Beispiel #1
0
def saliency_map(model_fn, x, label, classifier_type):
    x = x.clone().detach().requires_grad_(True)
    if (classifier_type == 'softmax'):
        outputs = model_fn(x)
        #input(outputs)
        outputs_max, _ = torch.max(outputs, dim=1)
        input(outputs_max)
        #outputs_max = outputs[:,outputs_max_index]
        #input(outputs_max.size())
        grad, = torch.autograd(outputs_max, [x])
    elif (classifier_type == 'sigmoid'):
        outputs = model_fn(x)
        grad, = torch.autograd(outputs, [x])

    input(grad.size())
    return grad.cpu().detach().numpy()
Beispiel #2
0
def check_dropout_forward(batchsize, feature_dimension, seq_length, use_tanh):
    x_cpu_data = np.random.normal(
        0, 1, size=(batchsize, feature_dimension, seq_length * 3)).astype(
            np.float32) * 10
    x_gpu_data = cuda.to_gpu(x_cpu_data, gpu_device)

    with chainer.using_config("train", True):
        # get true output
        layer = SRU(feature_dimension,
                    feature_dimension,
                    use_tanh=use_tanh,
                    dropout=0.5)
        mask_x = layer.generate_dropout_mask(x_cpu_data)
        output_true, cell_true, last_cell_true = autograd(
            x_cpu_data[..., :seq_length], layer.W, layer.B, None,
            layer.use_tanh, mask_x)
        output_true, cell_true, last_cell_true = autograd(
            x_cpu_data[..., seq_length:seq_length * 2], layer.W, layer.B,
            last_cell_true, layer.use_tanh, mask_x)
        output_true, cell_true, last_cell_true = autograd(
            x_cpu_data[..., seq_length * 2:], layer.W, layer.B, last_cell_true,
            layer.use_tanh, mask_x)

        # get cuda output
        layer.to_gpu(gpu_device)
        output, cell, last_cell = layer(x_gpu_data[..., :seq_length], None,
                                        cuda.to_gpu(mask_x))
        output, cell, last_cell = layer(
            x_gpu_data[..., seq_length:seq_length * 2], last_cell,
            cuda.to_gpu(mask_x))
        output, cell, last_cell = layer(x_gpu_data[..., seq_length * 2:],
                                        last_cell, cuda.to_gpu(mask_x))

    threshold = 1e-5
    assert (xp.mean(abs(output_true.data - cuda.to_cpu(output.data))) <=
            threshold), xp.mean(
                abs(output_true.data - cuda.to_cpu(output.data)))
    assert (xp.mean(abs(cell_true.data - cuda.to_cpu(cell.data))) <=
            threshold), xp.mean(abs(cell_true.data - cuda.to_cpu(cell.data)))
    assert (xp.mean(abs(last_cell_true.data - cuda.to_cpu(last_cell.data))) <=
            threshold), xp.mean(
                abs(last_cell_true.data - cuda.to_cpu(last_cell.data)))
Beispiel #3
0
 def select_action(self, state):
     # generate a distribution of probabilities based on the inputted q values
     temperature = 7  # the higher this temperature parameter, the more likely we are to choose the highest q action
     probabilities = torch.nn.functional.softmax(
         self.model(torch.autograd(state, volatile=True)) *
         temperature)  # applies a
     # softmax function to the last state to normalize the output
     action = probabilities.multinomial(
     )  # gives us a random draw from the distribution
     return action.data[
         0, 0]  # returns 0,1,2 in accordance with action2rotation
def test_tanh():
    x = torch.randn((3, 2))
    y = torch.tanh(x)
    print(torch.autograd(y.sum(), x))
    print()
Beispiel #5
0
        """ Custom dataset """
       pass

   def __getitem__(self, index):
       # this function should return one data for a given index
       pass

   def __len__(self):
       pass

custom_dataset = CustomDataset()
torch.utils.data.DataLoader(dataset=custom_dataset,
                            batch_size=100,
                            shuffle=True,
                            num_workers=2)

