Beispiel #1
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank
                                                    ) else logging.WARN)

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets:

    # train_dataset = datasets.load_dataset("dialect_speech_corpus", split="train+dev", cache_dir=model_args.cache_dir)
    eval_dataset = datasets.load_dataset("dialect_speech_corpus",
                                         split="test",
                                         cache_dir=model_args.cache_dir)

    feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1,
                                                 sampling_rate=16_000,
                                                 padding_value=0.0,
                                                 do_normalize=True,
                                                 return_attention_mask=True)
    processor = CustomWav2Vec2Processor.from_pretrained(
        model_args.model_name_or_path)
    model = Wav2Vec2KlaamModelMean.from_pretrained(
        model_args.model_name_or_path)

    if model_args.freeze_feature_extractor:
        model.freeze_feature_extractor()

    # if data_args.max_train_samples is not None:
    #     train_dataset = train_dataset.select(range(data_args.max_train_samples))

    if data_args.max_val_samples is not None:
        eval_dataset = eval_dataset.select(range(data_args.max_val_samples))

    # Preprocessing the datasets.
    # We need to read the aduio files as arrays and tokenize the targets.
    def speech_file_to_array_fn(batch):
        start = 0
        stop = 10
        srate = 16_000
        speech_array, sampling_rate = sf.read(batch["file"],
                                              start=start * srate,
                                              stop=stop * srate)
        batch["speech"] = librosa.resample(np.asarray(speech_array),
                                           sampling_rate, srate)
        batch["sampling_rate"] = srate
        batch["parent"] = batch["label"]
        return batch

    # train_dataset = train_dataset.map(
    #     speech_file_to_array_fn,
    #     remove_columns=train_dataset.column_names,
    #     num_proc=data_args.preprocessing_num_workers,
    # )
    eval_dataset = eval_dataset.map(
        speech_file_to_array_fn,
        remove_columns=eval_dataset.column_names,
        num_proc=data_args.preprocessing_num_workers,
    )

    def prepare_dataset(batch):
        # check that all files have the correct sampling rate
        assert (
            len(set(batch["sampling_rate"])) == 1
        ), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}."
        batch["input_values"] = processor(
            batch["speech"],
            sampling_rate=batch["sampling_rate"][0]).input_values
        batch["labels"] = batch["parent"]
        return batch

    # train_dataset = train_dataset.map(
    #     prepare_dataset,
    #     remove_columns=train_dataset.column_names,
    #     batch_size=training_args.per_device_train_batch_size,
    #     batched=True,
    #     num_proc=data_args.preprocessing_num_workers,
    # )
    eval_dataset = eval_dataset.map(
        prepare_dataset,
        remove_columns=eval_dataset.column_names,
        batch_size=training_args.per_device_train_batch_size,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
    )

    from sklearn.metrics import classification_report, confusion_matrix

    def compute_metrics(pred):
        label_idx = [0, 1, 2, 3, 4]
        label_names = ['EGY', 'NOR', 'GLF', 'LAV', 'MSA']
        labels = pred.label_ids.argmax(-1)
        preds = pred.predictions.argmax(-1)
        acc = accuracy_score(labels, preds)
        f1 = f1_score(labels, preds, average='macro')
        report = classification_report(y_true=labels,
                                       y_pred=preds,
                                       labels=label_idx,
                                       target_names=label_names)
        matrix = confusion_matrix(y_true=labels, y_pred=preds)
        print(report)
        print(matrix)

        wandb.log({
            "conf_mat":
            wandb.plot.confusion_matrix(probs=None,
                                        y_true=labels,
                                        preds=preds,
                                        class_names=label_names)
        })

        wandb.log({
            "precision_recall":
            wandb.plot.pr_curve(y_true=labels,
                                y_probas=pred.predictions,
                                labels=label_names)
        })

        return {"accuracy": acc, "f1_score": f1}

    wandb.init(name=training_args.output_dir, config=training_args)

    # Data collator
    data_collator = DataCollatorCTCWithPadding(processor=processor,
                                               padding=True)

    # Initialize our Trainer
    trainer = CTCTrainer(
        model=model,
        data_collator=data_collator,
        args=training_args,
        compute_metrics=compute_metrics,
        # train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=processor.feature_extractor,
    )

    # Training
    # if training_args.do_train:
    #     if last_checkpoint is not None:
    #         checkpoint = last_checkpoint
    #     elif os.path.isdir(model_args.model_name_or_path):
    #         checkpoint = model_args.model_name_or_path
    #     else:
    #         checkpoint = None
    #     train_result = trainer.train(resume_from_checkpoint=checkpoint)
    #     trainer.save_model()
    #
    #     # save the feature_extractor and the tokenizer
    #     if is_main_process(training_args.local_rank):
    #         processor.save_pretrained(training_args.output_dir)
    #
    #     metrics = train_result.metrics
    #     max_train_samples = (
    #         data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
    #     )
    #     metrics["train_samples"] = min(max_train_samples, len(train_dataset))
    #
    #     trainer.log_metrics("train", metrics)
    #     trainer.save_metrics("train", metrics)
    #     trainer.save_state()

    # Evaluation
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
        metrics = trainer.evaluate()
        max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(
            eval_dataset)
        metrics["eval_samples"] = min(max_val_samples, len(eval_dataset))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    return results
Beispiel #2
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    if data_args.eval_data_file is None and training_args.do_eval:
        raise ValueError(
            "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
            "or remove the --do_eval argument."
        )

    if (
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
    ):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
        )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16,
    )
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed
    set_seed(training_args.seed)

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")

    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another script, save it,"
            "and load it from here, using --tokenizer_name"
        )

    if model_args.model_name_or_path:
        model = AutoModelWithLMHead.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelWithLMHead.from_config(config)

    model.resize_token_embeddings(len(tokenizer))

    if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
        raise ValueError(
            "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the --mlm "
            "flag (masked language modeling)."
        )

    if data_args.block_size <= 0:
        data_args.block_size = tokenizer.max_len
        # Our input block size will be the max possible for the model
    else:
        data_args.block_size = min(data_args.block_size, tokenizer.max_len)

    # Get datasets
    train_dataset = (
        get_dataset(data_args, tokenizer=tokenizer, local_rank=training_args.local_rank)
        if training_args.do_train
        else None
    )
    eval_dataset = (
        get_dataset(data_args, tokenizer=tokenizer, local_rank=training_args.local_rank, evaluate=True)
        if training_args.do_eval
        else None
    )
    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer, mlm=data_args.mlm, mlm_probability=data_args.mlm_probability
    )

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        data_collator=data_collator,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        prediction_loss_only=True,
    )

    # Training
    if training_args.do_train:
        model_path = (
            model_args.model_name_or_path
            if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path)
            else None
        )
        trainer.train(model_path=model_path)
        trainer.save_model()
        # For convenience, we also re-save the tokenizer to the same directory,
        # so that you can share your model easily on huggingface.co/models =)
        if trainer.is_world_master():
            tokenizer.save_pretrained(training_args.output_dir)

    # Evaluation
    results = {}
    if training_args.do_eval and training_args.local_rank in [-1, 0]:
        logger.info("*** Evaluate ***")

        eval_output = trainer.evaluate()

        perplexity = math.exp(eval_output["loss"])
        result = {"perplexity": perplexity}
        logger.info(result)
        output_eval_file = os.path.join(training_args.output_dir, "eval_results_lm.txt")
        with open(output_eval_file, "a") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

        results.update(result)

    return results
Beispiel #3
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
    # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
    # label if at least two columns are provided.
    #
    # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
    # single column. You can easily tweak this behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.task_name is not None:
        # Downloading and loading a dataset from the hub.
        datasets = load_dataset("glue", data_args.task_name)
    else:
        # Loading a dataset from your local files.
        # CSV/JSON training and evaluation files are needed.
        data_files = {"train": data_args.train_file, "validation": data_args.validation_file}

        # Get the test dataset: you can provide your own CSV/JSON test file (see below)
        # when you use `do_predict` without specifying a GLUE benchmark task.
        if training_args.do_predict:
            if data_args.test_file is not None:
                train_extension = data_args.train_file.split(".")[-1]
                test_extension = data_args.test_file.split(".")[-1]
                assert (
                    test_extension == train_extension
                ), "`test_file` should have the same extension (csv or json) as `train_file`."
                data_files["test"] = data_args.test_file
            else:
                raise ValueError("Need either a GLUE task or a test file for `do_predict`.")

        for key in data_files.keys():
            logger.info(f"load a local file for {key}: {data_files[key]}")

        if data_args.train_file.endswith(".csv"):
            # Loading a dataset from local csv files
            datasets = load_dataset("csv", data_files=data_files)
        else:
            # Loading a dataset from local json files
            datasets = load_dataset("json", data_files=data_files)
    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Labels
    if data_args.task_name is not None:
        is_regression = data_args.task_name == "stsb"
        if not is_regression:
            label_list = datasets["train"].features["label"].names
            num_labels = len(label_list)
        else:
            num_labels = 1
    else:
        # Trying to have good defaults here, don't hesitate to tweak to your needs.
        is_regression = datasets["train"].features["label"].dtype in ["float32", "float64"]
        if is_regression:
            num_labels = 1
        else:
            # A useful fast method:
            # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
            label_list = datasets["train"].unique("label")
            label_list.sort()  # Let's sort it for determinism
            num_labels = len(label_list)

    # Load pretrained model and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForSequenceClassification.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    # Preprocessing the datasets
    if data_args.task_name is not None:
        sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
    else:
        # Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
        non_label_column_names = [name for name in datasets["train"].column_names if name != "label"]
        if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
            sentence1_key, sentence2_key = "sentence1", "sentence2"
        else:
            if len(non_label_column_names) >= 2:
                sentence1_key, sentence2_key = non_label_column_names[:2]
            else:
                sentence1_key, sentence2_key = non_label_column_names[0], None

    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False

    # Some models have set the order of the labels to use, so let's make sure we do use it.
    label_to_id = None
    if (
        model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
        and data_args.task_name is not None
        and not is_regression
    ):
        # Some have all caps in their config, some don't.
        label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
        if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
            label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)}
        else:
            logger.warn(
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
                f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
                "\nIgnoring the model labels as a result.",
            )
    elif data_args.task_name is None and not is_regression:
        label_to_id = {v: i for i, v in enumerate(label_list)}

    if data_args.max_seq_length > tokenizer.model_max_length:
        logger.warn(
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

    def preprocess_function(examples):
        # Tokenize the texts
        args = (
            (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
        )
        result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True)

        # Map labels to IDs (not necessary for GLUE tasks)
        if label_to_id is not None and "label" in examples:
            result["label"] = [(label_to_id[l] if l != -1 else -1) for l in examples["label"]]
        return result

    if training_args.do_train:
        if "train" not in datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = datasets["train"]
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))
        train_dataset = train_dataset.map(
            preprocess_function,
            batched=True,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    if training_args.do_eval:
        if "validation" not in datasets and "validation_matched" not in datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = datasets["validation_matched" if data_args.task_name == "mnli" else "validation"]
        if data_args.max_val_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_val_samples))
        eval_dataset = eval_dataset.map(
            preprocess_function,
            batched=True,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    if training_args.do_predict or data_args.task_name is not None or data_args.test_file is not None:
        if "test" not in datasets and "test_matched" not in datasets:
            raise ValueError("--do_predict requires a test dataset")
        test_dataset = datasets["test_matched" if data_args.task_name == "mnli" else "test"]
        if data_args.max_test_samples is not None:
            test_dataset = test_dataset.select(range(data_args.max_test_samples))
        test_dataset = test_dataset.map(
            preprocess_function,
            batched=True,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")

