def preprocess(self, image):
     image = tf.expand_dims(image, 0)
     image = image_preprocess(image, bgr=True)
     return tf.transpose(image, [0, 3, 1, 2])
    def roi_heads(self, image, features, proposals, targets):
        image_shape2d = tf.shape(image)[2:]  # h,w
        assert len(features) == 5, "Features have to be P23456!"
        gt_boxes, gt_labels, *_ = targets

        if self.training:
            proposals = sample_fast_rcnn_targets(proposals.boxes, gt_boxes,
                                                 gt_labels)

        fastrcnn_head_func = getattr(model_frcnn, cfg.FPN.FRCNN_HEAD_FUNC)
        if not cfg.FPN.CASCADE:
            roi_feature_fastrcnn = multilevel_roi_align(
                features[:4], proposals.boxes, 7)

            head_feature = fastrcnn_head_func('fastrcnn', roi_feature_fastrcnn)
            fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_outputs(
                'fastrcnn/outputs', head_feature, cfg.DATA.NUM_CATEGORY)
            fastrcnn_head = FastRCNNHead(
                proposals, fastrcnn_box_logits, fastrcnn_label_logits,
                gt_boxes,
                tf.constant(cfg.FRCNN.BBOX_REG_WEIGHTS, dtype=tf.float32))
        else:

            def roi_func(boxes):
                return multilevel_roi_align(features[:4], boxes, 7)

            fastrcnn_head = CascadeRCNNHead(proposals, roi_func,
                                            fastrcnn_head_func,
                                            (gt_boxes, gt_labels),
                                            image_shape2d,
                                            cfg.DATA.NUM_CATEGORY)

        if self.training:
            all_losses = fastrcnn_head.losses()

            if cfg.MODE_MASK:
                gt_masks = targets[2]
                # maskrcnn loss
                roi_feature_maskrcnn = multilevel_roi_align(
                    features[:4],
                    proposals.fg_boxes(),
                    14,
                    name_scope='multilevel_roi_align_mask')
                maskrcnn_head_func = getattr(model_mrcnn,
                                             cfg.FPN.MRCNN_HEAD_FUNC)
                mask_logits = maskrcnn_head_func(
                    'maskrcnn', roi_feature_maskrcnn,
                    cfg.DATA.NUM_CATEGORY)  # #fg x #cat x 28 x 28

                target_masks_for_fg = crop_and_resize(
                    tf.expand_dims(gt_masks, 1),
                    proposals.fg_boxes(),
                    proposals.fg_inds_wrt_gt,
                    28,
                    pad_border=False)  # fg x 1x28x28
                target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1,
                                                 'sampled_fg_mask_targets')
                all_losses.append(
                    maskrcnn_loss(mask_logits, proposals.fg_labels(),
                                  target_masks_for_fg))
            return all_losses
        else:
            decoded_boxes = fastrcnn_head.decoded_output_boxes()
            decoded_boxes = clip_boxes(decoded_boxes,
                                       image_shape2d,
                                       name='fastrcnn_all_boxes')
            label_scores = fastrcnn_head.output_scores(
                name='fastrcnn_all_scores')
            final_boxes, final_scores, final_labels = fastrcnn_predictions(
                decoded_boxes, label_scores, name_scope='output')
            if cfg.MODE_MASK:
                # Cascade inference needs roi transform with refined boxes.
                roi_feature_maskrcnn = multilevel_roi_align(
                    features[:4], final_boxes, 14)
                maskrcnn_head_func = getattr(model_mrcnn,
                                             cfg.FPN.MRCNN_HEAD_FUNC)
                mask_logits = maskrcnn_head_func(
                    'maskrcnn', roi_feature_maskrcnn,
                    cfg.DATA.NUM_CATEGORY)  # #fg x #cat x 28 x 28
                indices = tf.stack([
                    tf.range(tf.size(final_labels)),
                    tf.cast(final_labels, tf.int32) - 1
                ],
                                   axis=1)
                final_mask_logits = tf.gather_nd(mask_logits,
                                                 indices)  # #resultx28x28
                tf.sigmoid(final_mask_logits, name='output/masks')
            return []
    def roi_heads(self, image, features, proposals, targets):
        image_shape2d = tf.shape(image)[2:]  # h,w
        featuremap = features[0]

