Beispiel #1
0
 def MatPow(expr, assumptions):
     # only for integer powers
     base, exp = expr.args
     int_exp = ask(Q.integer(exp), assumptions)
     if int_exp and ask(~Q.negative(exp), assumptions):
         return ask(Q.fullrank(base), assumptions)
     return None
Beispiel #2
0
 def MatPow(expr, assumptions):
     # only for integer powers
     base, exp = expr.args
     int_exp = ask(Q.integer(exp), assumptions)
     if int_exp and ask(~Q.negative(exp), assumptions):
         return ask(Q.fullrank(base), assumptions)
     return None
Beispiel #3
0
def test_matsolve():
    n = Symbol('n', integer=True)
    A = MatrixSymbol('A', n, n)
    x = MatrixSymbol('x', n, 1)

    with assuming(Q.fullrank(A)):
        assert optimize(A**(-1) * x, [matinv_opt]) == MatrixSolve(A, x)
        assert optimize(A**(-1) * x + x, [matinv_opt]) == MatrixSolve(A, x) + x
Beispiel #4
0
def _(expr, assumptions):
    factor, mmul = expr.as_coeff_mmul()
    if (all(ask(Q.positive_definite(arg), assumptions) for arg in mmul.args)
            and factor > 0):
        return True
    if (len(mmul.args) >= 2 and mmul.args[0] == mmul.args[-1].T
            and ask(Q.fullrank(mmul.args[0]), assumptions)):
        return ask(Q.positive_definite(MatMul(*mmul.args[1:-1])), assumptions)
Beispiel #5
0
 def MatMul(expr, assumptions):
     factor, mmul = expr.as_coeff_mmul()
     if (all(ask(Q.positive_definite(arg), assumptions)
             for arg in mmul.args) and factor > 0):
         return True
     if (len(mmul.args) >= 2
             and mmul.args[0] == mmul.args[-1].T
             and ask(Q.fullrank(mmul.args[0]), assumptions)):
         return ask(Q.positive_definite(
             MatMul(*mmul.args[1:-1])), assumptions)
Beispiel #6
0
def _matinv_predicate(expr):
    # TODO: We should be able to support more than 2 elements
    if expr.is_MatMul and len(expr.args) == 2:
        left, right = expr.args
        if left.is_Inverse and right.shape[1] == 1:
            inv_arg = left.arg
            if isinstance(inv_arg, MatrixSymbol):
                return bool(ask(Q.fullrank(left.arg)))

    return False
Beispiel #7
0
 def Transpose(expr, assumptions):
     return ask(Q.fullrank(expr.arg), assumptions)
Beispiel #8
0
 def MatMul(expr, assumptions):
     if all(ask(Q.fullrank(arg), assumptions) for arg in expr.args):
         return True
Beispiel #9
0
def _(expr, assumptions):
    return ask(Q.fullrank(expr.arg), assumptions)
Beispiel #10
0
def get_known_facts(x=None):
    """
    Facts between unary predicates.

    Parameters
    ==========

    x : Symbol, optional
        Placeholder symbol for unary facts. Default is ``Symbol('x')``.

    Returns
    =======

    fact : Known facts in conjugated normal form.

    """
    if x is None:
        x = Symbol('x')

    fact = And(
        # primitive predicates for extended real exclude each other.
        Exclusive(Q.negative_infinite(x), Q.negative(x), Q.zero(x),
                  Q.positive(x), Q.positive_infinite(x)),

        # build complex plane
        Exclusive(Q.real(x), Q.imaginary(x)),
        Implies(Q.real(x) | Q.imaginary(x), Q.complex(x)),

        # other subsets of complex
        Exclusive(Q.transcendental(x), Q.algebraic(x)),
        Equivalent(Q.real(x),
                   Q.rational(x) | Q.irrational(x)),
        Exclusive(Q.irrational(x), Q.rational(x)),
        Implies(Q.rational(x), Q.algebraic(x)),

        # integers
        Exclusive(Q.even(x), Q.odd(x)),
        Implies(Q.integer(x), Q.rational(x)),
        Implies(Q.zero(x), Q.even(x)),
        Exclusive(Q.composite(x), Q.prime(x)),
        Implies(Q.composite(x) | Q.prime(x),
                Q.integer(x) & Q.positive(x)),
        Implies(Q.even(x) & Q.positive(x) & ~Q.prime(x), Q.composite(x)),

        # hermitian and antihermitian
        Implies(Q.real(x), Q.hermitian(x)),
        Implies(Q.imaginary(x), Q.antihermitian(x)),
        Implies(Q.zero(x),
                Q.hermitian(x) | Q.antihermitian(x)),

        # define finity and infinity, and build extended real line
        Exclusive(Q.infinite(x), Q.finite(x)),
        Implies(Q.complex(x), Q.finite(x)),
        Implies(
            Q.negative_infinite(x) | Q.positive_infinite(x), Q.infinite(x)),

        # commutativity
        Implies(Q.finite(x) | Q.infinite(x), Q.commutative(x)),

        # matrices
        Implies(Q.orthogonal(x), Q.positive_definite(x)),
        Implies(Q.orthogonal(x), Q.unitary(x)),
        Implies(Q.unitary(x) & Q.real_elements(x), Q.orthogonal(x)),
        Implies(Q.unitary(x), Q.normal(x)),
        Implies(Q.unitary(x), Q.invertible(x)),
        Implies(Q.normal(x), Q.square(x)),
        Implies(Q.diagonal(x), Q.normal(x)),
        Implies(Q.positive_definite(x), Q.invertible(x)),
        Implies(Q.diagonal(x), Q.upper_triangular(x)),
        Implies(Q.diagonal(x), Q.lower_triangular(x)),
        Implies(Q.lower_triangular(x), Q.triangular(x)),
        Implies(Q.upper_triangular(x), Q.triangular(x)),
        Implies(Q.triangular(x),
                Q.upper_triangular(x) | Q.lower_triangular(x)),
        Implies(Q.upper_triangular(x) & Q.lower_triangular(x), Q.diagonal(x)),
        Implies(Q.diagonal(x), Q.symmetric(x)),
        Implies(Q.unit_triangular(x), Q.triangular(x)),
        Implies(Q.invertible(x), Q.fullrank(x)),
        Implies(Q.invertible(x), Q.square(x)),
        Implies(Q.symmetric(x), Q.square(x)),
        Implies(Q.fullrank(x) & Q.square(x), Q.invertible(x)),
        Equivalent(Q.invertible(x), ~Q.singular(x)),
        Implies(Q.integer_elements(x), Q.real_elements(x)),
        Implies(Q.real_elements(x), Q.complex_elements(x)),
    )
    return fact