    # Get the metric function
    if data_args.task_name is not None:
        metric = load_metric("glue", data_args.task_name)
    # TODO: When datasets metrics include regular accuracy, make an else here and remove special branch from
    # compute_metrics

    # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1)
        if data_args.task_name is not None:
            result = metric.compute(predictions=preds, references=p.label_ids)
            if len(result) > 1:
                result["combined_score"] = np.mean(list(result.values())).item()
            return result
        elif is_regression:
            return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
        else:
            return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}

    # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    elif training_args.fp16:
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
    else:
        data_collator = None

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
        data_collator=data_collator,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if last_checkpoint is not None:
            checkpoint = last_checkpoint
        elif os.path.isdir(model_args.model_name_or_path):
            # Check the config from that potential checkpoint has the right number of labels before using it as a
            # checkpoint.
            if AutoConfig.from_pretrained(model_args.model_name_or_path).num_labels == num_labels:
                checkpoint = model_args.model_name_or_path

        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.save_model()  # Saves the tokenizer too for easy upload

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        # Loop to handle MNLI double evaluation (matched, mis-matched)
        tasks = [data_args.task_name]
        eval_datasets = [eval_dataset]
        if data_args.task_name == "mnli":
            tasks.append("mnli-mm")
            eval_datasets.append(datasets["validation_mismatched"])

        for eval_dataset, task in zip(eval_datasets, tasks):
            metrics = trainer.evaluate(eval_dataset=eval_dataset)

            max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(eval_dataset)
            metrics["eval_samples"] = min(max_val_samples, len(eval_dataset))

            trainer.log_metrics("eval", metrics)
            trainer.save_metrics("eval", metrics)

    if training_args.do_predict:
        logger.info("*** Test ***")

        # Loop to handle MNLI double evaluation (matched, mis-matched)
        tasks = [data_args.task_name]
        test_datasets = [test_dataset]
        if data_args.task_name == "mnli":
            tasks.append("mnli-mm")
            test_datasets.append(datasets["test_mismatched"])

        for test_dataset, task in zip(test_datasets, tasks):
            # Removing the `label` columns because it contains -1 and Trainer won't like that.
            test_dataset.remove_columns_("label")
            predictions = trainer.predict(test_dataset=test_dataset).predictions
            predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1)

            output_test_file = os.path.join(training_args.output_dir, f"test_results_{task}.txt")
            if trainer.is_world_process_zero():
                with open(output_test_file, "w") as writer:
                    logger.info(f"***** Test results {task} *****")
                    writer.write("index\tprediction\n")
                    for index, item in enumerate(predictions):
                        if is_regression:
                            writer.write(f"{index}\t{item:3.3f}\n")
                        else:
                            item = label_list[item]
                            writer.write(f"{index}\t{item}\n")
Beispiel #4
0
def main():
    # region Argument parsing
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TFTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    if not (training_args.do_train or training_args.do_eval
            or training_args.do_predict):
        exit(
            "Must specify at least one of --do_train, --do_eval or --do_predict!"
        )
    # endregion

    # region Checkpoints
    checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        checkpoint = get_last_checkpoint(training_args.output_dir)
        if checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
    # endregion

    # region Logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank
                                                    ) else logging.WARN)

    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
    logger.info(f"Training/evaluation parameters {training_args}")
    # endregion

    # region Dataset and labels
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Downloading and loading a dataset from the hub. In distributed training, the load_dataset function guarantee
    # that only one local process can concurrently download the dataset.
    datasets = load_dataset("glue",
                            data_args.task_name,
                            cache_dir=model_args.cache_dir)
    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    is_regression = data_args.task_name == "stsb"
    if not is_regression:
        label_list = datasets["train"].features["label"].names
        num_labels = len(label_list)
    else:
        num_labels = 1

    if data_args.predict_file is not None:
        logger.info("Preparing user-supplied file for predictions...")

        data_files = {"data": data_args.predict_file}

        for key in data_files.keys():
            logger.info(f"Loading a local file for {key}: {data_files[key]}")

        if data_args.predict_file.endswith(".csv"):
            # Loading a dataset from local csv files
            user_dataset = load_dataset("csv",
                                        data_files=data_files,
                                        cache_dir=model_args.cache_dir)
        else:
            # Loading a dataset from local json files
            user_dataset = load_dataset("json",
                                        data_files=data_files,
                                        cache_dir=model_args.cache_dir)
        needed_keys = task_to_keys[data_args.task_name]
        for key in needed_keys:
            assert key in user_dataset[
                "data"].features, f"Your supplied predict_file is missing the {key} key!"
        datasets["user_data"] = user_dataset["data"]
    # endregion

    # region Load model config and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name else model_args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    # endregion

    # region Dataset preprocessing
    sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
    non_label_column_names = [
        name for name in datasets["train"].column_names if name != "label"
    ]

    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False

    # Some models have set the order of the labels to use, so let's make sure we do use it.
    label_to_id = None
    if config.label2id != PretrainedConfig(
            num_labels=num_labels).label2id and not is_regression:
        # Some have all caps in their config, some don't.
        label_name_to_id = {k.lower(): v for k, v in config.label2id.items()}
        if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
            label_to_id = {
                i: int(label_name_to_id[label_list[i]])
                for i in range(num_labels)
            }
        else:
            logger.warning(
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
                f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
                "\nIgnoring the model labels as a result.",
            )
            label_to_id = {label: i for i, label in enumerate(label_list)}
    if label_to_id is not None:
        config.label2id = label_to_id
        config.id2label = {id: label for label, id in config.label2id.items()}
    elif data_args.task_name is not None and not is_regression:
        config.label2id = {l: i for i, l in enumerate(label_list)}
        config.id2label = {id: label for label, id in config.label2id.items()}

    if data_args.max_seq_length > tokenizer.model_max_length:
        logger.warning(
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

    def preprocess_function(examples):
        # Tokenize the texts
        args = ((examples[sentence1_key], ) if sentence2_key is None else
                (examples[sentence1_key], examples[sentence2_key]))
        result = tokenizer(*args,
                           padding=padding,
                           max_length=max_seq_length,
                           truncation=True)

        return result

    datasets = datasets.map(preprocess_function,
                            batched=True,
                            load_from_cache_file=not data_args.overwrite_cache)

    # endregion

    # region Metric function
    metric = load_metric("glue", data_args.task_name)

    def compute_metrics(preds, label_ids):
        preds = preds["logits"]
        preds = np.squeeze(preds) if is_regression else np.argmax(preds,
                                                                  axis=1)
        result = metric.compute(predictions=preds, references=label_ids)
        if len(result) > 1:
            result["combined_score"] = np.mean(list(result.values())).item()
        return result

    # endregion

    with training_args.strategy.scope():
        # region Load pretrained model
        if checkpoint is None:
            model_path = model_args.model_name_or_path
        else:
            model_path = checkpoint
        model = TFAutoModelForSequenceClassification.from_pretrained(
            model_path,
            config=config,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )
        # endregion

        # region Optimizer, loss and compilation
        optimizer = tf.keras.optimizers.Adam(
            learning_rate=training_args.learning_rate,
            beta_1=training_args.adam_beta1,
            beta_2=training_args.adam_beta2,
            epsilon=training_args.adam_epsilon,
            clipnorm=training_args.max_grad_norm,
        )
        if is_regression:
            loss_fn = tf.keras.losses.MeanSquaredError()
            metrics = []
        else:
            loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
                from_logits=True)
            metrics = ["accuracy"]
        model.compile(optimizer=optimizer, loss=loss_fn, metrics=metrics)
        # endregion

        # region Convert data to a tf.data.Dataset
        tf_data = dict()
        if isinstance(
                training_args.strategy,
                tf.distribute.TPUStrategy) or data_args.pad_to_max_length:
            logger.info(
                "Padding all batches to max length because argument was set or we're on TPU."
            )
            dataset_mode = "constant_batch"
        else:
            dataset_mode = "variable_batch"
        max_samples = {
            "train": data_args.max_train_samples,
            "validation": data_args.max_eval_samples,
            "validation_matched": data_args.max_eval_samples,
            "validation_mismatched": data_args.max_eval_samples,
            "test": data_args.max_predict_samples,
            "test_matched": data_args.max_predict_samples,
            "test_mismatched": data_args.max_predict_samples,
            "user_data": None,
        }
        for key in datasets.keys():
            if key == "train" or key.startswith("validation"):
                assert "label" in datasets[
                    key].features, f"Missing labels from {key} data!"
            if key == "train":
                shuffle = True
                batch_size = training_args.per_device_train_batch_size
                drop_remainder = True  # Saves us worrying about scaling gradients for the last batch
            else:
                shuffle = False
                batch_size = training_args.per_device_eval_batch_size
                drop_remainder = False
            samples_limit = max_samples[key]
            dataset = datasets[key]
            if samples_limit is not None:
                dataset = dataset.select(range(samples_limit))
            data = convert_dataset_for_tensorflow(
                dataset,
                non_label_column_names,
                batch_size=batch_size,
                dataset_mode=dataset_mode,
                drop_remainder=drop_remainder,
                shuffle=shuffle,
            )
            tf_data[key] = data
        # endregion

        # region Training and validation
        if training_args.do_train:
            callbacks = [
                SavePretrainedCallback(output_dir=training_args.output_dir)
            ]
            if training_args.do_eval and not data_args.task_name == "mnli":
                # Do both evaluation and training in the Keras fit loop, unless the task is MNLI
                # because MNLI has two validation sets
                validation_data = tf_data["validation"]
            else:
                validation_data = None
            model.fit(
                tf_data["train"],
                validation_data=validation_data,
                epochs=int(training_args.num_train_epochs),
                callbacks=callbacks,
            )
        # endregion

        # region Evaluation
        if training_args.do_eval:
            # We normally do validation as part of the Keras fit loop, but we run it independently
            # if there was no fit() step (because we didn't train the model) or if the task is MNLI,
            # because MNLI has a separate validation-mismatched validation set
            logger.info("*** Evaluate ***")

            # Loop to handle MNLI double evaluation (matched, mis-matched)
            if data_args.task_name == "mnli":
                tasks = ["mnli", "mnli-mm"]
                tf_datasets = [
                    tf_data["validation_matched"],
                    tf_data["validation_mismatched"]
                ]
                raw_datasets = [
                    datasets["validation_matched"],
                    datasets["validation_mismatched"]
                ]
            else:
                tasks = [data_args.task_name]
                tf_datasets = [tf_data["validation"]]
                raw_datasets = [datasets["validation"]]

            for raw_dataset, tf_dataset, task in zip(raw_datasets, tf_datasets,
                                                     tasks):
                eval_predictions = model.predict(tf_dataset)
                eval_metrics = compute_metrics(eval_predictions,
                                               raw_dataset["label"])
                print(f"Evaluation metrics ({task}):")
                print(eval_metrics)

        # endregion

        # region Prediction
        if training_args.do_predict or data_args.predict_file:
            logger.info("*** Predict ***")

            # Loop to handle MNLI double evaluation (matched, mis-matched)
            tasks = []
            tf_datasets = []
            raw_datasets = []
            if training_args.do_predict:
                if data_args.task_name == "mnli":
                    tasks.extend(["mnli", "mnli-mm"])
                    tf_datasets.extend(
                        [tf_data["test_matched"], tf_data["test_mismatched"]])
                    raw_datasets.extend([
                        datasets["test_matched"], datasets["test_mismatched"]
                    ])
                else:
                    tasks.append(data_args.task_name)
                    tf_datasets.append(tf_data["test"])
                    raw_datasets.append(datasets["test"])
            if data_args.predict_file:
                tasks.append("user_data")
                tf_datasets.append(tf_data["user_data"])
                raw_datasets.append(datasets["user_data"])

            for raw_dataset, tf_dataset, task in zip(raw_datasets, tf_datasets,
                                                     tasks):
                test_predictions = model.predict(tf_dataset)
                if "label" in raw_dataset:
                    test_metrics = compute_metrics(test_predictions,
                                                   raw_dataset["label"])
                    print(f"Test metrics ({task}):")
                    print(test_metrics)

                if is_regression:
                    predictions_to_write = np.squeeze(
                        test_predictions["logits"])
                else:
                    predictions_to_write = np.argmax(
                        test_predictions["logits"], axis=1)

                output_predict_file = os.path.join(
                    training_args.output_dir, f"predict_results_{task}.txt")
                with open(output_predict_file, "w") as writer:
                    logger.info(
                        f"***** Writing prediction results for {task} *****")
                    writer.write("index\tprediction\n")
                    for index, item in enumerate(predictions_to_write):
                        if is_regression:
                            writer.write(f"{index}\t{item:3.3f}\n")
                        else:
                            item = model.config.id2label[item]
                            writer.write(f"{index}\t{item}\n")
Beispiel #5
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, CnlpTrainingArguments))

    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    if (
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
    ):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
        )

    assert len(data_args.task_name) == len(data_args.data_dir), 'Number of tasks and data directories should be the same!'

