test_list = get_list(img_dir, label_dir) # test_list = test_list[0:-20] test_dataset = csd.CityScapeDataset(test_list, train=False, show=False) test_data_loader = torch.utils.data.DataLoader(test_dataset, batch_size=16, shuffle=False, num_workers=0) print('test items:', len(test_dataset)) file_name = 'SSD' test_net_state = torch.load(os.path.join('.', file_name + '.pth')) net = SSD(3) if use_gpu: net = net.cuda() net.load_state_dict(test_net_state) itr = 0 net.eval() for test_batch_idx, (loc_targets, conf_targets, imgs) in enumerate(test_data_loader): itr += 1 imgs = imgs.permute(0, 3, 1, 2).contiguous() if use_gpu: imgs = imgs.cuda() imgs = Variable(imgs) conf, loc = net.forward(imgs) conf = conf[0, ...] loc = loc[0, ...].cpu()
# batch_size=4, # shuffle=False, # num_workers=0) # print('validation items:', len(valid_dataset)) net = SSD(3) optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9, weight_decay=1e-4) optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate) criterion = MultiboxLoss([0.1, 0.1, 0.2, 0.2]) if use_gpu: torch.set_default_tensor_type('torch.cuda.FloatTensor') net.cuda() criterion.cuda() train_losses = [] valid_losses = [] itr = 0 for epoch_idx in range(0, max_epochs): for train_batch_idx, (loc_targets, conf_targets, imgs) in enumerate(train_data_loader): itr += 1 net.train() imgs = imgs.permute( 0, 3, 1, 2).contiguous() # [batch_size, W, H, CH] -> [batch_size, CH, W, H]
def main(): torch.set_default_tensor_type('torch.cuda.FloatTensor') prior_layer_cfg = [{ 'layer_name': 'Conv5', 'feature_dim_hw': (19, 19), 'bbox_size': (60, 60), 'aspect_ratio': (1.0, 1 / 2, 1 / 3, 2.0, 3.0, '1t') }, { 'layer_name': 'Conv11', 'feature_dim_hw': (10, 10), 'bbox_size': (105, 105), 'aspect_ratio': (1.0, 1 / 2, 1 / 3, 2.0, 3.0, '1t') }, { 'layer_name': 'Conv14_2', 'feature_dim_hw': (5, 5), 'bbox_size': (150, 150), 'aspect_ratio': (1.0, 1 / 2, 1 / 3, 2.0, 3.0, '1t') }, { 'layer_name': 'Conv15_2', 'feature_dim_hw': (3, 3), 'bbox_size': (195, 195), 'aspect_ratio': (1.0, 1 / 2, 1 / 3, 2.0, 3.0, '1t') }, { 'layer_name': 'Conv16_2', 'feature_dim_hw': (2, 2), 'bbox_size': (240, 240), 'aspect_ratio': (1.0, 1 / 2, 1 / 3, 2.0, 3.0, '1t') }, { 'layer_name': 'Conv17_2', 'feature_dim_hw': (1, 1), 'bbox_size': (285, 285), 'aspect_ratio': (1.0, 1 / 2, 1 / 3, 2.0, 3.0, '1t') }] prior_bboxes = generate_prior_bboxes(prior_layer_cfg) # loading the test image img_file_path = sys.argv[1] # img_file_path = 'image.png' img = Image.open(img_file_path) img = img.resize((300, 300)) plot_img = img.copy() img_array = np.asarray(img)[:, :, :3] mean = np.asarray((127, 127, 127)) std = 128.0 img_array = (img_array - mean) / std h, w, c = img_array.shape[0], img_array.shape[1], img_array.shape[2] img_tensor = torch.Tensor(img_array) test_input = img_tensor.view(1, c, h, w) # # loading test input to run test on # test_data_loader = torch.utils.data.DataLoader(test_input, # batch_size=1, # shuffle=True, # num_workers=0) # idx, (img) = next(enumerate(test_data_loader)) # # Setting model to evaluate mode net = SSD(2) test_net_state = torch.load('ssd_net.pth') net.load_state_dict(test_net_state) # net.eval() net.cuda() # Forward test_input = Variable(test_input.cuda()) test_cof, test_loc = net.forward(test_input) test_loc = test_loc.detach() test_loc_clone = test_loc.clone() # normalizing the loss to add up to 1 (for probability) test_cof_score = F.softmax(test_cof[0], dim=1) # print(test_cof_score.shape) # print(test_cof_score) # running NMS sel_idx = nms_bbox1(test_loc_clone[0], prior_bboxes, test_cof_score.detach(), overlap_threshold=0.5, prob_threshold=0.24) test_loc = loc2bbox(test_loc[0], prior_bboxes) test_loc = center2corner(test_loc) sel_bboxes = test_loc[sel_idx] # plotting the output plot_output(plot_img, sel_bboxes.cpu().detach().numpy())