        gt_boxes, gt_labels, *_ = targets

        if self.training:
            # sample proposal boxes in training
            proposals = sample_fast_rcnn_targets(proposals.boxes, gt_boxes,
                                                 gt_labels)
        # The boxes to be used to crop RoIs.
        # Use all proposal boxes in inference

        boxes_on_featuremap = proposals.boxes * (1.0 / cfg.RPN.ANCHOR_STRIDE)
        roi_resized = roi_align(featuremap, boxes_on_featuremap, 14)

        feature_fastrcnn = resnet_conv5(
            roi_resized, cfg.BACKBONE.RESNET_NUM_BLOCKS[-1])  # nxcx7x7
        # Keep C5 feature to be shared with mask branch
        feature_gap = GlobalAvgPooling('gap',
                                       feature_fastrcnn,
                                       data_format='channels_first')
        fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_outputs(
            'fastrcnn', feature_gap, cfg.DATA.NUM_CATEGORY)

        fastrcnn_head = FastRCNNHead(
            proposals, fastrcnn_box_logits, fastrcnn_label_logits, gt_boxes,
            tf.constant(cfg.FRCNN.BBOX_REG_WEIGHTS, dtype=tf.float32))

        if self.training:
            all_losses = fastrcnn_head.losses()

            if cfg.MODE_MASK:
                gt_masks = targets[2]
                # maskrcnn loss
                # In training, mask branch shares the same C5 feature.
                fg_feature = tf.gather(feature_fastrcnn, proposals.fg_inds())
                mask_logits = maskrcnn_upXconv_head(
                    'maskrcnn', fg_feature, cfg.DATA.NUM_CATEGORY,
                    num_convs=0)  # #fg x #cat x 14x14

                target_masks_for_fg = crop_and_resize(
                    tf.expand_dims(gt_masks, 1),
                    proposals.fg_boxes(),
                    proposals.fg_inds_wrt_gt,
                    14,
                    pad_border=False)  # nfg x 1x14x14
                target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1,
                                                 'sampled_fg_mask_targets')
                all_losses.append(
                    maskrcnn_loss(mask_logits, proposals.fg_labels(),
                                  target_masks_for_fg))
            return all_losses
        else:
            decoded_boxes = fastrcnn_head.decoded_output_boxes()
            decoded_boxes = clip_boxes(decoded_boxes,
                                       image_shape2d,
                                       name='fastrcnn_all_boxes')
            label_scores = fastrcnn_head.output_scores(
                name='fastrcnn_all_scores')
            final_boxes, final_scores, final_labels = fastrcnn_predictions(
                decoded_boxes, label_scores, name_scope='output')

            if cfg.MODE_MASK:
                roi_resized = roi_align(
                    featuremap, final_boxes * (1.0 / cfg.RPN.ANCHOR_STRIDE),
                    14)
                feature_maskrcnn = resnet_conv5(
                    roi_resized, cfg.BACKBONE.RESNET_NUM_BLOCKS[-1])
                mask_logits = maskrcnn_upXconv_head(
                    'maskrcnn', feature_maskrcnn, cfg.DATA.NUM_CATEGORY,
                    0)  # #result x #cat x 14x14
                indices = tf.stack([
                    tf.range(tf.size(final_labels)),
                    tf.cast(final_labels, tf.int32) - 1
                ],
                                   axis=1)
                final_mask_logits = tf.gather_nd(mask_logits,
                                                 indices)  # #resultx14x14
                tf.sigmoid(final_mask_logits, name='output/masks')
            return []