Beispiel #1
0
def test_from_numpy_array_raises_error_when_incorrect_dims_passed():
    array = np.ones((2, 2))
    # verify this method works with the correct shape
    image = ImageStack.from_numpy_array(array.reshape((1, 1, 1, 2, 2)))
    assert isinstance(image, ImageStack)

    with pytest.raises(ValueError):
        ImageStack.from_numpy_array(array.reshape((1, 1, 2, 2)))
        ImageStack.from_numpy_array(array.reshape((1, 2, 2)))
        ImageStack.from_numpy_array(array)
        ImageStack.from_numpy_array(array.reshape((1, 1, 1, 1, 2, 2)))
Beispiel #2
0
def test_max_projection_preserves_dtype():
    original_dtype = np.uint16
    array = np.ones((2, 2, 2), dtype=original_dtype)
    image = ImageStack.from_numpy_array(array.reshape((1, 1, 2, 2, 2)))

    max_projection = image.max_proj(Indices.CH, Indices.HYB, Indices.Z)
    assert max_projection.dtype == original_dtype
Beispiel #3
0
def test_iss_pipeline():
    np.random.seed(2)
    synthesizer = SyntheticData(n_spots=5)
    codebook = synthesizer.codebook()
    true_intensities = synthesizer.intensities(codebook=codebook)
    image = synthesizer.spots(intensities=true_intensities)

    dots_data = image.max_proj(Indices.HYB, Indices.CH, Indices.Z)
    dots = ImageStack.from_numpy_array(
        dots_data.reshape((1, 1, 1, *dots_data.shape)))

    wth = WhiteTophat(disk_size=15)
    wth.filter(image)
    wth.filter(dots)

    fsr = FourierShiftRegistration(upsampling=1000, reference_stack=dots)
    fsr.register(image)

    min_sigma = 1.5
    max_sigma = 5
    num_sigma = 10
    threshold = 1e-4
    gsd = GaussianSpotDetector(
        min_sigma=min_sigma,
        max_sigma=max_sigma,
        num_sigma=num_sigma,
        threshold=threshold,
        blobs_stack=dots,
        measurement_type='max',
    )

    intensities = gsd.find(hybridization_image=image)
    assert intensities.shape[0] == 5

    codebook.decode_euclidean(intensities)
Beispiel #4
0
def labeled_synthetic_dataset():
    stp = synthesize.SyntheticSpotTileProvider()
    image = ImageStack.synthetic_stack(tile_data_provider=stp.tile)
    max_proj = image.max_proj(Indices.HYB, Indices.CH, Indices.Z)
    view = max_proj.reshape((1, 1, 1) + max_proj.shape)
    dots = ImageStack.from_numpy_array(view)

    def labeled_synthetic_dataset_factory():
        return deepcopy(image), deepcopy(dots), deepcopy(stp.codebook)

    return labeled_synthetic_dataset_factory
Beispiel #5
0
def test_from_numpy_array_preserves_dtype():
    original_dtype = np.uint16
    array = np.ones((2, 2, 2), dtype=original_dtype)
    image = ImageStack.from_numpy_array(array.reshape((1, 1, 2, 2, 2)))
    assert image.numpy_array.dtype == original_dtype
Beispiel #6
0
def test_from_numpy_array_preserves_data():
    array = np.random.random((1, 1, 1, 2, 2))
    image_stack = ImageStack.from_numpy_array(array)
    assert np.array_equal(array, image_stack.numpy_array)
Beispiel #7
0
def synthetic_two_spot_imagestack_3d(synthetic_two_spot_3d):
    data = synthetic_two_spot_3d
    return ImageStack.from_numpy_array(data.reshape(1, 1, *data.shape))
Beispiel #8
0
def synthetic_single_spot_imagestack_2d(synthetic_single_spot_2d):
    data = synthetic_single_spot_2d
    return ImageStack.from_numpy_array(data.reshape(1, 1, 1, *data.shape))