def testContinuous(self):
     self.evaluate(variables.global_variables_initializer())
     step = 5
     decayed_lr = learning_rate_decay_v2.exponential_decay(
         0.05, step, 10, 0.96)
     expected = .05 * 0.96**(5.0 / 10.0)
     self.assertAllClose(self.evaluate(decayed_lr()), expected, 1e-6)
 def testVariables(self):
   step = variables.Variable(1)
   assign_1 = step.assign(1)
   assign_2 = step.assign(2)
   assign_100 = step.assign(100)
   decayed_lr = learning_rate_decay_v2.exponential_decay(
       .1, step, 3, 0.96, staircase=True)
   self.evaluate(variables.global_variables_initializer())
   # No change to learning rate
   self.evaluate(assign_1.op)
   self.assertAllClose(self.evaluate(decayed_lr()), .1, 1e-6)
   self.evaluate(assign_2.op)
   self.assertAllClose(self.evaluate(decayed_lr()), .1, 1e-6)
   # Decayed learning rate
   self.evaluate(assign_100.op)
   expected = .1 * 0.96**(100 // 3)
   self.assertAllClose(self.evaluate(decayed_lr()), expected, 1e-6)
 def testVariables(self):
   step = variables.Variable(1)
   assign_1 = step.assign(1)
   assign_2 = step.assign(2)
   assign_100 = step.assign(100)
   decayed_lr = learning_rate_decay_v2.exponential_decay(
       .1, step, 3, 0.96, staircase=True)
   self.evaluate(variables.global_variables_initializer())
   # No change to learning rate
   self.evaluate(assign_1.op)
   self.assertAllClose(self.evaluate(decayed_lr()), .1, 1e-6)
   self.evaluate(assign_2.op)
   self.assertAllClose(self.evaluate(decayed_lr()), .1, 1e-6)
   # Decayed learning rate
   self.evaluate(assign_100.op)
   expected = .1 * 0.96**(100 // 3)
   self.assertAllClose(self.evaluate(decayed_lr()), expected, 1e-6)
 def testVariables(self):
   with self.cached_session():
     step = variables.Variable(1)
     assign_1 = step.assign(1)
     assign_2 = step.assign(2)
     assign_100 = step.assign(100)
     decayed_lr = learning_rate_decay_v2.exponential_decay(.1, step, 3, 0.96,
                                                           staircase=True)
     variables.global_variables_initializer().run()
     # No change to learning rate
     assign_1.op.run()
     self.assertAllClose(decayed_lr().eval(), .1, 1e-6)
     assign_2.op.run()
     self.assertAllClose(decayed_lr().eval(), .1, 1e-6)
     # Decayed learning rate
     assign_100.op.run()
     expected = .1 * 0.96 ** (100 // 3)
     self.assertAllClose(decayed_lr().eval(), expected, 1e-6)
 def testVariables(self):
     with self.cached_session():
         step = variables.Variable(1)
         assign_1 = step.assign(1)
         assign_2 = step.assign(2)
         assign_100 = step.assign(100)
         decayed_lr = learning_rate_decay_v2.exponential_decay(
             .1, step, 3, 0.96, staircase=True)
         variables.global_variables_initializer().run()
         # No change to learning rate
         assign_1.op.run()
         self.assertAllClose(decayed_lr().eval(), .1, 1e-6)
         assign_2.op.run()
         self.assertAllClose(decayed_lr().eval(), .1, 1e-6)
         # Decayed learning rate
         assign_100.op.run()
         expected = .1 * 0.96**(100 // 3)
         self.assertAllClose(decayed_lr().eval(), expected, 1e-6)
  def testStaircase(self):
    if context.executing_eagerly():
      step = resource_variable_ops.ResourceVariable(0)
      self.evaluate(variables.global_variables_initializer())
      decayed_lr = learning_rate_decay_v2.exponential_decay(
          .1, step, 3, 0.96, staircase=True)

      # No change to learning rate due to staircase
      expected = .1
      self.evaluate(step.assign(1))
      self.assertAllClose(self.evaluate(decayed_lr()), expected, 1e-6)

      expected = .1
      self.evaluate(step.assign(2))
      self.assertAllClose(self.evaluate(decayed_lr()), expected, 1e-6)

      # Decayed learning rate
      expected = .1 * 0.96 ** (100 // 3)
      self.evaluate(step.assign(100))
      self.assertAllClose(self.evaluate(decayed_lr()), expected, 1e-6)
  def testStaircase(self):
    if context.executing_eagerly():
      step = resource_variable_ops.ResourceVariable(0)
      self.evaluate(variables.global_variables_initializer())
      decayed_lr = learning_rate_decay_v2.exponential_decay(
          .1, step, 3, 0.96, staircase=True)

      # No change to learning rate due to staircase
      expected = .1
      self.evaluate(step.assign(1))
      self.assertAllClose(self.evaluate(decayed_lr()), expected, 1e-6)

      expected = .1
      self.evaluate(step.assign(2))
      self.assertAllClose(self.evaluate(decayed_lr()), expected, 1e-6)

      # Decayed learning rate
      expected = .1 * 0.96 ** (100 // 3)
      self.evaluate(step.assign(100))
      self.assertAllClose(self.evaluate(decayed_lr()), expected, 1e-6)
def exponential_decay(learning_rate,
                      global_step,
                      decay_steps,
                      decay_rate,
                      staircase=False,
                      name=None):
    """Applies exponential decay to the learning rate.

