Beispiel #1
0
  def _get_page_content(self, pipeline, file_paths, dl_manager, language):
    """Build PCollection of un-split page content."""
    beam = tfds.core.lazy_imports.apache_beam

    wet_file_paths = (
        pipeline |
        "create_wet_files" >> beam.Create(file_paths["wet_files"]))
    if "wet_urls" in file_paths:
      def download_url(url, downloader):
        return downloader.download({url: url})[url]
      dl_wet_file_paths = (
          pipeline
          | "create_wet_urls" >> beam.Create(file_paths["wet_urls"])
          | beam.Map(download_url, downloader=dl_manager))
      wet_file_paths = (wet_file_paths, dl_wet_file_paths) | beam.Flatten()

    # Parse WET files and filter by length.
    # Output: url, text
    page_content = (
        wet_file_paths
        | beam.FlatMap(c4_utils.split_wet_file)
        | beam.Filter(c4_utils.is_valid_length))

    # Optionally filter for RealNews domains.
    # Output: url, text
    if self.builder_config.realnewslike:
      with tf.io.gfile.GFile(file_paths["realnews_domains"]) as f:
        realnews_domains = json.load(f)
      page_content = (
          page_content
          | beam.Filter(c4_utils.is_realnews_domain, realnews_domains))

    # Normalize and deduplicate by URL.
    # Output: url, text
    page_content = (
        page_content
        | "normalize_url" >> beam.Map(c4_utils.normalize_url)
        | "group_url" >> beam.GroupByKey()
        | beam.Map(c4_utils.dedupe_urls))

    # Optionally filter for WebText-like URLs.
    # Output: url, text
    if self.builder_config.webtextlike:
      webtextlike_urls = (
          pipeline
          | "read_webtextlike_urls" >>
          beam.io.ReadFromText(
              os.path.join(file_paths["openwebtext_urls_zip"],
                           _OPENWEBTEXT_URLS_FILE_PATTERN))
          | "add_dummy_page" >> beam.Map(lambda x: (x, ""))
          | "normal_webtext_url" >> beam.Map(c4_utils.normalize_url))
      page_content = (
          {
              "text": page_content,
              "webtextlike_urls": webtextlike_urls
          }
          | "group_webtextlike_urls" >> beam.CoGroupByKey()
          | beam.FlatMap(c4_utils.filter_by_webtextlike))

    if self.builder_config.paragraph_filter:
      page_content |= beam.Filter(c4_utils.paragraph_filter)

    if self.builder_config.clean:
      page_content = (
          page_content
          | "clean_pages" >> beam.FlatMap(c4_utils.get_clean_page_fn()))

    if self.builder_config.dedupe:
      page_content = (
          # Also removes documents with too few sentences after deduplication.
          c4_utils.remove_duplicate_text(page_content)  # pylint:disable=g-long-ternary
          if self.builder_config.clean else
          # If we are not cleaning, do not remove too-few-sentence documents.
          c4_utils.remove_duplicate_text(page_content, min_num_sentences=0))

    # Add detected language.
    if self.builder_config.languages == ["en"]:
      # Use langdetect for reproducibility of the original C4.
      page_content |= beam.FlatMap(c4_utils.detect_english)
    else:
      page_content = c4_utils.detect_languages(
          page_content, valid_languages=self.builder_config.languages)

    if self.builder_config.badwords_filter:
      # Create dictionary of badwords regex for each available language.
      badwords = collections.defaultdict(set)
      for lang, path in file_paths["badwords"].items():
        lang = lang.split("-")[0]  # remove suffix if present
        with tf.io.gfile.GFile(path) as f:
          badwords[lang].update(l.strip() for l in f)

      page_content |= beam.Filter(c4_utils.get_badwords_filter_fn(badwords))

    return page_content
Beispiel #2
0
    def _get_page_content(self, pipeline, file_paths, dl_manager):
        """Build PCollection of un-split page content."""
        beam = tfds.core.lazy_imports.apache_beam

        def download_wet_file(path, dl_dir):
            url = f"{_DOWNLOAD_HOST}/{path}"
            out_path = f"{dl_dir}/{path}"

            if tf.io.gfile.exists(out_path):
                c4_utils.get_counter_inc_fn("download_wet_url")("exists")
                return out_path