def test_net(test_dataset, class_labels, results_path): if torch.cuda.is_available(): torch.set_default_tensor_type('torch.cuda.FloatTensor') # Load the save model and deploy test_net = SSD(len(class_labels)) test_net_state = torch.load(os.path.join(results_path)) test_net.load_state_dict(test_net_state) test_net.cuda() test_net.eval() # accuracy count_matched = 0 count_gt = 0 for test_item_idx in range(0, len(test_dataset)): # test_item_idx = random.choice(range(0, len(test_dataset))) test_image_tensor, test_label_tensor, test_bbox_tensor, prior_bbox = test_dataset[ test_item_idx] # run Forward with torch.no_grad(): pred_scores_tensor, pred_bbox_tensor = test_net.forward( test_image_tensor.unsqueeze(0).cuda()) # N C H W # scores -> Prob # because I deleted F.softmax~ at the ssd_net for net.eval pred_scores_tensor = F.softmax(pred_scores_tensor, dim=2) # bbox loc -> bbox (center) pred_bbox_tensor = loc2bbox(pred_bbox_tensor, prior_bbox.unsqueeze(0)) # NMS : return tensor dictionary (bbo pred_picked = nms_bbox( pred_bbox_tensor[0], pred_scores_tensor[0]) # not tensor, corner form # Show the result test_image = test_image_tensor.cpu().numpy().astype( np.float32).transpose().copy() # H, W, C test_image = ((test_image + 1) / 2) gt_label = test_label_tensor.cpu().numpy().astype(np.uint8).copy() gt_bbox_tensor = torch.cat([ test_bbox_tensor[..., :2] - test_bbox_tensor[..., 2:] / 2, test_bbox_tensor[..., :2] + test_bbox_tensor[..., 2:] / 2 ], dim=-1) gt_bbox = gt_bbox_tensor.detach().cpu().numpy().astype( np.float32).reshape((-1, 4)).copy() * 300 gt_idx = gt_label > 0 # Calculate accuracy pred_scores = pred_scores_tensor.detach().cpu().numpy().astype( np.float32).copy() pred_label = pred_scores[0].argmax(axis=1) n_matched = 0 for gt, pr in zip(gt_label, pred_label): if gt > 0 and gt == pr: n_matched += 1 acc_per_image = 100 * n_matched / gt_idx.sum() count_matched += n_matched count_gt += gt_idx.sum() # Show the results gt_bbox = gt_bbox[gt_idx] gt_label = gt_label[gt_idx] if False: for idx in range(gt_bbox.shape[0]): cv2.rectangle(test_image, (gt_bbox[idx][0], gt_bbox[idx][1]), (gt_bbox[idx][2], gt_bbox[idx][3]), (255, 0, 0), 1) cv2.putText(test_image, str(gt_label[idx]), (gt_bbox[idx][0], gt_bbox[idx][1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (200, 0, 0), 1, cv2.LINE_AA) #-------------------- # cv2.rectangle(test_image, (pred_bbox[idx][0], pred_bbox[idx][1]), (pred_bbox[idx][2], pred_bbox[idx][3]), # (0, 255, 0), 1) #----------------------- for cls_dict in pred_picked: for p_score, p_bbox in zip(cls_dict['picked_scores'], cls_dict['picked_bboxes']): p_lbl = '%d | %.2f' % (cls_dict['class'], p_score) p_bbox = p_bbox * 300 print(p_bbox, p_lbl) cv2.rectangle(test_image, (p_bbox[0], p_bbox[1]), (p_bbox[2], p_bbox[3]), (0, 0, 255), 2) cv2.putText(test_image, p_lbl, (p_bbox[0], p_bbox[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA) plt.imshow(test_image) plt.suptitle(class_labels) plt.title('Temp Accuracy: {} %'.format(acc_per_image)) plt.show() acc = 100 * count_matched / count_gt print('Classification acc: ', '%')
image = np.divide((np.asarray(image, dtype=np.float32) - 128.0), np.asarray((127, 127, 127))) img_tensor = torch.from_numpy(image.transpose()).type(torch.float32) if torch.cuda.is_available(): img_tensor = img_tensor.cuda() # 2. Load the saved model and test ------------------------------------------------ class_labels = list(dataset_label_group.keys()) test_net = SSD(len(class_labels)) test_net_state = torch.load(os.path.join(results_path)) test_net.load_state_dict(test_net_state) if torch.cuda.is_available(): test_net.cuda() test_net.eval() # 3. Run Forward ------------------------------------------------------------------- with torch.no_grad(): pred_scores_tensor, pred_bbox_tensor = test_net.forward( img_tensor.unsqueeze(0)) # N C H W prior = CityScapeDataset([]) prior_bbox = prior.get_prior_bbox() pred_scores_tensor = F.softmax( pred_scores_tensor, dim=2) # eval mode softmax was disabled in ssd_test pred_bbox_tensor = loc2bbox(