Beispiel #1
0
 def Pow(expr, assumptions):
     """
     Hermitian**Integer  -> !Antihermitian
     Antihermitian**Even -> !Antihermitian
     Antihermitian**Odd  -> Antihermitian
     """
     if expr.is_number:
         return AskImaginaryHandler._number(expr, assumptions)
     if ask(Q.hermitian(expr.base), assumptions):
         if ask(Q.integer(expr.exp), assumptions):
             return False
     elif ask(Q.antihermitian(expr.base), assumptions):
         if ask(Q.even(expr.exp), assumptions):
             return False
         elif ask(Q.odd(expr.exp), assumptions):
             return True
Beispiel #2
0
def _(expr, assumptions):
    """
    * Hermitian**Integer  -> !Antihermitian
    * Antihermitian**Even -> !Antihermitian
    * Antihermitian**Odd  -> Antihermitian
    """
    if expr.is_number:
        return None
    if ask(Q.hermitian(expr.base), assumptions):
        if ask(Q.integer(expr.exp), assumptions):
            return False
    elif ask(Q.antihermitian(expr.base), assumptions):
        if ask(Q.even(expr.exp), assumptions):
            return False
        elif ask(Q.odd(expr.exp), assumptions):
            return True
Beispiel #3
0
 def Mul(expr, assumptions):
     """
     As long as there is at most only one noncommutative term:
     Hermitian*Hermitian         -> !Antihermitian
     Hermitian*Antihermitian     -> Antihermitian
     Antihermitian*Antihermitian -> !Antihermitian
     """
     if expr.is_number:
         return AskImaginaryHandler._number(expr, assumptions)
     nccount = 0
     result = False
     for arg in expr.args:
         if ask(Q.antihermitian(arg), assumptions):
             result = result ^ True
         elif not ask(Q.hermitian(arg), assumptions):
             break
         if ask(~Q.commutative(arg), assumptions):
             nccount += 1
             if nccount > 1:
                 break
     else:
         return result
Beispiel #4
0
def _(expr, assumptions):
    """
    As long as there is at most only one noncommutative term:

    * Hermitian*Hermitian         -> !Antihermitian
    * Hermitian*Antihermitian     -> Antihermitian
    * Antihermitian*Antihermitian -> !Antihermitian
    """
    if expr.is_number:
        raise MDNotImplementedError
    nccount = 0
    result = False
    for arg in expr.args:
        if ask(Q.antihermitian(arg), assumptions):
            result = result ^ True
        elif not ask(Q.hermitian(arg), assumptions):
            break
        if ask(~Q.commutative(arg), assumptions):
            nccount += 1
            if nccount > 1:
                break
    else:
        return result
Beispiel #5
0
def get_known_facts(x=None):
    """
    Facts between unary predicates.

    Parameters
    ==========

    x : Symbol, optional
        Placeholder symbol for unary facts. Default is ``Symbol('x')``.

    Returns
    =======

    fact : Known facts in conjugated normal form.

    """
    if x is None:
        x = Symbol('x')

    fact = And(
        # primitive predicates for extended real exclude each other.
        Exclusive(Q.negative_infinite(x), Q.negative(x), Q.zero(x),
                  Q.positive(x), Q.positive_infinite(x)),

        # build complex plane
        Exclusive(Q.real(x), Q.imaginary(x)),
        Implies(Q.real(x) | Q.imaginary(x), Q.complex(x)),

        # other subsets of complex
        Exclusive(Q.transcendental(x), Q.algebraic(x)),
        Equivalent(Q.real(x),
                   Q.rational(x) | Q.irrational(x)),
        Exclusive(Q.irrational(x), Q.rational(x)),
        Implies(Q.rational(x), Q.algebraic(x)),

        # integers
        Exclusive(Q.even(x), Q.odd(x)),
        Implies(Q.integer(x), Q.rational(x)),
        Implies(Q.zero(x), Q.even(x)),
        Exclusive(Q.composite(x), Q.prime(x)),
        Implies(Q.composite(x) | Q.prime(x),
                Q.integer(x) & Q.positive(x)),
        Implies(Q.even(x) & Q.positive(x) & ~Q.prime(x), Q.composite(x)),

        # hermitian and antihermitian
        Implies(Q.real(x), Q.hermitian(x)),
        Implies(Q.imaginary(x), Q.antihermitian(x)),
        Implies(Q.zero(x),
                Q.hermitian(x) | Q.antihermitian(x)),

        # define finity and infinity, and build extended real line
        Exclusive(Q.infinite(x), Q.finite(x)),
        Implies(Q.complex(x), Q.finite(x)),
        Implies(
            Q.negative_infinite(x) | Q.positive_infinite(x), Q.infinite(x)),

        # commutativity
        Implies(Q.finite(x) | Q.infinite(x), Q.commutative(x)),

        # matrices
        Implies(Q.orthogonal(x), Q.positive_definite(x)),
        Implies(Q.orthogonal(x), Q.unitary(x)),
        Implies(Q.unitary(x) & Q.real_elements(x), Q.orthogonal(x)),
        Implies(Q.unitary(x), Q.normal(x)),
        Implies(Q.unitary(x), Q.invertible(x)),
        Implies(Q.normal(x), Q.square(x)),
        Implies(Q.diagonal(x), Q.normal(x)),
        Implies(Q.positive_definite(x), Q.invertible(x)),
        Implies(Q.diagonal(x), Q.upper_triangular(x)),
        Implies(Q.diagonal(x), Q.lower_triangular(x)),
        Implies(Q.lower_triangular(x), Q.triangular(x)),
        Implies(Q.upper_triangular(x), Q.triangular(x)),
        Implies(Q.triangular(x),
                Q.upper_triangular(x) | Q.lower_triangular(x)),
        Implies(Q.upper_triangular(x) & Q.lower_triangular(x), Q.diagonal(x)),
        Implies(Q.diagonal(x), Q.symmetric(x)),
        Implies(Q.unit_triangular(x), Q.triangular(x)),
        Implies(Q.invertible(x), Q.fullrank(x)),
        Implies(Q.invertible(x), Q.square(x)),
        Implies(Q.symmetric(x), Q.square(x)),
        Implies(Q.fullrank(x) & Q.square(x), Q.invertible(x)),
        Equivalent(Q.invertible(x), ~Q.singular(x)),
        Implies(Q.integer_elements(x), Q.real_elements(x)),
        Implies(Q.real_elements(x), Q.complex_elements(x)),
    )
    return fact