  When training a model, it is often recommended to lower the learning rate as
  the training progresses.  This function applies an exponential decay function
  to a provided initial learning rate.  It requires a `global_step` value to
  compute the decayed learning rate.  You can just pass a TensorFlow variable
  that you increment at each training step.

  The function returns the decayed learning rate.  It is computed as:

  ```python
  decayed_learning_rate = learning_rate *
                          decay_rate ^ (global_step / decay_steps)
  ```

  If the argument `staircase` is `True`, then `global_step / decay_steps` is an
  integer division and the decayed learning rate follows a staircase function.

  Example: decay every 100000 steps with a base of 0.96:

  ```python
  ...
  global_step = tf.Variable(0, trainable=False)
  starter_learning_rate = 0.1
  learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step,
                                             100000, 0.96, staircase=True)
  # Passing global_step to minimize() will increment it at each step.
  learning_step = (
      tf.train.GradientDescentOptimizer(learning_rate)
      .minimize(...my loss..., global_step=global_step)
  )
  ```

  Args:
    learning_rate: A scalar `float32` or `float64` `Tensor` or a
      Python number.  The initial learning rate.
    global_step: A scalar `int32` or `int64` `Tensor` or a Python number.
      Global step to use for the decay computation.  Must not be negative.
    decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number.
      Must be positive.  See the decay computation above.
    decay_rate: A scalar `float32` or `float64` `Tensor` or a
      Python number.  The decay rate.
    staircase: Boolean.  If `True` decay the learning rate at discrete intervals
    name: String.  Optional name of the operation.  Defaults to
      'ExponentialDecay'.

  Returns:
    A scalar `Tensor` of the same type as `learning_rate`.  The decayed
    learning rate.

  Raises:
    ValueError: if `global_step` is not supplied.

  @compatibility(eager)
  When eager execution is enabled, this function returns a function which in
  turn returns the decayed learning rate Tensor. This can be useful for changing
  the learning rate value across different invocations of optimizer functions.
  @end_compatibility
  """
    decayed_lr = learning_rate_decay_v2.exponential_decay(learning_rate,
                                                          global_step,
                                                          decay_steps,
                                                          decay_rate,
                                                          staircase=staircase,
                                                          name=name)
    if not context.executing_eagerly():
        decayed_lr = decayed_lr()

    return decayed_lr
 def testContinuous(self):
   self.evaluate(variables.global_variables_initializer())
   step = 5
   decayed_lr = learning_rate_decay_v2.exponential_decay(0.05, step, 10, 0.96)
   expected = .05 * 0.96**(5.0 / 10.0)
   self.assertAllClose(self.evaluate(decayed_lr()), expected, 1e-6)
def exponential_decay(learning_rate,
                      global_step,
                      decay_steps,
                      decay_rate,
                      staircase=False,
                      name=None):
  """Applies exponential decay to the learning rate.

  When training a model, it is often recommended to lower the learning rate as
  the training progresses.  This function applies an exponential decay function
  to a provided initial learning rate.  It requires a `global_step` value to
  compute the decayed learning rate.  You can just pass a TensorFlow variable
  that you increment at each training step.

  The function returns the decayed learning rate.  It is computed as:

  ```python
  decayed_learning_rate = learning_rate *
                          decay_rate ^ (global_step / decay_steps)
  ```

  If the argument `staircase` is `True`, then `global_step / decay_steps` is an
  integer division and the decayed learning rate follows a staircase function.

  Example: decay every 100000 steps with a base of 0.96:

  ```python
  ...
  global_step = tf.Variable(0, trainable=False)
  starter_learning_rate = 0.1
  learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step,
                                             100000, 0.96, staircase=True)
  # Passing global_step to minimize() will increment it at each step.
  learning_step = (
      tf.train.GradientDescentOptimizer(learning_rate)
      .minimize(...my loss..., global_step=global_step)
  )
  ```

  Args:
    learning_rate: A scalar `float32` or `float64` `Tensor` or a
      Python number.  The initial learning rate.
    global_step: A scalar `int32` or `int64` `Tensor` or a Python number.
      Global step to use for the decay computation.  Must not be negative.
    decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number.
      Must be positive.  See the decay computation above.
    decay_rate: A scalar `float32` or `float64` `Tensor` or a
      Python number.  The decay rate.
    staircase: Boolean.  If `True` decay the learning rate at discrete intervals
    name: String.  Optional name of the operation.  Defaults to
      'ExponentialDecay'.

  Returns:
    A scalar `Tensor` of the same type as `learning_rate`.  The decayed
    learning rate.

  Raises:
    ValueError: if `global_step` is not supplied.

  @compatibility(eager)
  When eager execution is enabled, this function returns a function which in
  turn returns the decayed learning rate Tensor. This can be useful for changing
  the learning rate value across different invocations of optimizer functions.
  @end_compatibility
  """
  decayed_lr = learning_rate_decay_v2.exponential_decay(learning_rate,
                                                        global_step,
                                                        decay_steps,
                                                        decay_rate,
                                                        staircase=staircase,
                                                        name=name)
  if not context.executing_eagerly():
    decayed_lr = decayed_lr()

  return decayed_lr