    
    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" %
        (training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16)
    )
    logger.info("Training/evaluation parameters %s" % training_args)
    logger.info("Data parameters %s" % data_args)
    logger.info("Model parameters %s" % model_args)
    # Set seed
    set_seed(training_args.seed)

    try:
        task_names = []
        num_labels = []
        output_mode = []
        tagger = []
        relations = []
        for task_name in data_args.task_name:
            processor = cnlp_processors[task_name]()
            if processor.get_num_tasks() > 1:
                for subtask_num in range(processor.get_num_tasks()):
                    task_names.append(task_name + "-" + processor.get_classifiers()[subtask_num])
                    num_labels.append(len(processor.get_labels()))
                    output_mode.append(classification)
                    tagger.append(False)
                    relations.append(False)
            else:
                task_names.append(task_name)
                num_labels.append(len(processor.get_labels()))

                output_mode.append(cnlp_output_modes[task_name])
                tagger.append(cnlp_output_modes[task_name] == tagging)
                relations.append(cnlp_output_modes[task_name] == relex)

    except KeyError:
        raise ValueError("Task not found: %s" % (data_args.task_name))

    # Load tokenizer: Need this first for loading the datasets
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.encoder_name,
        cache_dir=model_args.cache_dir,
        add_prefix_space=True,
        additional_special_tokens=['<e>', '</e>', '<a1>', '</a1>', '<a2>', '</a2>', '<cr>', '<neg>']
    )

    model_name = model_args.model
    hierarchical = model_name == 'hier'

    # Get datasets
    train_dataset = (
        ClinicalNlpDataset(data_args, tokenizer=tokenizer, cache_dir=model_args.cache_dir, hierarchical=hierarchical) if training_args.do_train else None
    )
    eval_dataset = (
        ClinicalNlpDataset(data_args, tokenizer=tokenizer, mode="dev", cache_dir=model_args.cache_dir, hierarchical=hierarchical)
        if training_args.do_eval
        else None
    )
    test_dataset = (
        ClinicalNlpDataset(data_args, tokenizer=tokenizer, mode="test", cache_dir=model_args.cache_dir, hierarchical=hierarchical)
        if training_args.do_predict
        else None
    )

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    pretrained = False

    if model_name == 'cnn':
        model = CnnSentenceClassifier(len(tokenizer), num_labels_list=num_labels)
    elif model_name == 'lstm':
        model = LstmSentenceClassifier(len(tokenizer), num_labels_list=num_labels)
    elif model_name == 'hier':
        # encoder_config = AutoConfig.from_pretrained(
        #     model_args.config_name if model_args.config_name else model_args.encoder_name,
        #     finetuning_task=data_args.task_name,
        # )

        pretrained = True

        encoder_name = model_args.config_name if model_args.config_name else model_args.encoder_name
        config = CnlpConfig(
            encoder_name,
            data_args.task_name,
            num_labels,
            layer=model_args.layer,
            tokens=model_args.token,
            num_rel_attention_heads=model_args.num_rel_feats,
            rel_attention_head_dims=model_args.head_features,
            tagger=tagger,
            relations=relations,
        )
        # num_tokens=len(tokenizer))
        config.vocab_size = len(tokenizer)

        encoder_dim = config.hidden_size

        transformer_head_config = HierarchicalTransformerConfig(
            n_layers=model_args.hier_num_layers,
            d_model=encoder_dim,
            d_inner=model_args.hier_hidden_dim,
            n_head=model_args.hier_n_head,
            d_k=model_args.hier_d_k,
            d_v=model_args.hier_d_v,
        )

        model = HierarchicalModel(
            config=config,
            transformer_head_config=transformer_head_config,
            class_weights=None if train_dataset is None else train_dataset.class_weights,
            final_task_weight=training_args.final_task_weight,
            freeze=training_args.freeze,
            argument_regularization=training_args.arg_reg,
        )

    else:
        # by default cnlpt model, but need to check which encoder they want
        encoder_name = model_args.encoder_name

        # TODO check when download any pretrained language model to local disk, if 
        # the following condition "is_pretrained_model(encoder_name)" works or not.
        if not is_pretrained_model(encoder_name):
            # we are loading one of our own trained models as a starting point.
            #
            # 1) if training_args.do_train is true:
            # sometimes we may want to use an encoder that has been had continued pre-training, either on
            # in-domain MLM or another task we think might be useful. In that case our encoder will just
            # be a link to a directory. If the encoder-name is not recognized as a pre-trianed model, special
            # logic for ad hoc encoders follows:
            # we will load it as-is initially, then delete its classifier head, save the encoder
            # as a temp file, and make that temp file
            # the model file to be loaded down below the normal way. since that temp file
            # doesn't have a stored classifier it will use the randomly-inited classifier head
            # with the size of the supplied config (for the new task).
            # TODO This setting 1) is not tested yet.
            # 2) if training_args.do_train is false:
            # we evaluate or make predictions of our trained models. 
            # Both two setting require the registeration of CnlpConfig, and use 
            # AutoConfig.from_pretrained() to load the configuration file
            AutoConfig.register("cnlpt", CnlpConfig)
            AutoModel.register(CnlpConfig, CnlpModelForClassification)

            
            # Load the cnlp configuration using AutoConfig, this will not override 
            # the arguments from trained cnlp models. While using CnlpConfig will override
            # the model_type and model_name of the encoder.
            config = AutoConfig.from_pretrained(
                model_args.config_name if model_args.config_name else model_args.encoder_name,
                cache_dir=model_args.cache_dir,
            )

            if training_args.do_train:
                # Setting 1) only load weights from the encoder
                raise NotImplementedError('This functionality has not been restored yet')
                model = CnlpModelForClassification(
                        model_path = model_args.encoder_name,
                        config=config,
                        cache_dir=model_args.cache_dir,
                        tagger=tagger,
                        relations=relations,
                        class_weights=None if train_dataset is None else train_dataset.class_weights,
                        final_task_weight=training_args.final_task_weight,
                        use_prior_tasks=model_args.use_prior_tasks,
                        argument_regularization=model_args.arg_reg)
                delattr(model, 'classifiers')
                delattr(model, 'feature_extractors')
                if training_args.do_train:
                    tempmodel = tempfile.NamedTemporaryFile(dir=model_args.cache_dir)
                    torch.save(model.state_dict(), tempmodel)
                    model_name = tempmodel.name
            else:
                # setting 2) evaluate or make predictions
                model = CnlpModelForClassification.from_pretrained(
                    model_args.encoder_name,
                    config=config,
                    class_weights=None if train_dataset is None else train_dataset.class_weights,
                    final_task_weight=training_args.final_task_weight,
                    freeze=training_args.freeze,
                    bias_fit=training_args.bias_fit,
                    argument_regularization=training_args.arg_reg)

        else:
            # This only works when model_args.encoder_name is one of the 
            # model card from https://huggingface.co/models
            # By default, we use model card as the starting point to fine-tune
            encoder_name = model_args.config_name if model_args.config_name else model_args.encoder_name
            config = CnlpConfig(encoder_name,
                                data_args.task_name,
                                num_labels,
                                layer=model_args.layer,
                                tokens=model_args.token,
                                num_rel_attention_heads=model_args.num_rel_feats,
                                rel_attention_head_dims=model_args.head_features,
                                tagger=tagger,
                                relations=relations,)
                                #num_tokens=len(tokenizer))
            config.vocab_size = len(tokenizer)
            pretrained = True
            model = CnlpModelForClassification(
                config=config,
                class_weights=None if train_dataset is None else train_dataset.class_weights,
                final_task_weight=training_args.final_task_weight,
                freeze=training_args.freeze,
                bias_fit=training_args.bias_fit,
                argument_regularization=training_args.arg_reg)

    best_eval_results = None
    output_eval_file = os.path.join(
        training_args.output_dir, f"eval_results.txt"
    )
    output_eval_predictions = os.path.join(
        training_args.output_dir, f'eval_predictions.txt'
    )

    if training_args.do_train:
        batches_per_epoch = math.ceil(len(train_dataset) / training_args.train_batch_size)
        total_steps = int(training_args.num_train_epochs * batches_per_epoch // training_args.gradient_accumulation_steps)

        if training_args.evals_per_epoch > 0:
            logger.warning('Overwriting the value of logging steps based on provided evals_per_epoch argument')
            # steps per epoch factors in gradient accumulation steps (as compared to batches_per_epoch above which doesn't)
            steps_per_epoch = int(total_steps // training_args.num_train_epochs)
            training_args.eval_steps = steps_per_epoch // training_args.evals_per_epoch
            training_args.evaluation_strategy = IntervalStrategy.STEPS
            # This will save model per epoch
            # training_args.save_strategy = IntervalStrategy.EPOCH
        elif training_args.do_eval:
            logger.info('Evaluation strategy not specified so evaluating every epoch')
            training_args.evaluation_strategy = IntervalStrategy.EPOCH

    def build_compute_metrics_fn(task_names: List[str], model) -> Callable[[EvalPrediction], Dict]:
        def compute_metrics_fn(p: EvalPrediction):

            metrics = {}
            task_scores = []
            task_label_ind = 0

            # if not p is list:
            #     p = [p]

            for task_ind,task_name in enumerate(task_names):
                if tagger[task_ind]:
                    preds = np.argmax(p.predictions[task_ind], axis=2)
                    # labels will be -100 where we don't need to tag
                elif relations[task_ind]:
                    preds = np.argmax(p.predictions[task_ind], axis=3)
                else:
                    preds = np.argmax(p.predictions[task_ind], axis=1)

                if len(task_names) == 1:
                    labels = p.label_ids[:,0]
                elif relations[task_ind]:
                    labels = p.label_ids[:,0,task_label_ind:task_label_ind+data_args.max_seq_length,:].squeeze()
                    task_label_ind += data_args.max_seq_length
                elif p.label_ids.ndim == 4:
                    labels = p.label_ids[:,0,task_label_ind:task_label_ind+1,:].squeeze()
                    task_label_ind += 1
                elif p.label_ids.ndim == 3:
                    labels = p.label_ids[:,0,task_label_ind:task_label_ind+1].squeeze()
                    task_label_ind += 1

                metrics[task_name] = cnlp_compute_metrics(task_name, preds, labels)
                processor = cnlp_processors.get(task_name, cnlp_processors.get(task_name.split('-')[0], None))()
                task_scores.append(processor.get_one_score(metrics.get(task_name, metrics.get(task_name.split('-')[0], None))))

            one_score = sum(task_scores) / len(task_scores)

            if not model is None:
                if not hasattr(model, 'best_score') or one_score > model.best_score:
                    if pretrained:
                        trainer.save_model()
                    # For convenience, we also re-save the tokenizer to the same directory,
                    # so that you can share your model easily on huggingface.co/models =)
                    if trainer.is_world_process_zero():
                        tokenizer.save_pretrained(training_args.output_dir)
                        for task_ind,task_name in enumerate(metrics):
                            with open(output_eval_file, "w") as writer:
                                logger.info("***** Eval results for task %s *****" % (task_name))
                                for key, value in metrics[task_name].items():
                                    logger.info("  %s = %s", key, value)
                                    writer.write("%s = %s\n" % (key, value))
                    model.best_score = one_score
                    model.best_eval_results = metrics

            return metrics

        return compute_metrics_fn

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        compute_metrics=build_compute_metrics_fn(task_names, model),
    )

