def testContinuous(self): self.evaluate(variables.global_variables_initializer()) step = 5 decayed_lr = learning_rate_decay_v2.exponential_decay( 0.05, step, 10, 0.96) expected = .05 * 0.96**(5.0 / 10.0) self.assertAllClose(self.evaluate(decayed_lr()), expected, 1e-6)
def testVariables(self): step = variables.Variable(1) assign_1 = step.assign(1) assign_2 = step.assign(2) assign_100 = step.assign(100) decayed_lr = learning_rate_decay_v2.exponential_decay( .1, step, 3, 0.96, staircase=True) self.evaluate(variables.global_variables_initializer()) # No change to learning rate self.evaluate(assign_1.op) self.assertAllClose(self.evaluate(decayed_lr()), .1, 1e-6) self.evaluate(assign_2.op) self.assertAllClose(self.evaluate(decayed_lr()), .1, 1e-6) # Decayed learning rate self.evaluate(assign_100.op) expected = .1 * 0.96**(100 // 3) self.assertAllClose(self.evaluate(decayed_lr()), expected, 1e-6)
def testVariables(self): with self.cached_session(): step = variables.Variable(1) assign_1 = step.assign(1) assign_2 = step.assign(2) assign_100 = step.assign(100) decayed_lr = learning_rate_decay_v2.exponential_decay(.1, step, 3, 0.96, staircase=True) variables.global_variables_initializer().run() # No change to learning rate assign_1.op.run() self.assertAllClose(decayed_lr().eval(), .1, 1e-6) assign_2.op.run() self.assertAllClose(decayed_lr().eval(), .1, 1e-6) # Decayed learning rate assign_100.op.run() expected = .1 * 0.96 ** (100 // 3) self.assertAllClose(decayed_lr().eval(), expected, 1e-6)
def testVariables(self): with self.cached_session(): step = variables.Variable(1) assign_1 = step.assign(1) assign_2 = step.assign(2) assign_100 = step.assign(100) decayed_lr = learning_rate_decay_v2.exponential_decay( .1, step, 3, 0.96, staircase=True) variables.global_variables_initializer().run() # No change to learning rate assign_1.op.run() self.assertAllClose(decayed_lr().eval(), .1, 1e-6) assign_2.op.run() self.assertAllClose(decayed_lr().eval(), .1, 1e-6) # Decayed learning rate assign_100.op.run() expected = .1 * 0.96**(100 // 3) self.assertAllClose(decayed_lr().eval(), expected, 1e-6)
def testStaircase(self): if context.executing_eagerly(): step = resource_variable_ops.ResourceVariable(0) self.evaluate(variables.global_variables_initializer()) decayed_lr = learning_rate_decay_v2.exponential_decay( .1, step, 3, 0.96, staircase=True) # No change to learning rate due to staircase expected = .1 self.evaluate(step.assign(1)) self.assertAllClose(self.evaluate(decayed_lr()), expected, 1e-6) expected = .1 self.evaluate(step.assign(2)) self.assertAllClose(self.evaluate(decayed_lr()), expected, 1e-6) # Decayed learning rate expected = .1 * 0.96 ** (100 // 3) self.evaluate(step.assign(100)) self.assertAllClose(self.evaluate(decayed_lr()), expected, 1e-6)
def exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None): """Applies exponential decay to the learning rate. When training a model, it is often recommended to lower the learning rate as the training progresses. This function applies an exponential decay function to a provided initial learning rate. It requires a `global_step` value to compute the decayed learning rate. You can just pass a TensorFlow variable that you increment at each training step. The function returns the decayed learning rate. It is computed as: ```python decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) ``` If the argument `staircase` is `True`, then `global_step / decay_steps` is an integer division and the decayed learning rate follows a staircase function. Example: decay every 100000 steps with a base of 0.96: ```python ... global_step = tf.Variable(0, trainable=False) starter_learning_rate = 0.1 learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step, 100000, 0.96, staircase=True) # Passing global_step to minimize() will increment it at each step. learning_step = ( tf.train.GradientDescentOptimizer(learning_rate) .minimize(...my loss..., global_step=global_step) ) ``` Args: learning_rate: A scalar `float32` or `float64` `Tensor` or a Python number. The initial learning rate. global_step: A scalar `int32` or `int64` `Tensor` or a Python number. Global step to use for the decay computation. Must not be negative. decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number. Must be positive. See the decay computation above. decay_rate: A scalar `float32` or `float64` `Tensor` or a Python number. The decay rate. staircase: Boolean. If `True` decay the learning rate at discrete intervals name: String. Optional name of the operation. Defaults to 'ExponentialDecay'. Returns: A scalar `Tensor` of the same type as `learning_rate`. The decayed learning rate. Raises: ValueError: if `global_step` is not supplied. @compatibility(eager) When eager execution is enabled, this function returns a function which in turn returns the decayed learning rate Tensor. This can be useful for changing the learning rate value across different invocations of optimizer functions. @end_compatibility """ decayed_lr = learning_rate_decay_v2.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=staircase, name=name) if not context.executing_eagerly(): decayed_lr = decayed_lr() return decayed_lr
def testContinuous(self): self.evaluate(variables.global_variables_initializer()) step = 5 decayed_lr = learning_rate_decay_v2.exponential_decay(0.05, step, 10, 0.96) expected = .05 * 0.96**(5.0 / 10.0) self.assertAllClose(self.evaluate(decayed_lr()), expected, 1e-6)