def _get_page_content(self, pipeline, file_paths, dl_manager, language): """Build PCollection of un-split page content.""" beam = tfds.core.lazy_imports.apache_beam wet_file_paths = ( pipeline | "create_wet_files" >> beam.Create(file_paths["wet_files"])) if "wet_urls" in file_paths: def download_url(url, downloader): return downloader.download({url: url})[url] dl_wet_file_paths = ( pipeline | "create_wet_urls" >> beam.Create(file_paths["wet_urls"]) | beam.Map(download_url, downloader=dl_manager)) wet_file_paths = (wet_file_paths, dl_wet_file_paths) | beam.Flatten() # Parse WET files and filter by length. # Output: url, text page_content = ( wet_file_paths | beam.FlatMap(c4_utils.split_wet_file) | beam.Filter(c4_utils.is_valid_length)) # Optionally filter for RealNews domains. # Output: url, text if self.builder_config.realnewslike: with tf.io.gfile.GFile(file_paths["realnews_domains"]) as f: realnews_domains = json.load(f) page_content = ( page_content | beam.Filter(c4_utils.is_realnews_domain, realnews_domains)) # Normalize and deduplicate by URL. # Output: url, text page_content = ( page_content | "normalize_url" >> beam.Map(c4_utils.normalize_url) | "group_url" >> beam.GroupByKey() | beam.Map(c4_utils.dedupe_urls)) # Optionally filter for WebText-like URLs. # Output: url, text if self.builder_config.webtextlike: webtextlike_urls = ( pipeline | "read_webtextlike_urls" >> beam.io.ReadFromText( os.path.join(file_paths["openwebtext_urls_zip"], _OPENWEBTEXT_URLS_FILE_PATTERN)) | "add_dummy_page" >> beam.Map(lambda x: (x, "")) | "normal_webtext_url" >> beam.Map(c4_utils.normalize_url)) page_content = ( { "text": page_content, "webtextlike_urls": webtextlike_urls } | "group_webtextlike_urls" >> beam.CoGroupByKey() | beam.FlatMap(c4_utils.filter_by_webtextlike)) if self.builder_config.paragraph_filter: page_content |= beam.Filter(c4_utils.paragraph_filter) if self.builder_config.clean: page_content = ( page_content | "clean_pages" >> beam.FlatMap(c4_utils.get_clean_page_fn())) if self.builder_config.dedupe: page_content = ( # Also removes documents with too few sentences after deduplication. c4_utils.remove_duplicate_text(page_content) # pylint:disable=g-long-ternary if self.builder_config.clean else # If we are not cleaning, do not remove too-few-sentence documents. c4_utils.remove_duplicate_text(page_content, min_num_sentences=0)) # Add detected language. if self.builder_config.languages == ["en"]: # Use langdetect for reproducibility of the original C4. page_content |= beam.FlatMap(c4_utils.detect_english) else: page_content = c4_utils.detect_languages( page_content, valid_languages=self.builder_config.languages) if self.builder_config.badwords_filter: # Create dictionary of badwords regex for each available language. badwords = collections.defaultdict(set) for lang, path in file_paths["badwords"].items(): lang = lang.split("-")[0] # remove suffix if present with tf.io.gfile.GFile(path) as f: badwords[lang].update(l.strip() for l in f) page_content |= beam.Filter(c4_utils.get_badwords_filter_fn(badwords)) return page_content
def _get_page_content(self, pipeline, file_paths, dl_manager): """Build PCollection of un-split page content.""" beam = tfds.core.lazy_imports.apache_beam def download_wet_file(path, dl_dir): url = f"{_DOWNLOAD_HOST}/{path}" out_path = f"{dl_dir}/{path}" if tf.io.gfile.exists(out_path): c4_utils.get_counter_inc_fn("download_wet_url")("exists") return out_path tmp_dir = f"{out_path}.incomplete{uuid.uuid4().hex}" try: tf.io.gfile.makedirs(tmp_dir) downloader = tfds.download.downloader.get_downloader() with downloader.tqdm(): # TODO(slebedev): Investigate why pytype infers Promise[Future[...]]. dl_path = downloader.download( url, tmp_dir).get().path # type: ignore tf.io.gfile.rename(os.fspath(dl_path), out_path, overwrite=True) finally: if tf.io.gfile.exists(tmp_dir): tf.io.gfile.rmtree(tmp_dir) c4_utils.get_counter_inc_fn("download_wet_url")("downloaded") return out_path wet_file_paths = ( pipeline | "create_wet_path_urls" >> beam.Create(file_paths["wet_path_urls"]) | beam.io.ReadAllFromText(compression_type=beam.io.filesystem. CompressionTypes.UNCOMPRESSED) # Increase parallelism. | beam.Reshuffle() | "filter_corrupt_wet_files" >> beam.Filter(lambda p: p not in _KNOWN_CORRUPT_WET_FILES) | beam.Map(download_wet_file, dl_dir=os.path.join(dl_manager.download_dir, "c4_wet_files"))) # Parse WET files and filter by length. # Output: url, text page_content = (wet_file_paths | beam.FlatMap(c4_utils.split_wet_file) | beam.Filter(c4_utils.is_valid_length)) # Optionally filter for RealNews domains. # Output: url, text if self.builder_config.realnewslike: with tf.io.gfile.GFile(file_paths["realnews_domains"]) as f: realnews_domains = json.load(f) page_content = (page_content | beam.Filter(c4_utils.is_realnews_domain, realnews_domains)) # Normalize and deduplicate by URL. # Output: url, text page_content = (page_content | "normalize_url" >> beam.Map(c4_utils.normalize_url) | "group_url" >> beam.GroupByKey() | beam.Map(c4_utils.dedupe_urls)) # Optionally filter for WebText-like URLs. # Output: url, text if self.builder_config.webtextlike: webtextlike_urls = ( pipeline | "read_webtextlike_urls" >> beam.io.ReadFromText( os.path.join(file_paths["openwebtext_urls_zip"], _OPENWEBTEXT_URLS_FILE_PATTERN)) | "add_dummy_page" >> beam.Map(lambda x: (x, "")) | "normal_webtext_url" >> beam.Map(c4_utils.normalize_url)) page_content = ({ "text": page_content, "webtextlike_urls": webtextlike_urls } | "group_webtextlike_urls" >> beam.CoGroupByKey() | beam.FlatMap(c4_utils.filter_by_webtextlike)) if self.builder_config.paragraph_filter: page_content |= beam.Filter(c4_utils.paragraph_filter) if self.builder_config.clean: page_content = ( page_content | "clean_pages" >> beam.FlatMap(c4_utils.get_clean_page_fn())) if self.builder_config.dedupe: page_content = ( # Also removes documents with too few sentences after deduplication. c4_utils.remove_duplicate_text(page_content) # pylint:disable=g-long-ternary if self.builder_config.clean else # If we are not cleaning, do not remove too-few-sentence documents. c4_utils.remove_duplicate_text(page_content, min_num_sentences=0)) # Add detected language. if self.builder_config.languages == ["en"]: # Use langdetect for reproducibility of the original C4. page_content |= beam.FlatMap(c4_utils.detect_english) else: page_content = c4_utils.detect_languages( page_content, valid_languages=self.builder_config.languages) if self.builder_config.badwords_filter: # Create dictionary of badwords regex for each available language. badwords = collections.defaultdict(set) for lang, path in file_paths["badwords"].items(): lang = lang.split("-")[0] # remove suffix if present with tf.io.gfile.GFile(path) as f: badwords[lang].update(l.strip() for l in f) page_content |= beam.Filter( c4_utils.get_badwords_filter_fn(badwords)) return page_content