    # Training
    if training_args.do_train:
        trainer.train(
            # resume_from_checkpoint=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
        )

        if not hasattr(model, 'best_score'):
            if pretrained:
                trainer.save_model()
                # For convenience, we also re-save the tokenizer to the same directory,
                # so that you can share your model easily on huggingface.co/models =)
                if trainer.is_world_process_zero():
                    tokenizer.save_pretrained(training_args.output_dir)

    # Evaluation
    eval_results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        try:
            eval_result = model.best_eval_results
        except:
            eval_result = trainer.evaluate(eval_dataset=eval_dataset)
        
        if trainer.is_world_process_zero():
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key, value in eval_result.items():
                    logger.info("  %s = %s", key, value)
                    writer.write("%s = %s\n" % (key, value))

            with open(output_eval_predictions, 'w') as writer:
                #Chen wrote the below but it doesn't work for all settings
                predictions = trainer.predict(test_dataset=eval_dataset).predictions
                dataset_labels = eval_dataset.get_labels()
                for task_ind, task_name in enumerate(task_names):
                    if output_mode[task_ind] == classification:
                        task_predictions = np.argmax(predictions[task_ind], axis=1)
                        for index, item in enumerate(task_predictions):
                            if len(task_names) > len(dataset_labels):
                                subtask_ind = 0
                            else:
                                subtask_ind = task_ind
                            item = dataset_labels[subtask_ind][item]
                            writer.write("Task %d (%s) - Index %d - %s\n" % (task_ind, task_name, index, item))
                    elif output_mode[task_ind] == tagging:
                        task_predictions = np.argmax(predictions[task_ind], axis=2)
                        task_labels = dataset_labels[task_ind]
                        for index, pred_seq in enumerate(task_predictions):
                            wpind_to_ind = {}
                            chunk_labels = []

                            tokens = tokenizer.convert_ids_to_tokens(eval_dataset.features[index].input_ids)
                            for token_ind in range(1,len(tokens)):
                                if eval_dataset[index].input_ids[token_ind] <= 2:
                                    break
                                if tokens[token_ind].startswith('Ġ'):
                                    wpind_to_ind[token_ind] = len(wpind_to_ind)
                                    chunk_labels.append(task_labels[task_predictions[index][token_ind]])

                            entities = get_entities(chunk_labels)
                            writer.write('Task %d (%s) - Index %d: %s\n' % (task_ind, task_name, index, str(entities)))
                    elif output_mode[task_ind] == relex:
                        task_predictions = np.argmax(predictions[task_ind], axis=3)
                        task_labels = dataset_labels[task_ind]
                        assert task_labels[0] == 'None', 'The first labeled relation category should always be "None" but for task %s it is %s' % (task_names[task_ind], task_labels[0])
                        
                        for inst_ind in range(task_predictions.shape[0]):
                            inst_preds = task_predictions[inst_ind]
                            a1s, a2s = np.where(inst_preds > 0)
                            for arg_ind in range(len(a1s)):
                                a1_ind = a1s[arg_ind]
                                a2_ind = a2s[arg_ind]
                                cat = task_labels[ inst_preds[a1_ind][a2_ind] ]
                                writer.write("Task %d (%s) - Index %d - %s(%d, %d)\n" % (task_ind, task_name, inst_ind, cat, a1_ind, a2_ind))
                    else:
                        raise NotImplementedError('Writing predictions is not implemented for this output_mode!')

        eval_results.update(eval_result)

    if training_args.do_predict:
        logging.info("*** Test ***")
        # FIXME: this part hasn't been updated for the MTL setup so it doesn't work anymore since
        # predictions is generalized to be a list of predictions and the output needs to be different for each kin.
        # maybe it's ok to only handle classification since it has a very straightforward output format and evaluation,
        # while for relations we can punt to the user to just write their own eval code.
        predictions = trainer.predict(test_dataset=test_dataset).predictions
        for task_ind, task_name in enumerate(task_names):
            if output_mode[task_ind] == "classification":
                task_predictions = np.argmax(predictions[task_ind], axis=1)
            else:
                raise NotImplementedError('Writing predictions is not implemented for this output_mode!')
        
            output_test_file = os.path.join(
                training_args.output_dir, f"test_results.txt"
            )
            if trainer.is_world_process_zero():
                with open(output_test_file, "w") as writer:
                    logger.info("***** Test results *****")
                    for index, item in enumerate(task_predictions):
                        item = test_dataset.get_labels()[task_ind][item]
                        writer.write("%s\n" % (item))

    return eval_results
Beispiel #6
0
def main():
    # Auto-environment
    env = get_env()

    parser = HfArgumentParser(
        (ModelArguments, TrainingArguments, ExperimentArguments))
    model_args, training_args, experiment_args = parser.parse_args_into_dataclasses(
    )

    # Adjust output with folds and model name
    #TODO disabled
    # training_args.output_dir = os.path.join(training_args.output_dir, str(experiment_args.cv_fold), model_args.get_model_name())

    # Model path from env
    if not os.path.exists(model_args.model_name_or_path) and os.path.exists(
            os.path.join(env['bert_dir'], model_args.model_name_or_path)):
        model_args.model_name_or_path = os.path.join(
            env['bert_dir'], model_args.model_name_or_path)

    if (os.path.exists(training_args.output_dir)
            and os.listdir(training_args.output_dir) and training_args.do_train
            and not training_args.overwrite_output_dir):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
        )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%Y-%m-%d %H:%M:%S",
        level=logging.INFO
        if training_args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16,
    )
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed
    set_seed(training_args.seed)

    # Dataset args
    label_classes = get_label_classes_from_hf_dataset(
        get_local_hf_dataset_path(experiment_args.hf_dataset))
    num_labels = len(label_classes)

    if num_labels > 1 and experiment_args.binary_classification:
        # In binary classification we have only single label (with y=[0;1])
        num_labels = 1
        logger.warning(f'Forcing label classes to binary: {label_classes}')

    columns = ['input_ids', 'attention_mask', 'token_type_ids',
               'labels']  # Input to transformers.forward

    # Build dataset for splits
    train_ds = load_dataset(
        get_local_hf_dataset_path(experiment_args.hf_dataset),
        name='relations',
        cache_dir=experiment_args.hf_dataset_cache_dir,
        split=get_train_split(experiment_args.aspect, experiment_args.cv_fold))
    test_ds = load_dataset(
        get_local_hf_dataset_path(experiment_args.hf_dataset),
        name='relations',
        cache_dir=experiment_args.hf_dataset_cache_dir,
        split=get_test_split(experiment_args.aspect, experiment_args.cv_fold))
    docs_ds = load_dataset(get_local_hf_dataset_path(
        experiment_args.hf_dataset),
                           name='docs',
                           cache_dir=experiment_args.hf_dataset_cache_dir,
                           split=datasets.Split('docs'))

    # Forced limit
    if experiment_args.dataset_limit > 0:
        logger.info(
            f'Train and test datasets limited to {experiment_args.dataset_limit} samples'
        )

        train_ds = Dataset(train_ds.data[:experiment_args.dataset_limit])
        test_ds = Dataset(test_ds.data[:experiment_args.dataset_limit])

    # Build ID => Doc mapping
    doc_id2doc = {doc[experiment_args.doc_id_col]: doc for doc in docs_ds}

    if model_args.model_name_or_path.startswith('baseline-rnn'):
        # Load Spacy as tokenizer
        spacy_nlp = spacy.load(experiment_args.spacy_model,
                               disable=["tagger", "ner", "textcat"])

        if experiment_args.multi_label:
            # Baseline models
            model = RNNForMultiLabelSequenceClassification(
                word_vectors=get_vectors_from_spacy_model(spacy_nlp),
                hidden_size=experiment_args.rnn_hidden_size,
                rnn=experiment_args.rnn_type,
                num_labels=num_labels,
                num_layers=experiment_args.rnn_num_layers,
                dropout=experiment_args.rnn_dropout,
            )
        else:
            raise NotImplementedError(
                'RNN baseline is only available for multi label classification'
            )

        tokenizer = None

    else:
        # Load pretrained Transformers models and tokenizers
        model_config = AutoConfig.from_pretrained(
            model_args.model_name_or_path,
            num_labels=num_labels,
            cache_dir=model_args.cache_dir)

        # No need for spacy
        spacy_nlp = None

        if 'longformer' in model_args.model_name_or_path:
            # TVM: a custom CUDA kernel implementation of our sliding window attention (works only on GPU)
            model_config.attention_mode = 'tvm'

            # override tokenizer name if not set
            if model_args.tokenizer_name is None:
                roberta_path = os.path.join(env['bert_dir'], 'roberta-base')
                model_args.tokenizer_name = roberta_path if os.path.exists(
                    roberta_path) else 'roberta-base'

                logger.info(
                    f'Overriding tokenizer: {model_args.tokenizer_name}')

            # override max length
            experiment_args.max_length = 4096

        if experiment_args.multi_label:
            model_cls = AutoModelForMultiLabelSequenceClassification
        else:
            model_cls = AutoModelForSequenceClassification

        model = model_cls.from_pretrained(model_args.model_name_or_path,
                                          config=model_config,
                                          cache_dir=model_args.cache_dir)
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.tokenizer_name
            if model_args.tokenizer_name else model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
        )

        # Set token limit if defined by model (for Longformer)
        if model.config.max_position_embeddings > 0:
            tokenizer.model_max_length = model.config.max_position_embeddings

    # Init helper
    dpt = DocRelTrainerHelper(
        id2doc=doc_id2doc,
        transformers_tokenizer=tokenizer,
        spacy_nlp=spacy_nlp,
        label_classes=label_classes,
        binary_classification=experiment_args.binary_classification,
        doc_a_col=experiment_args.doc_a_col,
        doc_b_col=experiment_args.doc_b_col,
        label_col=experiment_args.label_col,
        text_from_doc_func=get_non_empty_text_from_doc,
        classification_threshold=experiment_args.classification_threshold,
        max_length=experiment_args.max_length,
        multi_label=experiment_args.multi_label,
    )

    logger.info('Converting to features (doc mapping, tokenize, ...)')

