def preprocess(self, image): image = tf.expand_dims(image, 0) image = image_preprocess(image, bgr=True) return tf.transpose(image, [0, 3, 1, 2])
def roi_heads(self, image, features, proposals, targets): image_shape2d = tf.shape(image)[2:] # h,w assert len(features) == 5, "Features have to be P23456!" gt_boxes, gt_labels, *_ = targets if self.training: proposals = sample_fast_rcnn_targets(proposals.boxes, gt_boxes, gt_labels) fastrcnn_head_func = getattr(model_frcnn, cfg.FPN.FRCNN_HEAD_FUNC) if not cfg.FPN.CASCADE: roi_feature_fastrcnn = multilevel_roi_align( features[:4], proposals.boxes, 7) head_feature = fastrcnn_head_func('fastrcnn', roi_feature_fastrcnn) fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_outputs( 'fastrcnn/outputs', head_feature, cfg.DATA.NUM_CATEGORY) fastrcnn_head = FastRCNNHead( proposals, fastrcnn_box_logits, fastrcnn_label_logits, gt_boxes, tf.constant(cfg.FRCNN.BBOX_REG_WEIGHTS, dtype=tf.float32)) else: def roi_func(boxes): return multilevel_roi_align(features[:4], boxes, 7) fastrcnn_head = CascadeRCNNHead(proposals, roi_func, fastrcnn_head_func, (gt_boxes, gt_labels), image_shape2d, cfg.DATA.NUM_CATEGORY) if self.training: all_losses = fastrcnn_head.losses() if cfg.MODE_MASK: gt_masks = targets[2] # maskrcnn loss roi_feature_maskrcnn = multilevel_roi_align( features[:4], proposals.fg_boxes(), 14, name_scope='multilevel_roi_align_mask') maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC) mask_logits = maskrcnn_head_func( 'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY) # #fg x #cat x 28 x 28 target_masks_for_fg = crop_and_resize( tf.expand_dims(gt_masks, 1), proposals.fg_boxes(), proposals.fg_inds_wrt_gt, 28, pad_border=False) # fg x 1x28x28 target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1, 'sampled_fg_mask_targets') all_losses.append( maskrcnn_loss(mask_logits, proposals.fg_labels(), target_masks_for_fg)) return all_losses else: decoded_boxes = fastrcnn_head.decoded_output_boxes() decoded_boxes = clip_boxes(decoded_boxes, image_shape2d, name='fastrcnn_all_boxes') label_scores = fastrcnn_head.output_scores( name='fastrcnn_all_scores') final_boxes, final_scores, final_labels = fastrcnn_predictions( decoded_boxes, label_scores, name_scope='output') if cfg.MODE_MASK: # Cascade inference needs roi transform with refined boxes. roi_feature_maskrcnn = multilevel_roi_align( features[:4], final_boxes, 14) maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC) mask_logits = maskrcnn_head_func( 'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY) # #fg x #cat x 28 x 28 indices = tf.stack([ tf.range(tf.size(final_labels)), tf.cast(final_labels, tf.int32) - 1 ], axis=1) final_mask_logits = tf.gather_nd(mask_logits, indices) # #resultx28x28 tf.sigmoid(final_mask_logits, name='output/masks') return []
def roi_heads(self, image, features, proposals, targets): image_shape2d = tf.shape(image)[2:] # h,w featuremap = features[0] gt_boxes, gt_labels, *_ = targets if self.training: # sample proposal boxes in training proposals = sample_fast_rcnn_targets(proposals.boxes, gt_boxes, gt_labels) # The boxes to be used to crop RoIs. # Use all proposal boxes in inference boxes_on_featuremap = proposals.boxes * (1.0 / cfg.RPN.ANCHOR_STRIDE) roi_resized = roi_align(featuremap, boxes_on_featuremap, 14) feature_fastrcnn = resnet_conv5( roi_resized, cfg.BACKBONE.RESNET_NUM_BLOCKS[-1]) # nxcx7x7 # Keep C5 feature to be shared with mask branch feature_gap = GlobalAvgPooling('gap', feature_fastrcnn, data_format='channels_first') fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_outputs( 'fastrcnn', feature_gap, cfg.DATA.NUM_CATEGORY) fastrcnn_head = FastRCNNHead( proposals, fastrcnn_box_logits, fastrcnn_label_logits, gt_boxes, tf.constant(cfg.FRCNN.BBOX_REG_WEIGHTS, dtype=tf.float32)) if self.training: all_losses = fastrcnn_head.losses() if cfg.MODE_MASK: gt_masks = targets[2] # maskrcnn loss # In training, mask branch shares the same C5 feature. fg_feature = tf.gather(feature_fastrcnn, proposals.fg_inds()) mask_logits = maskrcnn_upXconv_head( 'maskrcnn', fg_feature, cfg.DATA.NUM_CATEGORY, num_convs=0) # #fg x #cat x 14x14 target_masks_for_fg = crop_and_resize( tf.expand_dims(gt_masks, 1), proposals.fg_boxes(), proposals.fg_inds_wrt_gt, 14, pad_border=False) # nfg x 1x14x14 target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1, 'sampled_fg_mask_targets') all_losses.append( maskrcnn_loss(mask_logits, proposals.fg_labels(), target_masks_for_fg)) return all_losses else: decoded_boxes = fastrcnn_head.decoded_output_boxes() decoded_boxes = clip_boxes(decoded_boxes, image_shape2d, name='fastrcnn_all_boxes') label_scores = fastrcnn_head.output_scores( name='fastrcnn_all_scores') final_boxes, final_scores, final_labels = fastrcnn_predictions( decoded_boxes, label_scores, name_scope='output') if cfg.MODE_MASK: roi_resized = roi_align( featuremap, final_boxes * (1.0 / cfg.RPN.ANCHOR_STRIDE), 14) feature_maskrcnn = resnet_conv5( roi_resized, cfg.BACKBONE.RESNET_NUM_BLOCKS[-1]) mask_logits = maskrcnn_upXconv_head( 'maskrcnn', feature_maskrcnn, cfg.DATA.NUM_CATEGORY, 0) # #result x #cat x 14x14 indices = tf.stack([ tf.range(tf.size(final_labels)), tf.cast(final_labels, tf.int32) - 1 ], axis=1) final_mask_logits = tf.gather_nd(mask_logits, indices) # #resultx14x14 tf.sigmoid(final_mask_logits, name='output/masks') return []