test_list = get_list(img_dir, label_dir)
# test_list = test_list[0:-20]
test_dataset = csd.CityScapeDataset(test_list, train=False, show=False)
test_data_loader = torch.utils.data.DataLoader(test_dataset,
                                               batch_size=16,
                                               shuffle=False,
                                               num_workers=0)
print('test items:', len(test_dataset))

file_name = 'SSD'
test_net_state = torch.load(os.path.join('.', file_name + '.pth'))

net = SSD(3)
if use_gpu:
    net = net.cuda()
net.load_state_dict(test_net_state)
itr = 0

net.eval()
for test_batch_idx, (loc_targets, conf_targets,
                     imgs) in enumerate(test_data_loader):
    itr += 1
    imgs = imgs.permute(0, 3, 1, 2).contiguous()
    if use_gpu:
        imgs = imgs.cuda()
    imgs = Variable(imgs)
    conf, loc = net.forward(imgs)
    conf = conf[0, ...]
    loc = loc[0, ...].cpu()
Beispiel #2
0
#                                                 batch_size=4,
#                                                 shuffle=False,
#                                                  num_workers=0)
# print('validation items:', len(valid_dataset))

net = SSD(3)
optimizer = optim.SGD(net.parameters(),
                      lr=learning_rate,
                      momentum=0.9,
                      weight_decay=1e-4)
optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate)
criterion = MultiboxLoss([0.1, 0.1, 0.2, 0.2])

if use_gpu:
    torch.set_default_tensor_type('torch.cuda.FloatTensor')
    net.cuda()
    criterion.cuda()

train_losses = []
valid_losses = []
itr = 0
for epoch_idx in range(0, max_epochs):
    for train_batch_idx, (loc_targets, conf_targets,
                          imgs) in enumerate(train_data_loader):

        itr += 1
        net.train()

        imgs = imgs.permute(
            0, 3, 1,
            2).contiguous()  # [batch_size, W, H, CH] -> [batch_size, CH, W, H]
Beispiel #3
0
def main():
    torch.set_default_tensor_type('torch.cuda.FloatTensor')

    prior_layer_cfg = [{
        'layer_name': 'Conv5',
        'feature_dim_hw': (19, 19),
        'bbox_size': (60, 60),
        'aspect_ratio': (1.0, 1 / 2, 1 / 3, 2.0, 3.0, '1t')
    }, {
        'layer_name': 'Conv11',
        'feature_dim_hw': (10, 10),
        'bbox_size': (105, 105),
        'aspect_ratio': (1.0, 1 / 2, 1 / 3, 2.0, 3.0, '1t')
    }, {
        'layer_name': 'Conv14_2',
        'feature_dim_hw': (5, 5),
        'bbox_size': (150, 150),
        'aspect_ratio': (1.0, 1 / 2, 1 / 3, 2.0, 3.0, '1t')
    }, {
        'layer_name': 'Conv15_2',
        'feature_dim_hw': (3, 3),
        'bbox_size': (195, 195),
        'aspect_ratio': (1.0, 1 / 2, 1 / 3, 2.0, 3.0, '1t')
    }, {
        'layer_name': 'Conv16_2',
        'feature_dim_hw': (2, 2),
        'bbox_size': (240, 240),
        'aspect_ratio': (1.0, 1 / 2, 1 / 3, 2.0, 3.0, '1t')
    }, {
        'layer_name': 'Conv17_2',
        'feature_dim_hw': (1, 1),
        'bbox_size': (285, 285),
        'aspect_ratio': (1.0, 1 / 2, 1 / 3, 2.0, 3.0, '1t')
    }]
    prior_bboxes = generate_prior_bboxes(prior_layer_cfg)

    # loading the test image
    img_file_path = sys.argv[1]
    # img_file_path = 'image.png'
    img = Image.open(img_file_path)
    img = img.resize((300, 300))
    plot_img = img.copy()
    img_array = np.asarray(img)[:, :, :3]
    mean = np.asarray((127, 127, 127))
    std = 128.0
    img_array = (img_array - mean) / std
    h, w, c = img_array.shape[0], img_array.shape[1], img_array.shape[2]
    img_tensor = torch.Tensor(img_array)
    test_input = img_tensor.view(1, c, h, w)

    # # loading test input to run test on
    # test_data_loader = torch.utils.data.DataLoader(test_input,
    #                                                 batch_size=1,
    #                                                 shuffle=True,
    #                                                 num_workers=0)
    # idx, (img) = next(enumerate(test_data_loader))
    # # Setting model to evaluate mode
    net = SSD(2)
    test_net_state = torch.load('ssd_net.pth')
    net.load_state_dict(test_net_state)
    # net.eval()
    net.cuda()
    # Forward
    test_input = Variable(test_input.cuda())
    test_cof, test_loc = net.forward(test_input)

    test_loc = test_loc.detach()
    test_loc_clone = test_loc.clone()

    # normalizing the loss to add up to 1 (for probability)
    test_cof_score = F.softmax(test_cof[0], dim=1)
    # print(test_cof_score.shape)
    # print(test_cof_score)

    # running NMS
    sel_idx = nms_bbox1(test_loc_clone[0],
                        prior_bboxes,
                        test_cof_score.detach(),
                        overlap_threshold=0.5,
                        prob_threshold=0.24)

    test_loc = loc2bbox(test_loc[0], prior_bboxes)
    test_loc = center2corner(test_loc)

    sel_bboxes = test_loc[sel_idx]

