def perform(self, robot: Robot, state: State, view: View) -> None: heading_error = self.relative_bearing(state, view) heading_error = (math.pi + heading_error) % math.tau - math.pi print(f" RB is {math.degrees(heading_error)}°", end='') # Add some pseudo heading error if the proximity sensors are going off left_distance = view.left_distance right_distance = view.right_distance # Detect towers if not NERF_MODE: for station in StationCode: station_position = STATION_CODE_LOCATIONS[station] distance = math.hypot( station_position.x - state.kalman.location.x, station_position.y - state.kalman.location.y, ) distance = max(0, distance - TOWER_RADIUS) if distance > STEERING_THRESHOLD_METRES: continue absolute_bearing = math.atan2( station_position.x - state.kalman.location.x, station_position.y - state.kalman.location.y, ) % math.tau relative_bearing = absolute_bearing - state.kalman.heading #print(f"Proximity to {station.value}, range is {distance:.03f}m, relative {math.degrees(relative_bearing):.0f}°") if 0 < relative_bearing < TOWER_ANGLE: right_distance = min(right_distance, distance) elif -TOWER_ANGLE < relative_bearing <= 0: left_distance = min(left_distance, distance) turn_back = False if view.left_distance < STEERING_THRESHOLD_METRES: heading_error += math.tan(TOWER_CLEARANCE_DISTANCE / view.left_distance) turn_back = True if view.right_distance < STEERING_THRESHOLD_METRES: heading_error -= math.tan(TOWER_CLEARANCE_DISTANCE / view.right_distance) turn_back = True if turn_back: print(f", steering {math.degrees(heading_error)}°", end='') if -IN_PLACE_THRESHOLD < heading_error < IN_PLACE_THRESHOLD: print("... moving ahead") deflection = state.heading_pid.step(heading_error) drive(robot, FORWARD_POWER, FULL_DEFLECTION_TURN_RATE_PER_SECOND * deflection) elif heading_error > 0: print("... turning right") drive(robot, -0.2 if turn_back else 0.2, IN_PLACE_TURN_RATE_PER_SECOND) elif heading_error < 0: print("... turning left") drive(robot, -0.2 if turn_back else 0.2, -IN_PLACE_TURN_RATE_PER_SECOND) robot.sleep(1 / 100)
def run(robot: Robot) -> None: state = initial_state(robot) last_action = '' last_zone = None while True: view = get_world_view(robot) #print(view) update_state_from_view(robot, state, view) action = choose_action(robot, state, view) action_desc = str(action) if action_desc != last_action: print("Action: ", action_desc) last_action = action_desc if state.current_zone != last_zone: print("Zone: ", state.current_zone, state.kalman.location) last_zone = state.current_zone action.perform(robot, state, view) robot.sleep(0.01)
def perform(self, robot: Robot, state: State, view: View) -> None: drive(robot, 0) robot.radio.claim_territory() new_targets = robot.radio.sweep() successful = False for target in new_targets: if target.target_info.station_code == self.station: if target.target_info.owned_by == state.zone: successful = True break if successful: # We claimed this one, mark all downstreams as now capturable new_uncapturable = set(state.uncapturable) new_uncapturable.discard(self.station) for successor, predecessors in PREDECESSORS[Claimant( robot.zone)].items(): if predecessors is None: continue if self.station in predecessors: new_uncapturable.discard(successor) new_cap_count = dict(state.num_captures) new_cap_count[self.station] += 1 state.uncapturable = frozenset(new_uncapturable) state.num_captures = new_cap_count else: # We failed to claim this one, assume that all predecessors became unowned predecessors = PREDECESSORS[Claimant(robot.zone)][self.station] if predecessors is None: new_owned = state.captured else: new_owned = frozenset(state.captured - set(predecessors)) state.uncapturable = state.uncapturable | {self.station} state.captured = new_owned drive(robot, -0.5) robot.sleep(0.2) if NERF_MODE: if random.random() < 0.5: drive(robot, 0, math.radians(90) / 3) else: drive(robot, 0, -math.radians(90) / 3) robot.sleep(3) drive(robot, 0) robot.sleep(1)
def choose_action(robot: Robot, state: State, view: View) -> Action: if NERF_MODE: # Artificial stupidity robot.sleep(0.2) # Consider immediate claim targets, where we're already within the territory for target in view.targets: if 1.0 / target.signal_strength > 0.22: continue if target.target_info.owned_by == robot.zone: #print(f"> Considered {target.target_info.station_code} but we already own it") continue if not is_capturable(state.zone, target.target_info.station_code, state.captured): print( f"> Considered {target.target_info.station_code} but we believe we're missing a predecessor" ) continue if target.target_info.station_code in state.uncapturable: print( f"> Considered {target.target_info.station_code} but skipping due to previous difficulties" ) continue return ClaimImmediate(target.target_info.station_code) # Back off if we're in proximity if view.proximity: if random.random() < 0.95: return BackOff() else: return MoveRandomly() if (state.current_target is not None and state.current_target not in state.captured and state.current_target not in state.uncapturable and is_capturable(state.zone, state.current_target, state.captured)): target = state.current_target else: target = choose_next_target( state.zone, state.captured, state.uncapturable, from_location=state.kalman.location, dropped=view.dropped, pseudo_distances={ x: 0.7 * y for x, y in state.num_captures.items() }, ) state.current_target = target next_hop, route_direct = get_next_hop(get_zone(state.kalman.location), get_station_location(target), view.dropped) if route_direct: return GotoStation(target) else: print(f"Routing to {target} via {next_hop}") return GotoLocation(ZONE_CENTRES[next_hop])
def perform(self, robot: Robot, state: State, view: View) -> None: drive(robot, random.random() - 0.25, 0.25 * (random.random() - 0.5)) robot.sleep(0.2 + random.random() * 1.3)
def perform(self, robot: Robot, state: State, view: View) -> State: drive(robot, -0.6, IN_PLACE_TURN_RATE_PER_SECOND * (0.15 * random.random() + 0.4)) robot.sleep(0.4)