v), diag_pth(mid_v, crd_1)

        elif self.boundary_conditions == 'closed':
            pth_0 = [(x, crd_0[1])
                     for x in short_seq(crd_0[0], crd_1[0], self.dx)]
            pth_1 = [(crd_1[0], y)
                     for y in short_seq(crd_0[1], crd_1[1], self.dy)]

        #path on lattice, uses idxs
        p = [self.layout.map[crd] for crd in list(pth_0) + list(pth_1)]
        pl = sp.X(p) if err_type == 'X' else sp.Z(p)
        return pl
Beispiel #3
0
def xyx_check():
    """
    If BP works, than a chain consisting of X-Y-X errors will be
    corrected at d = 5.
    """
    layout = sc.SCLayout(5)
    err = sp.X([15, 24, 33]) * sp.Z([24])
    mdl = [0.9, 0.1 / 3, 0.1 / 3, 0.1 / 3]
Beispiel #4
0
def two_bit_bp():
    """
    Reproduce Figure 2a from Poulin/Chung 2008, using the BP from
    matched_weights.py.
    """
    stabs = {2: sp.X([0, 1]), 3: sp.Z([0, 1])}
    err = sp.X([0])
    mdl = [0.9, 0.1 / 3, 0.1 / 3, 0.1 / 3]

    g = mw.tanner_graph(stabs, err, mdl)

    b_list = [g.node[1]['prior']]  # symmetry sez: identical on both qubits

    for _ in range(10):
        mw.propagate_beliefs(g, 1)
        b_list.append(mw.beliefs(g)[1])

    return b_list
    def logicals(self):
        dx, dy = self.dx, self.dy

        if self.top == 'rough':
            x_pts = [self.map[(x, 1)] for x in range(0, 2 * dx, 2)]
            z_pts = [self.map[(0, y)] for y in range(1, 2 * dy + 1, 2)]
        elif self.top == 'smooth':
            x_pts = [self.map[(1, y)] for y in range(0, 2 * dy, 2)]
            z_pts = [self.map[(x, 0)] for x in range(1, 2 * dx + 1, 2)]
        else:
            raise ValueError("top type " "{} not allowed".format(self.top))

        return [sp.X(x_pts), sp.Z(z_pts)]
    def stabilisers(self):
        """
        Sometimes it's convenient to have the stabilisers of a surface
        code, especially when doing a 2d example.
        """
        stab_dict = {'X': {}, 'Z': {}}

        for key in stab_dict.keys():
            for anc in self.ancillas[key]:
                d_set = [self.map[ad(anc, shft, self.l)] for shft in TC_SHIFTS]
                stab = sp.X(d_set) if key == "X" else sp.Z(d_set)
                stab_dict[key][self.map[anc]] = stab

        return stab_dict
 def logicals(self):
     x_1 = [self.map[(x, 1)] for x in _evens(self.l)]
     x_2 = [self.map[(1, y)] for y in _evens(self.l)]
     z_1 = [self.map[(x, 0)] for x in _odds(self.l)]
     z_2 = [self.map[(0, y)] for y in _odds(self.l)]
     return [sp.X(x_1), sp.X(x_2), sp.Z(z_1), sp.Z(z_2)]
Beispiel #8
0
# This big block of variables is meant to pre-compute a lot of the
# stuff that goes into check_to_qubit for surface codes at import-time.

g_14 = [{0}, {1}, {2}, {3}]
g_24 = [{0, 1}, {1, 2}, {2, 3}]
g_12 = [{0}, {1}]
g_22 = [{0, 1}]

_xxxx_com = list(sp.generated_group(g_14, g_24))
_zzzz_com = list(sp.generated_group(g_24, g_14))
_xx_com   = list(sp.generated_group(g_12, g_22))
_zz_com   = list(sp.generated_group(g_22, g_12))

_xxxx_acom = [sp.Z([0]) * p for p in sp.generated_group(g_14, g_24)]
_zzzz_acom = [sp.X([0]) * p for p in sp.generated_group(g_24, g_14)]
_xx_acom   = [sp.Z([0]) * p for p in sp.generated_group(g_12, g_22)]
_zz_acom   = [sp.X([0]) * p for p in sp.generated_group(g_22, g_12)]

def tpl_lst(pauli_lst, n_bits):
    return [str_sprt_to_tpl(p.str_sprt_pair(), range(n_bits))
                                            for p in pauli_lst]

_lpg_wrap = {
                ('XXXX', 0): tpl_lst(_xxxx_com, 4),
                ('XXXX', 1): tpl_lst(_xxxx_acom, 4),
                ('ZZZZ', 0): tpl_lst(_zzzz_com, 4),
                ('ZZZZ', 1): tpl_lst(_zzzz_acom, 4),
                ('XX', 0):   tpl_lst(_xx_com, 2),
                ('XX', 1):   tpl_lst(_xx_acom, 2),
                ('ZZ', 0):   tpl_lst(_zz_com, 2),