    # Build hash from settings for caching
    data_settings_hash = hashlib.md5(
        dataclasses.asdict(experiment_args).__str__().encode("utf-8") +
        dataclasses.asdict(model_args).__str__().encode("utf-8")).hexdigest()

    train_tensor_ds = train_ds.map(
        dpt.convert_to_features,
        batched=True,
        load_from_cache_file=True,
        num_proc=int(env['workers']),
        cache_file_name=os.path.join(
            experiment_args.hf_dataset_cache_dir,
            "cache-train-" + data_settings_hash + ".arrow"))
    train_tensor_ds.set_format(type='torch', columns=columns)

    test_tensor_ds = test_ds.map(
        dpt.convert_to_features,
        batched=True,
        load_from_cache_file=True,
        num_proc=int(env['workers']),
        cache_file_name=os.path.join(
            experiment_args.hf_dataset_cache_dir,
            "cache-test-" + data_settings_hash + ".arrow"))
    test_tensor_ds.set_format(type='torch', columns=columns)

    logger.info(f'Dataset columns: {columns}')
    logger.info(f'Train sample: {train_ds[0]}')
    logger.debug(f'- as tensor: {train_tensor_ds[0]}')

    logger.info(f'Test sample: {test_ds[0]}')
    logger.debug(f'- as tensor: {test_tensor_ds[0]}')

    # Load models weights (when no training but predictions)
    model_weights_path = os.path.join(training_args.output_dir,
                                      'pytorch_model.bin')

    if not training_args.do_train and experiment_args.save_predictions:
        logger.info(
            f'Loading existing model weights from disk: {model_weights_path}')
        if os.path.exists(model_weights_path):
            model.load_state_dict(torch.load(model_weights_path))
        else:
            logger.error('Weights files does not exist!')

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_tensor_ds,
        eval_dataset=test_tensor_ds,
        data_collator=DocRelDataCollator(),
        #prediction_loss_only=False,
        compute_metrics=dpt.compute_metrics,
    )

    # Log additional (to Weights & Baises)
    if is_wandb_available():
        extra_config = {}
        extra_config.update(dataclasses.asdict(experiment_args))
        extra_config.update(dataclasses.asdict(model_args))

        wandb.config.update(extra_config, allow_val_change=True)

    if training_args.do_train:
        logger.info('Training started...')
        trainer.train()

        if isinstance(model, PreTrainedModel):
            trainer.save_model()
            tokenizer.save_pretrained(training_args.output_dir)

        elif isinstance(model, nn.Module):  # RNN model
            torch.save(model.state_dict(), model_weights_path)

    if experiment_args.save_predictions:
        logger.info('Predicting...')

        predictions = trainer.predict(test_tensor_ds)

        df = dpt.get_df_from_predictions(test_ds,
                                         docs_ds,
                                         predictions,
                                         exclude_columns=['abstract'])

        # Save results to disk
        df.to_csv(os.path.join(training_args.output_dir, 'results.csv'),
                  index=False)
        json.dump(
            predictions.metrics,
            open(os.path.join(training_args.output_dir, 'metrics.json'), 'w'))

    logger.info('Done')
Beispiel #7
0
def main():
    # region Argument Parsing
    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TFTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_mlm",
                           model_args,
                           data_args,
                           framework="tensorflow")

    # Sanity checks
    if data_args.dataset_name is None and data_args.train_file is None and data_args.validation_file is None:
        raise ValueError(
            "Need either a dataset name or a training/validation file.")
    else:
        if data_args.train_file is not None:
            extension = data_args.train_file.split(".")[-1]
            assert extension in [
                "csv", "json", "txt"
            ], "`train_file` should be a csv, json or txt file."
        if data_args.validation_file is not None:
            extension = data_args.validation_file.split(".")[-1]
            assert extension in [
                "csv", "json", "txt"
            ], "`validation_file` should be a csv, json or txt file."

    if training_args.output_dir is not None:
        training_args.output_dir = Path(training_args.output_dir)
        os.makedirs(training_args.output_dir, exist_ok=True)

    if isinstance(
            training_args.strategy,
            tf.distribute.TPUStrategy) and not data_args.pad_to_max_length:
        logger.warning("We are training on TPU - forcing pad_to_max_length")
        data_args.pad_to_max_length = True
    # endregion

    # region Checkpoints
    # Detecting last checkpoint.
    checkpoint = None
    if len(os.listdir(training_args.output_dir)
           ) > 0 and not training_args.overwrite_output_dir:
        config_path = training_args.output_dir / CONFIG_NAME
        weights_path = training_args.output_dir / TF2_WEIGHTS_NAME
        if config_path.is_file() and weights_path.is_file():
            checkpoint = training_args.output_dir
            logger.warning(
                f"Checkpoint detected, resuming training from checkpoint in {training_args.output_dir}. To avoid this"
                " behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
        else:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to continue regardless.")

    # endregion

    # region Setup logging
    # accelerator.is_local_main_process is only True for one process per machine.
    logger.setLevel(logging.INFO)
    datasets.utils.logging.set_verbosity_warning()
    transformers.utils.logging.set_verbosity_info()
    # endregion

    # If passed along, set the training seed now.
    if training_args.seed is not None:
        set_seed(training_args.seed)

    # region Load datasets
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            use_auth_token=True if model_args.use_auth_token else None,
        )
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
                use_auth_token=True if model_args.use_auth_token else None,
            )
            raw_datasets["train"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
                use_auth_token=True if model_args.use_auth_token else None,
            )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = data_args.train_file.split(".")[-1]
        if extension == "txt":
            extension = "text"
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            use_auth_token=True if model_args.use_auth_token else None,
        )

    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.
    # endregion

    # region Load pretrained model and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    if checkpoint is not None:
        config = AutoConfig.from_pretrained(checkpoint)
    elif model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path)
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning(
            "You are instantiating a new config instance from scratch.")

    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name)
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path)
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )
    # endregion

    # region Dataset preprocessing
    # First we tokenize all the texts.
    column_names = raw_datasets["train"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

    if data_args.max_seq_length is None:
        max_seq_length = tokenizer.model_max_length
        if max_seq_length > 1024:
            logger.warning(
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
                "Picking 1024 instead. You can reduce that default value by passing --max_seq_length xxx."
            )
            max_seq_length = 1024
    else:
        if data_args.max_seq_length > tokenizer.model_max_length:
            logger.warning(
                f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
                f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
            )
        max_seq_length = min(data_args.max_seq_length,
                             tokenizer.model_max_length)

    if data_args.line_by_line:
        # When using line_by_line, we just tokenize each nonempty line.
        padding = "max_length" if data_args.pad_to_max_length else False

        def tokenize_function(examples):
            # Remove empty lines
            examples[text_column_name] = [
                line for line in examples[text_column_name]
                if len(line) > 0 and not line.isspace()
            ]
            return tokenizer(
                examples[text_column_name],
                padding=padding,
                truncation=True,
                max_length=max_seq_length,
                # We use this option because DataCollatorForLanguageModeling (see below) is more efficient when it
                # receives the `special_tokens_mask`.
                return_special_tokens_mask=True,
            )

        tokenized_datasets = raw_datasets.map(
            tokenize_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=[text_column_name],
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on dataset line_by_line",
        )
    else:
        # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
        # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
        # efficient when it receives the `special_tokens_mask`.
        def tokenize_function(examples):
            return tokenizer(examples[text_column_name],
                             return_special_tokens_mask=True)

        tokenized_datasets = raw_datasets.map(
            tokenize_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on every text in dataset",
        )

        # Main data processing function that will concatenate all texts from our dataset and generate chunks of
        # max_seq_length.
        def group_texts(examples):
            # Concatenate all texts.
            concatenated_examples = {
                k: list(chain(*examples[k]))
                for k in examples.keys()
            }
            total_length = len(concatenated_examples[list(examples.keys())[0]])
            # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
            # customize this part to your needs.
            if total_length >= max_seq_length:
                total_length = (total_length //
                                max_seq_length) * max_seq_length
            # Split by chunks of max_len.
            result = {
                k: [
                    t[i:i + max_seq_length]
                    for i in range(0, total_length, max_seq_length)
                ]
                for k, t in concatenated_examples.items()
            }
            return result

        # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
        # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
        # might be slower to preprocess.
        #
        # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
        # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map

        tokenized_datasets = tokenized_datasets.map(
            group_texts,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
            desc=f"Grouping texts in chunks of {max_seq_length}",
        )

    train_dataset = tokenized_datasets["train"]

    if data_args.validation_file is not None:
        eval_dataset = tokenized_datasets["validation"]
    else:
        logger.info(
            f"Validation file not found: using {data_args.validation_split_percentage}% of the dataset as validation"
            " as provided in data_args")
        train_indices, val_indices = train_test_split(
            list(range(len(train_dataset))),
            test_size=data_args.validation_split_percentage / 100)

        eval_dataset = train_dataset.select(val_indices)
        train_dataset = train_dataset.select(train_indices)

    if data_args.max_train_samples is not None:
        max_train_samples = min(len(train_dataset),
                                data_args.max_train_samples)
        train_dataset = train_dataset.select(range(max_train_samples))
    if data_args.max_eval_samples is not None:
        max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
        eval_dataset = eval_dataset.select(range(max_eval_samples))

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)),
                               min(3, len(train_dataset))):
        logger.info(
            f"Sample {index} of the training set: {train_dataset[index]}.")
    # endregion

    with training_args.strategy.scope():
        # region Prepare model
        if checkpoint is not None:
            model = TFAutoModelForMaskedLM.from_pretrained(checkpoint,
                                                           config=config)
        elif model_args.model_name_or_path:
            model = TFAutoModelForMaskedLM.from_pretrained(
                model_args.model_name_or_path, config=config)
        else:
            logger.info("Training new model from scratch")
            model = TFAutoModelForMaskedLM.from_config(config)

        model.resize_token_embeddings(len(tokenizer))
        # endregion

        # region TF Dataset preparation
        num_replicas = training_args.strategy.num_replicas_in_sync
        data_collator = DataCollatorForLanguageModeling(
            tokenizer=tokenizer,
            mlm_probability=data_args.mlm_probability,
            return_tensors="tf")
        options = tf.data.Options()
        options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF

        # model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in
        # training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also
        # use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names
        # yourself if you use this method, whereas they are automatically inferred from the model input names when
        # using model.prepare_tf_dataset()
        # For more info see the docs:
        # https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset
        # https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset

        tf_train_dataset = model.prepare_tf_dataset(
            train_dataset,
            shuffle=True,
            batch_size=num_replicas *
            training_args.per_device_train_batch_size,
            collate_fn=data_collator,
        ).with_options(options)

        tf_eval_dataset = model.prepare_tf_dataset(
            eval_dataset,
            # labels are passed as input, as we will use the model's internal loss
            shuffle=False,
            batch_size=num_replicas * training_args.per_device_eval_batch_size,
            collate_fn=data_collator,
            drop_remainder=True,
        ).with_options(options)
        # endregion

        # region Optimizer and loss
        num_train_steps = len(tf_train_dataset) * int(
            training_args.num_train_epochs)
        if training_args.warmup_steps > 0:
            num_warmup_steps = training_args.warmup_steps
        elif training_args.warmup_ratio > 0:
            num_warmup_steps = int(num_train_steps *
                                   training_args.warmup_ratio)
        else:
            num_warmup_steps = 0