    # plotting the output
    plot_output(plot_img, sel_bboxes.cpu().detach().numpy())
Beispiel #4
0
def test_net(test_dataset, class_labels, results_path):
    if torch.cuda.is_available():
        torch.set_default_tensor_type('torch.cuda.FloatTensor')

    # Load the save model and deploy
    test_net = SSD(len(class_labels))

    test_net_state = torch.load(os.path.join(results_path))
    test_net.load_state_dict(test_net_state)
    test_net.cuda()

    test_net.eval()

    # accuracy
    count_matched = 0
    count_gt = 0
    for test_item_idx in range(0, len(test_dataset)):
        # test_item_idx = random.choice(range(0, len(test_dataset)))
        test_image_tensor, test_label_tensor, test_bbox_tensor, prior_bbox = test_dataset[
            test_item_idx]

        # run Forward
        with torch.no_grad():
            pred_scores_tensor, pred_bbox_tensor = test_net.forward(
                test_image_tensor.unsqueeze(0).cuda())  # N C H W

        # scores -> Prob # because I deleted F.softmax~ at the ssd_net for net.eval
        pred_scores_tensor = F.softmax(pred_scores_tensor, dim=2)

        # bbox loc -> bbox (center)
        pred_bbox_tensor = loc2bbox(pred_bbox_tensor, prior_bbox.unsqueeze(0))

        # NMS : return tensor dictionary (bbo
        pred_picked = nms_bbox(
            pred_bbox_tensor[0],
            pred_scores_tensor[0])  # not tensor, corner form

        # Show the result
        test_image = test_image_tensor.cpu().numpy().astype(
            np.float32).transpose().copy()  # H, W, C
        test_image = ((test_image + 1) / 2)
        gt_label = test_label_tensor.cpu().numpy().astype(np.uint8).copy()
        gt_bbox_tensor = torch.cat([
            test_bbox_tensor[..., :2] - test_bbox_tensor[..., 2:] / 2,
            test_bbox_tensor[..., :2] + test_bbox_tensor[..., 2:] / 2
        ],
                                   dim=-1)
        gt_bbox = gt_bbox_tensor.detach().cpu().numpy().astype(
            np.float32).reshape((-1, 4)).copy() * 300
        gt_idx = gt_label > 0

        # Calculate accuracy
        pred_scores = pred_scores_tensor.detach().cpu().numpy().astype(
            np.float32).copy()
        pred_label = pred_scores[0].argmax(axis=1)

        n_matched = 0
        for gt, pr in zip(gt_label, pred_label):
            if gt > 0 and gt == pr:
                n_matched += 1
        acc_per_image = 100 * n_matched / gt_idx.sum()
        count_matched += n_matched
        count_gt += gt_idx.sum()

        # Show the results
        gt_bbox = gt_bbox[gt_idx]
        gt_label = gt_label[gt_idx]
        if False:
            for idx in range(gt_bbox.shape[0]):
                cv2.rectangle(test_image, (gt_bbox[idx][0], gt_bbox[idx][1]),
                              (gt_bbox[idx][2], gt_bbox[idx][3]), (255, 0, 0),
                              1)
                cv2.putText(test_image, str(gt_label[idx]),
                            (gt_bbox[idx][0], gt_bbox[idx][1]),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.5, (200, 0, 0), 1,
                            cv2.LINE_AA)

                #--------------------
                # cv2.rectangle(test_image, (pred_bbox[idx][0], pred_bbox[idx][1]), (pred_bbox[idx][2], pred_bbox[idx][3]),
                #               (0, 255, 0), 1)

                #-----------------------

            for cls_dict in pred_picked:
                for p_score, p_bbox in zip(cls_dict['picked_scores'],
                                           cls_dict['picked_bboxes']):
                    p_lbl = '%d | %.2f' % (cls_dict['class'], p_score)
                    p_bbox = p_bbox * 300
                    print(p_bbox, p_lbl)
                    cv2.rectangle(test_image, (p_bbox[0], p_bbox[1]),
                                  (p_bbox[2], p_bbox[3]), (0, 0, 255), 2)
                    cv2.putText(test_image, p_lbl, (p_bbox[0], p_bbox[1]),
                                cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1,
                                cv2.LINE_AA)
            plt.imshow(test_image)
            plt.suptitle(class_labels)
            plt.title('Temp Accuracy: {} %'.format(acc_per_image))
            plt.show()

    acc = 100 * count_matched / count_gt
    print('Classification acc: ', '%')
    image = np.divide((np.asarray(image, dtype=np.float32) - 128.0),
                      np.asarray((127, 127, 127)))
    img_tensor = torch.from_numpy(image.transpose()).type(torch.float32)

    if torch.cuda.is_available():
        img_tensor = img_tensor.cuda()

    # 2. Load the saved model and test ------------------------------------------------
    class_labels = list(dataset_label_group.keys())
    test_net = SSD(len(class_labels))

    test_net_state = torch.load(os.path.join(results_path))
    test_net.load_state_dict(test_net_state)

    if torch.cuda.is_available():
        test_net.cuda()

    test_net.eval()

    # 3. Run Forward -------------------------------------------------------------------
    with torch.no_grad():
        pred_scores_tensor, pred_bbox_tensor = test_net.forward(
            img_tensor.unsqueeze(0))  # N C H W

    prior = CityScapeDataset([])
    prior_bbox = prior.get_prior_bbox()

    pred_scores_tensor = F.softmax(
        pred_scores_tensor,
        dim=2)  # eval mode softmax was disabled in ssd_test
    pred_bbox_tensor = loc2bbox(