def test_mean2(self): self.assertTrue( np.allclose( sml.matrix(m1).mean(axis=0), m1.mean(axis=0).reshape(1, dim)))
def test_plus2(self): self.assertTrue(np.allclose(m1 + sml.matrix(m2), m1 + m2))
def test_power2(self): self.assertTrue(np.allclose(m1 ** sml.matrix(m2), m1 ** m2))
def test_le(self): self.assertTrue(np.allclose(sml.matrix(m1) <= sml.matrix(m2), m1 <= m2))
def test_minus1(self): self.assertTrue(np.allclose(sml.matrix(m1) - m2, m1 - m2))
def test_mul3(self): self.assertTrue(np.allclose(sml.matrix(m1) * s, m1 * s))
def test_minus4(self): self.assertTrue(np.allclose(s - sml.matrix(m2), s - m2))
def test_mean3(self): self.assertTrue(np.allclose(sml.matrix(m1).mean(axis=1), m1.mean(axis=1).reshape(dim, 1)))
def test_vstack(self): self.assertTrue(np.allclose(sml.matrix(m1).vstack(sml.matrix(m1)), np.vstack((m1, m1))))
def test_var2(self): self.assertTrue( np.allclose( sml.matrix(m1).var(axis=0), m1.var(axis=0, ddof=1).reshape(1, dim)))
def test_mean2(self): self.assertTrue(np.allclose(sml.matrix(m1).mean(axis=0), m1.mean(axis=0).reshape(1, dim)))
def test_var1(self): print( str(np.array(sml.matrix(m1).var())) + " " + str(np.array(m1.var(ddof=1)))) self.assertTrue(np.allclose(sml.matrix(m1).var(), m1.var(ddof=1)))
def test_vstack(self): self.assertTrue( np.allclose( sml.matrix(m1).vstack(sml.matrix(m1)), np.vstack((m1, m1))))
def test_mean3(self): self.assertTrue( np.allclose( sml.matrix(m1).mean(axis=1), m1.mean(axis=1).reshape(dim, 1)))
def test_div2(self): self.assertTrue(np.allclose(m1 / sml.matrix(m2), m1 / m2))
def test_var1(self): print(str(np.array(sml.matrix(m1).var())) + " " + str(np.array(m1.var(ddof=1)))) self.assertTrue(np.allclose(sml.matrix(m1).var(), m1.var(ddof=1)))
def test_plus3(self): self.assertTrue(np.allclose(sml.matrix(m1) + s, m1 + s))
def test_var2(self): self.assertTrue(np.allclose(sml.matrix(m1).var(axis=0), m1.var(axis=0, ddof=1).reshape(1, dim)))
def test_power3(self): self.assertTrue(np.allclose(sml.matrix(m1) ** s, m1 ** s))
def test_var3(self): self.assertTrue(np.allclose(sml.matrix(m1).var(axis=1), m1.var(axis=1, ddof=1).reshape(dim, 1)))
def test_div4(self): self.assertTrue(np.allclose(s / sml.matrix(m2), s / m2))
def test_moment4(self): self.assertTrue(np.allclose(sml.matrix(m1).moment(moment=4, axis=None), moment(m1, moment=4, axis=None)))
def test_abs(self): self.assertTrue(np.allclose(sml.matrix(m1).abs(), np.abs(m1)))
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # #------------------------------------------------------------- import systemml as sml import numpy as np from pyspark import SparkContext sc = SparkContext() m1 = sml.matrix(np.ones((3, 3)) + 2) m2 = sml.matrix(np.ones((3, 3)) + 3) m2 = m1 * (m2 + m1) m4 = 1.0 - m2 m4.sum(axis=1).toNumPy()
def test_div1(self): self.assertTrue(np.allclose(sml.matrix(m1) / m2, m1 / m2))
def test_div3(self): self.assertTrue(np.allclose(sml.matrix(m1) / s, m1 / s))
def test_mul2(self): self.assertTrue(np.allclose(m1 * sml.matrix(m2), m1 * m2))
def test_power3(self): self.assertTrue(np.allclose(sml.matrix(m1)**s, m1**s))
def test_minus3(self): self.assertTrue(np.allclose(sml.matrix(m1) - s, m1 - s))
def test_plus4(self): self.assertTrue(np.allclose(s + sml.matrix(m2), s + m2))
def test_power2(self): self.assertTrue(np.allclose(m1**sml.matrix(m2), m1**m2))
def test_mul4(self): self.assertTrue(np.allclose(s * sml.matrix(m2), s * m2))
def test_power4(self): self.assertTrue(np.allclose(s**sml.matrix(m2), s**m2))
def test_le(self): self.assertTrue(np.allclose( sml.matrix(m1) <= sml.matrix(m2), m1 <= m2))
def test_ge(self): self.assertTrue(np.allclose( sml.matrix(m1) >= sml.matrix(m2), m1 >= m2))
def test_power4(self): self.assertTrue(np.allclose(s ** sml.matrix(m2), s ** m2))
def test_ge(self): self.assertTrue(np.allclose(sml.matrix(m1) >= sml.matrix(m2), m1 >= m2))
def test_plus1(self): self.assertTrue(np.allclose(sml.matrix(m1) + m2, m1 + m2))
def test_mul1(self): self.assertTrue(np.allclose(sml.matrix(m1) * m2, m1 * m2))
def test_power1(self): self.assertTrue(np.allclose(sml.matrix(m1) ** m2, m1 ** m2))
def test_minus2(self): self.assertTrue(np.allclose(m1 - sml.matrix(m2), m1 - m2))
def test_power1(self): self.assertTrue(np.allclose(sml.matrix(m1)**m2, m1**m2))
def test_mean1(self): self.assertTrue(np.allclose(sml.matrix(m1).mean(), m1.mean()))