        # Bias and layernorm weights are automatically excluded from the decay
        optimizer, lr_schedule = create_optimizer(
            init_lr=training_args.learning_rate,
            num_train_steps=num_train_steps,
            num_warmup_steps=num_warmup_steps,
            adam_beta1=training_args.adam_beta1,
            adam_beta2=training_args.adam_beta2,
            adam_epsilon=training_args.adam_epsilon,
            weight_decay_rate=training_args.weight_decay,
            adam_global_clipnorm=training_args.max_grad_norm,
        )

        # no user-specified loss = will use the model internal loss
        model.compile(optimizer=optimizer,
                      jit_compile=training_args.xla,
                      run_eagerly=True)
        # endregion

        # region Preparing push_to_hub and model card
        push_to_hub_model_id = training_args.push_to_hub_model_id
        model_name = model_args.model_name_or_path.split("/")[-1]
        if not push_to_hub_model_id:
            if data_args.dataset_name is not None:
                push_to_hub_model_id = f"{model_name}-finetuned-{data_args.dataset_name}"
            else:
                push_to_hub_model_id = f"{model_name}-finetuned-mlm"

        model_card_kwargs = {
            "finetuned_from": model_args.model_name_or_path,
            "tasks": "fill-mask"
        }
        if data_args.dataset_name is not None:
            model_card_kwargs["dataset_tags"] = data_args.dataset_name
            if data_args.dataset_config_name is not None:
                model_card_kwargs[
                    "dataset_args"] = data_args.dataset_config_name
                model_card_kwargs[
                    "dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
            else:
                model_card_kwargs["dataset"] = data_args.dataset_name

        if training_args.push_to_hub:
            callbacks = [
                PushToHubCallback(
                    output_dir=training_args.output_dir,
                    model_id=push_to_hub_model_id,
                    organization=training_args.push_to_hub_organization,
                    token=training_args.push_to_hub_token,
                    tokenizer=tokenizer,
                    **model_card_kwargs,
                )
            ]
        else:
            callbacks = []
        # endregion

        # region Training and validation
        logger.info("***** Running training *****")
        logger.info(f"  Num examples = {len(train_dataset)}")
        logger.info(f"  Num Epochs = {training_args.num_train_epochs}")
        logger.info(
            f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}"
        )
        logger.info(
            f"  Total train batch size = {training_args.per_device_train_batch_size * num_replicas}"
        )

        # For long training runs, you may wish to use the PushToHub() callback here to save intermediate checkpoints
        # to the Hugging Face Hub rather than just pushing the finished model.
        # See https://huggingface.co/docs/transformers/main_classes/keras_callbacks#transformers.PushToHubCallback

        history = model.fit(
            tf_train_dataset,
            validation_data=tf_eval_dataset,
            epochs=int(training_args.num_train_epochs),
            callbacks=callbacks,
        )
        train_loss = history.history["loss"][-1]
        try:
            train_perplexity = math.exp(train_loss)
        except OverflowError:
            train_perplexity = math.inf
        logger.info(f"  Final train loss: {train_loss:.3f}")
        logger.info(f"  Final train perplexity: {train_perplexity:.3f}")

    validation_loss = history.history["val_loss"][-1]
    try:
        validation_perplexity = math.exp(validation_loss)
    except OverflowError:
        validation_perplexity = math.inf
    logger.info(f"  Final validation loss: {validation_loss:.3f}")
    logger.info(f"  Final validation perplexity: {validation_perplexity:.3f}")

    if training_args.output_dir is not None:
        output_eval_file = os.path.join(training_args.output_dir,
                                        "all_results.json")
        results_dict = dict()
        results_dict["train_loss"] = train_loss
        results_dict["train_perplexity"] = train_perplexity
        results_dict["eval_loss"] = validation_loss
        results_dict["eval_perplexity"] = validation_perplexity
        with open(output_eval_file, "w") as writer:
            writer.write(json.dumps(results_dict))
        # endregion

    if training_args.output_dir is not None and not training_args.push_to_hub:
        # If we're not pushing to hub, at least save a local copy when we're done
        model.save_pretrained(training_args.output_dir)
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))

    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    if (os.path.exists(training_args.output_dir)
            and os.listdir(training_args.output_dir) and training_args.do_train
            and not training_args.overwrite_output_dir):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
        )

    # model_type = model_args.model_type
    # log_dir = './results'

    # if model_type == 'base':
    #     model_args.model_name_or_path = 'bert-base-uncased'
    # elif model_type == 'base-pubmed':
    #     model_args.model_name_or_path = 'bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12'
    # elif model_type == 'base-pubmed-mimic':
    #     model_args.model_name_or_path = 'bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12'
    # else:
    #     raise NotImplementedError

    # Setup logging
    logging.basicConfig(
        format=
        '[%(asctime)s - %(levelname)s - %(filename)s: %(lineno)d (%(funcName)s)] %(message)s',
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO
        if training_args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16,
    )

    # Set seed
    set_seed(training_args.seed)

    try:
        num_labels = glue_tasks_num_labels[data_args.task_name]
        output_mode = glue_output_modes[data_args.task_name]
    except KeyError:
        raise ValueError("Task not found: %s" % (data_args.task_name))

    # Load tokenizer
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
    )

    # Get datasets
    train_dataset = (GlueDataset(
        data_args, tokenizer=tokenizer, cache_dir=model_args.cache_dir)
                     if training_args.do_train else None)
    eval_dataset = (GlueDataset(data_args,
                                tokenizer=tokenizer,
                                mode="dev",
                                cache_dir=model_args.cache_dir)
                    if training_args.do_eval else None)
    test_dataset = (GlueDataset(data_args,
                                tokenizer=tokenizer,
                                mode="test",
                                cache_dir=model_args.cache_dir)
                    if training_args.do_predict else None)

    # Load pretrained model
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    # Currently, this code do not support distributed training.
    training_args.warmup_steps = int(
        model_args.warmup_proportion *
        (len(train_dataset) / training_args.per_device_train_batch_size) *
        training_args.num_train_epochs)
    training_args_weight_decay = 0.01
    logger.info("Training/evaluation parameters %s", training_args)

    config = AutoConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name else model_args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
    )
    try:
        model = AutoModelForSequenceClassification.from_pretrained(
            model_args.model_name_or_path,
            from_tf=False,
            config=config,
            cache_dir=model_args.cache_dir,
        )
    except:
        model = AutoModelForSequenceClassification.from_pretrained(
            os.path.join(model_args.model_name_or_path, "model.ckpt.index"),
            from_tf=True,
            config=config,
            cache_dir=model_args.cache_dir,
        )

    def build_compute_metrics_fn(
            task_name: str) -> Callable[[EvalPrediction], Dict]:
        def compute_metrics_fn(p: EvalPrediction):
            if output_mode == "classification":
                preds = np.argmax(p.predictions, axis=1)
            elif output_mode == "regression":
                preds = np.squeeze(p.predictions)
            return glue_compute_metrics(task_name, preds, p.label_ids)

        return compute_metrics_fn

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        compute_metrics=build_compute_metrics_fn(data_args.task_name),
    )

    # Training
    if training_args.do_train:
        training_start_time = time.time()

        trainer.train(model_path=model_args.model_name_or_path if os.path.
                      isdir(model_args.model_name_or_path) else None)

        training_end_time = time.time()
        training_total_time = training_end_time - training_start_time

        trainer.save_model()
        # For convenience, we also re-save the tokenizer to the same directory,
        # so that you can share your model easily on huggingface.co/models =)
        if trainer.is_world_master():
            tokenizer.save_pretrained(training_args.output_dir)

    # Evaluation
    eval_results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        # Loop to handle MNLI double evaluation (matched, mis-matched)
        eval_datasets = [eval_dataset]
        if data_args.task_name == "mnli":
            mnli_mm_data_args = dataclasses.replace(data_args,
                                                    task_name="mnli-mm")
            eval_datasets.append(
                GlueDataset(mnli_mm_data_args,
                            tokenizer=tokenizer,
                            mode="dev",
                            cache_dir=model_args.cache_dir))

        for eval_dataset in eval_datasets:
            trainer.compute_metrics = build_compute_metrics_fn(
                eval_dataset.args.task_name)
            eval_result = trainer.evaluate(eval_dataset=eval_dataset)

            output_eval_file = os.path.join(
                training_args.output_dir,
                f"eval_results_{eval_dataset.args.task_name}.txt")
            if trainer.is_world_master():
                with open(output_eval_file, "w") as writer:
                    logger.info("***** Eval results {} *****".format(
                        eval_dataset.args.task_name))
                    for key, value in eval_result.items():
                        logger.info("  %s = %s", key, value)
                        writer.write("%s = %s\n" % (key, value))

            eval_results.update(eval_result)

    if training_args.do_predict:
        logging.info("*** Test ***")
        test_datasets = [test_dataset]
        if data_args.task_name == "mnli":
            mnli_mm_data_args = dataclasses.replace(data_args,
                                                    task_name="mnli-mm")
            test_datasets.append(
                GlueDataset(mnli_mm_data_args,
                            tokenizer=tokenizer,
                            mode="test",
                            cache_dir=model_args.cache_dir))

        for test_dataset in test_datasets:
            predictions = trainer.predict(
                test_dataset=test_dataset).predictions
            labels = np.array([
                test_dataset.__getitem__(idx).label
                for idx in range(len(test_dataset))
            ])

            assert len(predictions) == len(
                labels
            ), f"len(predictions) = {len(predictions)} =/= len(labels) = {len(labels)}"

            if output_mode == "classification":
                predictions = np.argmax(predictions, axis=1)

            output_test_file = os.path.join(
                training_args.output_dir, f"test_results.txt"
                #f"test_results_{test_dataset.args.task_name}.txt"
            )

            test_results = glue_compute_metrics(task_name='ddi',
                                                preds=predictions,
                                                labels=labels)

            if trainer.is_world_master():
                with open(output_test_file, "w") as writer:
                    logger.info("***** Test results {} *****".format(
                        test_dataset.args.task_name))
                    logger.info(
                        f"Accuracy: {test_results['acc']}\tMacro F1: {test_results['f1']}"
                    )
                    writer.write("index\tprediction\n")
                    for index, item in enumerate(predictions):
                        if output_mode == "regression":
                            writer.write("%d\t%3.3f\n" % (index, item))
                        else:
                            item = test_dataset.get_labels()[item]
                            writer.write("%d\t%s\n" % (index, item))

                training_time_formatted = time.strftime(
                    '%H:%M:%S', time.gmtime(training_total_time))
                logger.info(f"Total training time: {training_time_formatted}")

    final_results = copy.deepcopy(x=test_results)
    final_results['training_time'] = training_time_formatted

    return final_results
def main():
    parser = HfArgumentParser((DataTrainingArguments, ))

    data_args = parser.parse_args_into_dataclasses()[0]

