Beispiel #1
0
class TestGraph(unittest.TestCase):

    def setUp(self):
        self.undirected = UndirectedGraph()
        self.undirected.add_edge(1, 2, 2)
        self.undirected.add_edge(1, 3, 6)
        self.undirected.add_edge(2, 3, 3)
        self.undirected.add_edge(2, 4, 1)
        self.undirected.add_edge(3, 4, 1)
        self.undirected.add_edge(3, 5, 4)
        self.undirected.add_edge(4, 5, 6)

        self.directed = DirectedGraph()
        self.directed.add_edge(1, 2, 2)
        self.directed.add_edge(1, 3, 6)
        self.directed.add_edge(2, 3, 3)
        self.directed.add_edge(2, 4, 1)
        self.directed.add_edge(3, 4, 1)
        self.directed.add_edge(3, 5, 4)
        self.directed.add_edge(4, 5, 6)

    def test_get_edges(self):
        assert self.undirected.get_all_edges() == self.directed.get_all_edges()
        assert self.undirected.get_vertices() == self.directed.get_vertices()

    def test_directed_graph(self):

        assert len(self.directed.get_successive_vertices(4)) == 1

        assert len(self.undirected.get_successive_vertices(4)) == 3

        assert self.undirected.edge_exists(4, 3)
        assert not self.directed.edge_exists(4, 3)

        self.directed.delete_edge(4, 3)
        self.undirected.delete_edge(4, 3)

        assert len(self.directed.get_all_edges()) == len(self.undirected.get_all_edges()) + 1

    def test_undirected_graph(self):
        g = UndirectedGraph()
Beispiel #2
0
class TestGraph(unittest.TestCase):
    def setUp(self):
        self.undirected = UndirectedGraph()
        self.undirected.add_edge(1, 2, 2)
        self.undirected.add_edge(1, 3, 6)
        self.undirected.add_edge(2, 3, 3)
        self.undirected.add_edge(2, 4, 1)
        self.undirected.add_edge(3, 4, 1)
        self.undirected.add_edge(3, 5, 4)
        self.undirected.add_edge(4, 5, 6)

        self.directed = DirectedGraph()
        self.directed.add_edge(1, 2, 2)
        self.directed.add_edge(1, 3, 6)
        self.directed.add_edge(2, 3, 3)
        self.directed.add_edge(2, 4, 1)
        self.directed.add_edge(3, 4, 1)
        self.directed.add_edge(3, 5, 4)
        self.directed.add_edge(4, 5, 6)

    def test_get_edges(self):
        assert self.undirected.get_all_edges() == self.directed.get_all_edges()
        assert self.undirected.get_vertices() == self.directed.get_vertices()

    def test_directed_graph(self):

        assert len(self.directed.get_successive_vertices(4)) == 1

        assert len(self.undirected.get_successive_vertices(4)) == 3

        assert self.undirected.edge_exists(4, 3)
        assert not self.directed.edge_exists(4, 3)

        self.directed.delete_edge(4, 3)
        self.undirected.delete_edge(4, 3)

        assert len(self.directed.get_all_edges()) == len(
            self.undirected.get_all_edges()) + 1

    def test_undirected_graph(self):
        g = UndirectedGraph()
def kruskal(graph: UndirectedGraph) -> UndirectedGraph:
    """
    Kruskal's algorithm is a minimum-spanning-tree algorithm which finds an edge of the least possible weight
    that connects any two trees in the forest. It is a greedy algorithm in graph theory as it finds a minimum
    spanning tree for a connected weighted undirected graph adding increasing cost arcs at each step.
    Time complexity: O(E log V)
    """
    spanning_tree = UndirectedGraph()

    union_find = UnionFind(max(graph.get_vertices()) + 1)

    heap = FibonacciHeap(graph.get_all_edges())

    while not heap.is_empty():

        edge = heap.pop()

        # Only add the edge if it will not create a cycle
        if union_find.find(edge.a) != union_find.find(edge.b):
            spanning_tree.add_edge(edge.a, edge.b, edge.weight)
            union_find.union(edge.a, edge.b)

    return spanning_tree