# using pre-trained model
# download and use pre-trained model
resnet = torchvision.models.resnet18(pretrained=True)
# finetuning ==> removing top layer
sub_model = torch.nn.Sequential(*list(resnet.children()[:-1]))

# for test
images = torch.autograd(Variable(torch.randn(10, 3, 256, 256)))
print(resnet(images).size())
print(sub_model(images).size())

# save and load model
torch.save(sub_model, 'model.pkl')
model = torch.load('model.pkl')
Beispiel #6
0
def check_dropout_backward(batchsize, feature_dimension, seq_length, use_tanh):
    x_cpu_data = np.random.normal(
        0, 1, size=(batchsize, feature_dimension, seq_length * 3)).astype(
            np.float32) * 10
    x_gpu_data = cuda.to_gpu(x_cpu_data, gpu_device)
    x_cpu = chainer.Variable(x_cpu_data)
    x_gpu = chainer.Variable(x_gpu_data)

    with chainer.using_config("train", True):
        # get true output
        layer = SRU(feature_dimension, use_tanh=use_tanh, dropout=0.5)
        mask_x = layer.generate_dropout_mask(x_cpu_data)
        output_true, cell_true, last_cell_true = autograd(
            x_cpu[..., :seq_length], layer.W, layer.B, None, layer.use_tanh,
            mask_x)
        output_true, cell_true, last_cell_true = autograd(
            x_cpu[..., seq_length:seq_length * 2], layer.W, layer.B,
            last_cell_true, layer.use_tanh, mask_x)
        output_true, cell_true, last_cell_true = autograd(
            x_cpu[..., seq_length * 2:], layer.W, layer.B, last_cell_true,
            layer.use_tanh, mask_x)

        layer.cleargrads()
        functions.sum(output_true).backward()

        b_grad_true = layer.B.grad.copy()
        w_grad_true = layer.W.grad.copy()
        x_grad_true = x_cpu.grad.copy()

        # print("last_cell_true")
        # print(last_cell_true)

        layer.to_gpu(gpu_device)
        output, cell, last_cell = layer(x_gpu[..., :seq_length], None,
                                        cuda.to_gpu(mask_x))
        output, cell, last_cell = layer(x_gpu[..., seq_length:seq_length * 2],
                                        last_cell, cuda.to_gpu(mask_x))
        output, cell, last_cell = layer(x_gpu[..., seq_length * 2:], last_cell,
                                        cuda.to_gpu(mask_x))

        # print(np.mean(abs(output_true.data - cuda.to_cpu(output.data))))
        # print(np.mean(abs(cell_true.data - cuda.to_cpu(cell.data))))

        layer.cleargrads()
        functions.sum(output).backward()
    # print("last_cell")
    # print(last_cell)

    # print("layer.W.data")
    # print(layer.W.data)

    # print("b_grad")
    # print(b_grad)
    # print("b_grad")
    # print(layer.B.grad)

    # print("w_grad")
    # print(w_grad)
    # print("w_grad")
    # print(layer.W.grad)

    # print("x_grad")
    # print(x_cpu.grad)
    # print("x_grad")
    # print(x_gpu.grad)

    threshold = 1e-3
    assert (xp.mean(abs(b_grad_true - cuda.to_cpu(layer.B.grad))) <=
            threshold), xp.mean(abs(b_grad_true - cuda.to_cpu(layer.B.grad)))
    assert (xp.mean(abs(w_grad_true - cuda.to_cpu(layer.W.grad))) <=
            threshold), xp.mean(abs(w_grad_true - cuda.to_cpu(layer.W.grad)))
    assert (xp.mean(abs(x_grad_true - cuda.to_cpu(x_gpu.grad))) <=
            threshold), xp.mean(abs(x_grad_true - cuda.to_cpu(x_gpu.grad)))
Beispiel #7
0
 def sample(self, batch_size):
     # take some random samples from memory, and reshape it
     samples = zip(*random.sample(self.memory, batch_size))
     # turns this into a torch variable
     return map(lambda x: torch.autograd(torch.cat(x, 0)), samples)