    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO)

    if data_args.model_type == 't5':
        tokenizer = T5Tokenizer.from_pretrained("t5-base")
    else:
        tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")

    tokenizer.add_tokens(['<sep>', '<hl>'])

    train_dataset = nlp.load_dataset(data_args.dataset_path,
                                     name=data_args.qg_format,
                                     split=nlp.Split.TRAIN)
    valid_dataset = nlp.load_dataset(data_args.dataset_path,
                                     name=data_args.qg_format,
                                     split=nlp.Split.VALIDATION)
    import pandas as pd
    pd.DataFrame(train_dataset).to_csv("train_qg.json")
    pd.DataFrame(valid_dataset).to_csv("eval_qg.json")
    processor = DataProcessor(tokenizer,
                              model_type=data_args.model_type,
                              max_source_length=data_args.max_source_length,
                              max_target_length=data_args.max_target_length)

    train_dataset = train_dataset.filter(TASK_TO_FILTER_FN[data_args.task])
    if data_args.task == 'multi' and data_args.valid_for_qg_only:
        logger.info("processing valid data only for qg task")
        valid_dataset = valid_dataset.filter(filter_qg)
    else:
        valid_dataset = valid_dataset.filter(TASK_TO_FILTER_FN[data_args.task])

    train_dataset = processor.process(train_dataset)
    valid_dataset = processor.process(valid_dataset)

    columns = ["source_ids", "target_ids", "attention_mask"]
    train_dataset.set_format(type='torch', columns=columns)
    valid_dataset.set_format(type='torch', columns=columns)

    if data_args.train_file_name is None:
        train_file_name = f"train_data_{data_args.task}_{data_args.qg_format}_{data_args.model_type}.pt"
        train_path = os.path.join("data", train_file_name)

        valid_file_name = f"valid_data_{data_args.task}_{data_args.qg_format}_{data_args.model_type}.pt"
        valid_path = os.path.join("data", valid_file_name)
    else:
        train_path = os.path.join("data", data_args.train_file_name)
        valid_path = os.path.join("data", data_args.valid_file_name)
    torch.save(train_dataset, train_path)
    logger.info(f"saved train dataset at {train_path}")

    torch.save(valid_dataset, valid_path)
    logger.info(f"saved validation dataset at {valid_path}")

    tokenizer_path = f"{data_args.model_type}_qg_tokenizer"
    if not os.path.exists(tokenizer_path):
        os.mkdir(tokenizer_path)
    tokenizer.save_pretrained(tokenizer_path)
    logger.info(f"saved tokenizer at {tokenizer_path}")
Beispiel #10
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank
                                                    ) else logging.WARN)

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        datasets = load_dataset(data_args.dataset_name,
                                data_args.dataset_config_name,
                                cache_dir=model_args.cache_dir)
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
        extension = data_args.train_file.split(".")[-1]
        datasets = load_dataset(extension,
                                data_files=data_files,
                                cache_dir=model_args.cache_dir)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if training_args.do_train:
        column_names = datasets["train"].column_names
        features = datasets["train"].features
    else:
        column_names = datasets["validation"].column_names
        features = datasets["validation"].features
    text_column_name = "tokens" if "tokens" in column_names else column_names[0]
    label_column_name = (f"{data_args.task_name}_tags"
                         if f"{data_args.task_name}_tags" in column_names else
                         column_names[1])

    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

    if isinstance(features[label_column_name].feature, ClassLabel):
        label_list = features[label_column_name].feature.names
        # No need to convert the labels since they are already ints.
        label_to_id = {i: i for i in range(len(label_list))}
    else:
        label_list = get_label_list(datasets["train"][label_column_name])
        label_to_id = {l: i for i, l in enumerate(label_list)}
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name else model_args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=True,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForTokenClassification.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models "
            "at https://huggingface.co/transformers/index.html#bigtable to find the model types that meet this "
            "requirement")

    # Preprocessing the dataset
    # Padding strategy
    padding = "max_length" if data_args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.
    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            padding=padding,
            truncation=True,
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
        )
        labels = []
        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
            label_ids = []
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
                    label_ids.append(-100)
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
                    label_ids.append(label_to_id[label[word_idx]] if data_args.
                                     label_all_tokens else -100)
                previous_word_idx = word_idx

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

    if training_args.do_train:
        if "train" not in datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = datasets["train"]
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(
                range(data_args.max_train_samples))
        train_dataset = train_dataset.map(
            tokenize_and_align_labels,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    if training_args.do_eval:
        if "validation" not in datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = datasets["validation"]
        if data_args.max_val_samples is not None:
            eval_dataset = eval_dataset.select(range(
                data_args.max_val_samples))
        eval_dataset = eval_dataset.map(
            tokenize_and_align_labels,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    if training_args.do_predict:
        if "test" not in datasets:
            raise ValueError("--do_predict requires a test dataset")
        test_dataset = datasets["test"]
        if data_args.max_test_samples is not None:
            test_dataset = test_dataset.select(
                range(data_args.max_test_samples))
        test_dataset = test_dataset.map(
            tokenize_and_align_labels,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    # Data collator
    data_collator = DataCollatorForTokenClassification(
        tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)

    # Metrics
    metric = load_metric("seqeval")

    def compute_metrics(p):
        predictions, labels = p
        predictions = np.argmax(predictions, axis=2)

        # Remove ignored index (special tokens)
        true_predictions = [[
            label_list[p] for (p, l) in zip(prediction, label) if l != -100
        ] for prediction, label in zip(predictions, labels)]
        true_labels = [[
            label_list[l] for (p, l) in zip(prediction, label) if l != -100
        ] for prediction, label in zip(predictions, labels)]

        results = metric.compute(predictions=true_predictions,
                                 references=true_labels)
        if data_args.return_entity_level_metrics:
            # Unpack nested dictionaries
            final_results = {}
            for key, value in results.items():
                if isinstance(value, dict):
                    for n, v in value.items():
                        final_results[f"{key}_{n}"] = v
                else:
                    final_results[key] = value
            return final_results
        else:
            return {
                "precision": results["overall_precision"],
                "recall": results["overall_recall"],
                "f1": results["overall_f1"],
                "accuracy": results["overall_accuracy"],
            }

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics,
    )

    # Training
    if training_args.do_train:
        if last_checkpoint is not None:
            checkpoint = last_checkpoint
        elif os.path.isdir(model_args.model_name_or_path):
            checkpoint = model_args.model_name_or_path
        else:
            checkpoint = None
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        metrics = train_result.metrics
        trainer.save_model()  # Saves the tokenizer too for easy upload

        max_train_samples = (data_args.max_train_samples
                             if data_args.max_train_samples is not None else
                             len(train_dataset))
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        metrics = trainer.evaluate()

        max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(
            eval_dataset)
        metrics["eval_samples"] = min(max_val_samples, len(eval_dataset))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Predict
    if training_args.do_predict:
        logger.info("*** Predict ***")

        predictions, labels, metrics = trainer.predict(test_dataset)
        predictions = np.argmax(predictions, axis=2)

        # Remove ignored index (special tokens)
        true_predictions = [[
            label_list[p] for (p, l) in zip(prediction, label) if l != -100
        ] for prediction, label in zip(predictions, labels)]

        trainer.log_metrics("test", metrics)
        trainer.save_metrics("test", metrics)

        # Save predictions
        output_test_predictions_file = os.path.join(training_args.output_dir,
                                                    "test_predictions.txt")
        if trainer.is_world_process_zero():
            with open(output_test_predictions_file, "w") as writer:
                for prediction in true_predictions:
                    writer.write(" ".join(prediction) + "\n")

    if training_args.push_to_hub:
        trainer.push_to_hub()
Beispiel #11
0
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

<<<<<<< HEAD:examples/run_glue.py
    parser = HfArgumentParser((ModelArguments, GlueDataTrainingArguments, TrainingArguments))
    # model_args, data_args, training_args = parser.parse_args_into_dataclasses()
    model_args, data_args, training_args, remaining_args = parser.parse_args_into_dataclasses(return_remaining_strings=True)
    # Reading the attention type and k_values
    attention_type = remaining_args[-3]
    k_value = remaining_args[-1]
=======
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
>>>>>>> f8afb02773c80af495fd264c9dfefd5ed5da800a:examples/multiple-choice/run_multiple_choice.py

    if (
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
def create_reference_file(dataset, batch_size):
    # Choose BART as it is the smallest and fastest tokenizer out of the three
    tok_name = "facebook/bart-base"
    tokenizer = NAME_TO_TOK[tok_name].from_pretrained(tok_name)

    collator = DataCollator(tokenizer, is_training=False)
    data = torch.load(f"./data/{dataset}_test_bart.pt")
    loader = DataLoader(data, collate_fn=collator, batch_size=batch_size)

    true_targets = get_true_targets(tokenizer, loader)
    with open(f"./eval/{dataset}.txt", "w") as f:
        f.write("\n".join(true_targets))


if __name__ == "__main__":
    parser = HfArgumentParser((EvalScriptArguments))
    args = parser.parse_args_into_dataclasses()[0]

    batch_size = 4
    if "bart" in args.model_name:
        batch_size = 8

    eval_args = {
        "model_name":
        args.model_name,
        "model_path":
        args.model_name if args.model_path is None else args.model_path,
        "tokenizer_name":
        args.model_name
        if args.tokenizer_name is None else args.tokenizer_name,
        "batch_size":
def main():
    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    if (os.path.exists(training_args.output_dir)
            and os.listdir(training_args.output_dir) and training_args.do_train
            and not training_args.overwrite_output_dir):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
        )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO
        if training_args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16,
    )
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed
    set_seed(training_args.seed)

    try:
        processor = processors[data_args.task_name]()
        label_list = processor.get_labels()
        num_labels = len(label_list)
    except KeyError:
        raise ValueError("Task not found: %s" % (data_args.task_name))

    config = AutoConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name else model_args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
    )
    model = AutoModelForMultipleChoice.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
    )

    train_dataset = (MultipleChoiceDataset(
        data_dir=data_args.data_dir,
        tokenizer=tokenizer,
        task=data_args.task_name,
        max_seq_length=data_args.max_seq_length,
        overwrite_cache=data_args.overwrite_cache,
        mode=Split.train,
        perturbation_type=data_args.perturbation_type,
        perturbation_num=data_args.perturbation_num_train,
        augment=data_args.augment,
        name_gender_or_race=data_args.name_gender_or_race,
    ) if training_args.do_train else None)

    eval_dataset = (MultipleChoiceDataset(
        data_dir=data_args.data_dir,
        tokenizer=tokenizer,
        task=data_args.task_name,
        max_seq_length=data_args.max_seq_length,
        overwrite_cache=data_args.overwrite_cache,
        mode=Split.dev,
    ) if training_args.do_train else None)

    def compute_metrics(p: EvalPrediction) -> Dict:
        preds = np.argmax(p.predictions, axis=1)
        return {"acc": simple_accuracy(preds, p.label_ids)}

    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        compute_metrics=compute_metrics,
    )

    # Training
    if training_args.do_train:
        trainer.train(model_path=model_args.model_name_or_path if os.path.
                      isdir(model_args.model_name_or_path) else None)
        trainer.save_model()

        if trainer.is_world_master():
            tokenizer.save_pretrained(training_args.output_dir)

