Ejemplo n.º 1
0
    def perform(self, robot: Robot, state: State, view: View) -> None:
        heading_error = self.relative_bearing(state, view)
        heading_error = (math.pi + heading_error) % math.tau - math.pi
        print(f"  RB is {math.degrees(heading_error)}°", end='')
        # Add some pseudo heading error if the proximity sensors are going off
        left_distance = view.left_distance
        right_distance = view.right_distance

        # Detect towers
        if not NERF_MODE:
            for station in StationCode:
                station_position = STATION_CODE_LOCATIONS[station]
                distance = math.hypot(
                    station_position.x - state.kalman.location.x,
                    station_position.y - state.kalman.location.y,
                )
                distance = max(0, distance - TOWER_RADIUS)
                if distance > STEERING_THRESHOLD_METRES:
                    continue
                absolute_bearing = math.atan2(
                    station_position.x - state.kalman.location.x,
                    station_position.y - state.kalman.location.y,
                ) % math.tau
                relative_bearing = absolute_bearing - state.kalman.heading
                #print(f"Proximity to {station.value}, range is {distance:.03f}m, relative {math.degrees(relative_bearing):.0f}°")
                if 0 < relative_bearing < TOWER_ANGLE:
                    right_distance = min(right_distance, distance)
                elif -TOWER_ANGLE < relative_bearing <= 0:
                    left_distance = min(left_distance, distance)

        turn_back = False

        if view.left_distance < STEERING_THRESHOLD_METRES:
            heading_error += math.tan(TOWER_CLEARANCE_DISTANCE /
                                      view.left_distance)
            turn_back = True
        if view.right_distance < STEERING_THRESHOLD_METRES:
            heading_error -= math.tan(TOWER_CLEARANCE_DISTANCE /
                                      view.right_distance)
            turn_back = True
        if turn_back:
            print(f", steering {math.degrees(heading_error)}°", end='')
        if -IN_PLACE_THRESHOLD < heading_error < IN_PLACE_THRESHOLD:
            print("... moving ahead")
            deflection = state.heading_pid.step(heading_error)
            drive(robot, FORWARD_POWER,
                  FULL_DEFLECTION_TURN_RATE_PER_SECOND * deflection)
        elif heading_error > 0:
            print("... turning right")
            drive(robot, -0.2 if turn_back else 0.2,
                  IN_PLACE_TURN_RATE_PER_SECOND)
        elif heading_error < 0:
            print("... turning left")
            drive(robot, -0.2 if turn_back else 0.2,
                  -IN_PLACE_TURN_RATE_PER_SECOND)
        robot.sleep(1 / 100)
Ejemplo n.º 2
0
def run(robot: Robot) -> None:
    state = initial_state(robot)
    last_action = ''
    last_zone = None

    while True:
        view = get_world_view(robot)
        #print(view)
        update_state_from_view(robot, state, view)
        action = choose_action(robot, state, view)
        action_desc = str(action)
        if action_desc != last_action:
            print("Action: ", action_desc)
            last_action = action_desc
        if state.current_zone != last_zone:
            print("Zone: ", state.current_zone, state.kalman.location)
            last_zone = state.current_zone
        action.perform(robot, state, view)
        robot.sleep(0.01)
Ejemplo n.º 3
0
    def perform(self, robot: Robot, state: State, view: View) -> None:
        drive(robot, 0)
        robot.radio.claim_territory()
        new_targets = robot.radio.sweep()
        successful = False
        for target in new_targets:
            if target.target_info.station_code == self.station:
                if target.target_info.owned_by == state.zone:
                    successful = True
                break
        if successful:
            # We claimed this one, mark all downstreams as now capturable
            new_uncapturable = set(state.uncapturable)
            new_uncapturable.discard(self.station)
            for successor, predecessors in PREDECESSORS[Claimant(
                    robot.zone)].items():
                if predecessors is None:
                    continue
                if self.station in predecessors:
                    new_uncapturable.discard(successor)
            new_cap_count = dict(state.num_captures)
            new_cap_count[self.station] += 1
            state.uncapturable = frozenset(new_uncapturable)
            state.num_captures = new_cap_count
        else:
            # We failed to claim this one, assume that all predecessors became unowned
            predecessors = PREDECESSORS[Claimant(robot.zone)][self.station]
            if predecessors is None:
                new_owned = state.captured
            else:
                new_owned = frozenset(state.captured - set(predecessors))
            state.uncapturable = state.uncapturable | {self.station}
            state.captured = new_owned
        drive(robot, -0.5)
        robot.sleep(0.2)

        if NERF_MODE:
            if random.random() < 0.5:
                drive(robot, 0, math.radians(90) / 3)
            else:
                drive(robot, 0, -math.radians(90) / 3)
            robot.sleep(3)
            drive(robot, 0)
            robot.sleep(1)
Ejemplo n.º 4
0
def choose_action(robot: Robot, state: State, view: View) -> Action:
    if NERF_MODE:
        # Artificial stupidity
        robot.sleep(0.2)

    # Consider immediate claim targets, where we're already within the territory
    for target in view.targets:
        if 1.0 / target.signal_strength > 0.22:
            continue

        if target.target_info.owned_by == robot.zone:
            #print(f"> Considered {target.target_info.station_code} but we already own it")
            continue

        if not is_capturable(state.zone, target.target_info.station_code,
                             state.captured):
            print(
                f"> Considered {target.target_info.station_code} but we believe we're missing a predecessor"
            )
            continue

        if target.target_info.station_code in state.uncapturable:
            print(
                f"> Considered {target.target_info.station_code} but skipping due to previous difficulties"
            )
            continue

        return ClaimImmediate(target.target_info.station_code)

    # Back off if we're in proximity
    if view.proximity:
        if random.random() < 0.95:
            return BackOff()
        else:
            return MoveRandomly()

    if (state.current_target is not None
            and state.current_target not in state.captured
            and state.current_target not in state.uncapturable and
            is_capturable(state.zone, state.current_target, state.captured)):
        target = state.current_target
    else:
        target = choose_next_target(
            state.zone,
            state.captured,
            state.uncapturable,
            from_location=state.kalman.location,
            dropped=view.dropped,
            pseudo_distances={
                x: 0.7 * y
                for x, y in state.num_captures.items()
            },
        )
        state.current_target = target

    next_hop, route_direct = get_next_hop(get_zone(state.kalman.location),
                                          get_station_location(target),
                                          view.dropped)
    if route_direct:
        return GotoStation(target)
    else:
        print(f"Routing to {target} via {next_hop}")
        return GotoLocation(ZONE_CENTRES[next_hop])
Ejemplo n.º 5
0
 def perform(self, robot: Robot, state: State, view: View) -> None:
     drive(robot, random.random() - 0.25, 0.25 * (random.random() - 0.5))
     robot.sleep(0.2 + random.random() * 1.3)
Ejemplo n.º 6
0
 def perform(self, robot: Robot, state: State, view: View) -> State:
     drive(robot, -0.6,
           IN_PLACE_TURN_RATE_PER_SECOND * (0.15 * random.random() + 0.4))
     robot.sleep(0.4)