            tmp_dir = f"{out_path}.incomplete{uuid.uuid4().hex}"
            try:
                tf.io.gfile.makedirs(tmp_dir)
                downloader = tfds.download.downloader.get_downloader()
                with downloader.tqdm():
                    # TODO(slebedev): Investigate why pytype infers Promise[Future[...]].
                    dl_path = downloader.download(
                        url, tmp_dir).get().path  # type: ignore
                tf.io.gfile.rename(os.fspath(dl_path),
                                   out_path,
                                   overwrite=True)
            finally:
                if tf.io.gfile.exists(tmp_dir):
                    tf.io.gfile.rmtree(tmp_dir)

                c4_utils.get_counter_inc_fn("download_wet_url")("downloaded")
            return out_path

        wet_file_paths = (
            pipeline
            |
            "create_wet_path_urls" >> beam.Create(file_paths["wet_path_urls"])
            | beam.io.ReadAllFromText(compression_type=beam.io.filesystem.
                                      CompressionTypes.UNCOMPRESSED)
            # Increase parallelism.
            | beam.Reshuffle()
            | "filter_corrupt_wet_files" >>
            beam.Filter(lambda p: p not in _KNOWN_CORRUPT_WET_FILES)
            | beam.Map(download_wet_file,
                       dl_dir=os.path.join(dl_manager.download_dir,
                                           "c4_wet_files")))

        # Parse WET files and filter by length.
        # Output: url, text
        page_content = (wet_file_paths
                        | beam.FlatMap(c4_utils.split_wet_file)
                        | beam.Filter(c4_utils.is_valid_length))

        # Optionally filter for RealNews domains.
        # Output: url, text
        if self.builder_config.realnewslike:
            with tf.io.gfile.GFile(file_paths["realnews_domains"]) as f:
                realnews_domains = json.load(f)
            page_content = (page_content
                            | beam.Filter(c4_utils.is_realnews_domain,
                                          realnews_domains))

        # Normalize and deduplicate by URL.
        # Output: url, text
        page_content = (page_content
                        | "normalize_url" >> beam.Map(c4_utils.normalize_url)
                        | "group_url" >> beam.GroupByKey()
                        | beam.Map(c4_utils.dedupe_urls))

        # Optionally filter for WebText-like URLs.
        # Output: url, text
        if self.builder_config.webtextlike:
            webtextlike_urls = (
                pipeline
                | "read_webtextlike_urls" >> beam.io.ReadFromText(
                    os.path.join(file_paths["openwebtext_urls_zip"],
                                 _OPENWEBTEXT_URLS_FILE_PATTERN))
                | "add_dummy_page" >> beam.Map(lambda x: (x, ""))
                | "normal_webtext_url" >> beam.Map(c4_utils.normalize_url))
            page_content = ({
                "text": page_content,
                "webtextlike_urls": webtextlike_urls
            }
                            | "group_webtextlike_urls" >> beam.CoGroupByKey()
                            | beam.FlatMap(c4_utils.filter_by_webtextlike))

        if self.builder_config.paragraph_filter:
            page_content |= beam.Filter(c4_utils.paragraph_filter)

        if self.builder_config.clean:
            page_content = (
                page_content
                | "clean_pages" >> beam.FlatMap(c4_utils.get_clean_page_fn()))

        if self.builder_config.dedupe:
            page_content = (
                # Also removes documents with too few sentences after deduplication.
                c4_utils.remove_duplicate_text(page_content)  # pylint:disable=g-long-ternary
                if self.builder_config.clean else
                # If we are not cleaning, do not remove too-few-sentence documents.
                c4_utils.remove_duplicate_text(page_content,
                                               min_num_sentences=0))

        # Add detected language.
        if self.builder_config.languages == ["en"]:
            # Use langdetect for reproducibility of the original C4.
            page_content |= beam.FlatMap(c4_utils.detect_english)
        else:
            page_content = c4_utils.detect_languages(
                page_content, valid_languages=self.builder_config.languages)

        if self.builder_config.badwords_filter:
            # Create dictionary of badwords regex for each available language.
            badwords = collections.defaultdict(set)
            for lang, path in file_paths["badwords"].items():
                lang = lang.split("-")[0]  # remove suffix if present
                with tf.io.gfile.GFile(path) as f:
                    badwords[lang].update(l.strip() for l in f)

            page_content |= beam.Filter(
                c4_utils.get_badwords_filter_fn(badwords))

        return page_content