    # Test
    test_dataset = MultipleChoiceDataset(
        data_dir=data_args.data_dir,
        tokenizer=tokenizer,
        task=data_args.task_name,
        max_seq_length=data_args.max_seq_length,
        overwrite_cache=data_args.overwrite_cache,
        mode=Split.test,
        perturbation_type=data_args.perturbation_type,
        perturbation_num=data_args.perturbation_num_test,
        augment=data_args.augment,
        name_gender_or_race=data_args.name_gender_or_race,
    )

    predictions, label_ids, metrics = trainer.predict(test_dataset)

    predictions_file = os.path.join(training_args.output_dir,
                                    "test_predictions")
    labels_ids_file = os.path.join(training_args.output_dir, "test_labels_id")
    torch.save(predictions, predictions_file)
    torch.save(label_ids, labels_ids_file)

    examples_ids = []
    perturbated = []
    run = []

    for input_feature in test_dataset.features:
        examples_ids.append(input_feature.example_id)

    for examples in test_dataset.examples:
        perturbated.append(examples.perturbated)
        run.append(examples.run)

    examples_ids_file = os.path.join(training_args.output_dir, "examples_ids")
    torch.save(examples_ids, examples_ids_file)
    perturbated_file = os.path.join(training_args.output_dir, "perturbated")
    torch.save(perturbated, perturbated_file)
    run_file = os.path.join(training_args.output_dir, "run")
    torch.save(run, run_file)

    output_eval_file = os.path.join(training_args.output_dir,
                                    "test_results.txt")

    if trainer.is_world_master():
        with open(output_eval_file, "w") as writer:
            logger.info("***** Test results *****")
            for key, value in metrics.items():
                logger.info("  %s = %s", key, value)
                writer.write("%s = %s\n" % (key, value))
    return metrics
Beispiel #14
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank
                                                    ) else logging.WARN)

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets:
    train_dataset = datasets.load_dataset("common_voice",
                                          data_args.dataset_config_name,
                                          split=data_args.train_split_name)
    eval_dataset = datasets.load_dataset("common_voice",
                                         data_args.dataset_config_name,
                                         split="test")

    # Create and save tokenizer
    chars_to_ignore_regex = f'[{"".join(data_args.chars_to_ignore)}]'

    def remove_special_characters(batch):
        batch["text"] = re.sub(chars_to_ignore_regex, "",
                               batch["sentence"]).lower() + " "
        return batch

    train_dataset = train_dataset.map(remove_special_characters,
                                      remove_columns=["sentence"])
    eval_dataset = eval_dataset.map(remove_special_characters,
                                    remove_columns=["sentence"])

    def extract_all_chars(batch):
        all_text = " ".join(batch["text"])
        vocab = list(set(all_text))
        return {"vocab": [vocab], "all_text": [all_text]}

    vocab_train = train_dataset.map(
        extract_all_chars,
        batched=True,
        batch_size=-1,
        keep_in_memory=True,
        remove_columns=train_dataset.column_names,
    )
    vocab_test = train_dataset.map(
        extract_all_chars,
        batched=True,
        batch_size=-1,
        keep_in_memory=True,
        remove_columns=eval_dataset.column_names,
    )

    vocab_list = list(
        set(vocab_train["vocab"][0]) | set(vocab_test["vocab"][0]))
    vocab_dict = {v: k for k, v in enumerate(vocab_list)}
    vocab_dict["|"] = vocab_dict[" "]
    del vocab_dict[" "]
    vocab_dict["[UNK]"] = len(vocab_dict)
    vocab_dict["[PAD]"] = len(vocab_dict)

    with open("vocab.json", "w") as vocab_file:
        json.dump(vocab_dict, vocab_file)

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    tokenizer = Wav2Vec2CTCTokenizer(
        "vocab.json",
        unk_token="[UNK]",
        pad_token="[PAD]",
        word_delimiter_token="|",
    )
    feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1,
                                                 sampling_rate=16_000,
                                                 padding_value=0.0,
                                                 do_normalize=True,
                                                 return_attention_mask=True)
    processor = Wav2Vec2Processor(feature_extractor=feature_extractor,
                                  tokenizer=tokenizer)
    model = Wav2Vec2ForCTC.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        activation_dropout=model_args.activation_dropout,
        attention_dropout=model_args.attention_dropout,
        hidden_dropout=model_args.hidden_dropout,
        feat_proj_dropout=model_args.feat_proj_dropout,
        mask_time_prob=model_args.mask_time_prob,
        gradient_checkpointing=training_args.gradient_checkpointing,
        layerdrop=model_args.layerdrop,
        ctc_loss_reduction="mean",
        pad_token_id=processor.tokenizer.pad_token_id,
        vocab_size=len(processor.tokenizer),
    )

    if data_args.max_train_samples is not None:
        max_train_samples = min(len(train_dataset),
                                data_args.max_train_samples)
        train_dataset = train_dataset.select(range(max_train_samples))

    if data_args.max_val_samples is not None:
        eval_dataset = eval_dataset.select(range(data_args.max_val_samples))

    resampler = torchaudio.transforms.Resample(48_000, 16_000)

    # Preprocessing the datasets.
    # We need to read the aduio files as arrays and tokenize the targets.
    def speech_file_to_array_fn(batch):
        speech_array, sampling_rate = torchaudio.load(batch["path"])
        batch["speech"] = resampler(speech_array).squeeze().numpy()
        batch["sampling_rate"] = 16_000
        batch["target_text"] = batch["text"]
        return batch

    train_dataset = train_dataset.map(
        speech_file_to_array_fn,
        remove_columns=train_dataset.column_names,
        num_proc=data_args.preprocessing_num_workers,
    )
    eval_dataset = eval_dataset.map(
        speech_file_to_array_fn,
        remove_columns=eval_dataset.column_names,
        num_proc=data_args.preprocessing_num_workers,
    )

    def prepare_dataset(batch):
        # check that all files have the correct sampling rate
        assert (
            len(set(batch["sampling_rate"])) == 1
        ), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}."
        batch["input_values"] = processor(
            batch["speech"],
            sampling_rate=batch["sampling_rate"][0]).input_values
        # Setup the processor for targets
        with processor.as_target_processor():
            batch["labels"] = processor(batch["target_text"]).input_ids
        return batch

    train_dataset = train_dataset.map(
        prepare_dataset,
        remove_columns=train_dataset.column_names,
        batch_size=training_args.per_device_train_batch_size,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
    )
    eval_dataset = eval_dataset.map(
        prepare_dataset,
        remove_columns=eval_dataset.column_names,
        batch_size=training_args.per_device_train_batch_size,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
    )

    # Metric
    wer_metric = datasets.load_metric("wer")

    def compute_metrics(pred):
        pred_logits = pred.predictions
        pred_ids = np.argmax(pred_logits, axis=-1)

        pred.label_ids[pred.label_ids ==
                       -100] = processor.tokenizer.pad_token_id

        pred_str = processor.batch_decode(pred_ids)
        # we do not want to group tokens when computing the metrics
        label_str = processor.batch_decode(pred.label_ids, group_tokens=False)

        wer = wer_metric.compute(predictions=pred_str, references=label_str)

        return {"wer": wer}

    if model_args.freeze_feature_extractor:
        model.freeze_feature_extractor()

    # Data collator
    data_collator = DataCollatorCTCWithPadding(processor=processor,
                                               padding=True)

    # Initialize our Trainer
    trainer = CTCTrainer(
        model=model,
        data_collator=data_collator,
        args=training_args,
        compute_metrics=compute_metrics,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=processor.feature_extractor,
    )

    # Training
    if training_args.do_train:
        if last_checkpoint is not None:
            checkpoint = last_checkpoint
        elif os.path.isdir(model_args.model_name_or_path):
            checkpoint = model_args.model_name_or_path
        else:
            checkpoint = None

        # Save the feature_extractor and the tokenizer
        if is_main_process(training_args.local_rank):
            processor.save_pretrained(training_args.output_dir)

        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()

        metrics = train_result.metrics
        max_train_samples = (data_args.max_train_samples
                             if data_args.max_train_samples is not None else
                             len(train_dataset))
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
        metrics = trainer.evaluate()
        max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(
            eval_dataset)
        metrics["eval_samples"] = min(max_val_samples, len(eval_dataset))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    return results
Beispiel #15
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_translation", model_args, data_args)

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    if data_args.source_prefix is None and model_args.model_name_or_path in [
            "t5-small",
            "t5-base",
            "t5-large",
            "t5-3b",
            "t5-11b",
    ]:
        logger.warning(
            "You're running a t5 model but didn't provide a source prefix, which is expected, e.g. with "
            "`--source_prefix 'translate English to German: ' `")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own JSON training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For translation, only JSON files are supported, with one field named "translation" containing two keys for the
    # source and target languages (unless you adapt what follows).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    model.resize_token_embeddings(len(tokenizer))

    # Set decoder_start_token_id
    if model.config.decoder_start_token_id is None and isinstance(
            tokenizer, (MBartTokenizer, MBartTokenizerFast)):
        if isinstance(tokenizer, MBartTokenizer):
            model.config.decoder_start_token_id = tokenizer.lang_code_to_id[
                data_args.target_lang]
        else:
            model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(
                data_args.target_lang)

    if model.config.decoder_start_token_id is None:
        raise ValueError(
            "Make sure that `config.decoder_start_token_id` is correctly defined"
        )

    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""

    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if training_args.do_train:
        column_names = raw_datasets["train"].column_names
    elif training_args.do_eval:
        column_names = raw_datasets["validation"].column_names
    elif training_args.do_predict:
        column_names = raw_datasets["test"].column_names
    else:
        logger.info(
            "There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`."
        )
        return

    # For translation we set the codes of our source and target languages (only useful for mBART, the others will
    # ignore those attributes).
    if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
        assert data_args.target_lang is not None and data_args.source_lang is not None, (
            f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --source_lang and "
            "--target_lang arguments.")

        tokenizer.src_lang = data_args.source_lang
        tokenizer.tgt_lang = data_args.target_lang

        # For multilingual translation models like mBART-50 and M2M100 we need to force the target language token
        # as the first generated token. We ask the user to explicitly provide this as --forced_bos_token argument.
        forced_bos_token_id = (
            tokenizer.lang_code_to_id[data_args.forced_bos_token]
            if data_args.forced_bos_token is not None else None)
        model.config.forced_bos_token_id = forced_bos_token_id

    # Get the language codes for input/target.
    source_lang = data_args.source_lang.split("_")[0]
    target_lang = data_args.target_lang.split("_")[0]

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length
    padding = "max_length" if data_args.pad_to_max_length else False

    if training_args.label_smoothing_factor > 0 and not hasattr(
            model, "prepare_decoder_input_ids_from_labels"):
        logger.warning(
            "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
            f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
        )

    def preprocess_function(examples):
        inputs = [ex[source_lang] for ex in examples["translation"]]
        targets = [ex[target_lang] for ex in examples["translation"]]
        inputs = [prefix + inp for inp in inputs]
        model_inputs = tokenizer(inputs,
                                 max_length=data_args.max_source_length,
                                 padding=padding,
                                 truncation=True)

        # Tokenize targets with the `text_target` keyword argument
        labels = tokenizer(text_target=targets,
                           max_length=max_target_length,
                           padding=padding,
                           truncation=True)

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [[
                (l if l != tokenizer.pad_token_id else -100) for l in label
            ] for label in labels["input_ids"]]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    if training_args.do_train:
        if "train" not in raw_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = raw_datasets["train"]
        if data_args.max_train_samples is not None:
            max_train_samples = min(len(train_dataset),
                                    data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
        with training_args.main_process_first(
                desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
        if "validation" not in raw_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = raw_datasets["validation"]
        if data_args.max_eval_samples is not None:
            max_eval_samples = min(len(eval_dataset),
                                   data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
        with training_args.main_process_first(
                desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )

    if training_args.do_predict:
        max_target_length = data_args.val_max_target_length
        if "test" not in raw_datasets:
            raise ValueError("--do_predict requires a test dataset")
        predict_dataset = raw_datasets["test"]
        if data_args.max_predict_samples is not None:
            max_predict_samples = min(len(predict_dataset),
                                      data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(
                range(max_predict_samples))
        with training_args.main_process_first(
                desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )

    # Data collator
    label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    else:
        data_collator = DataCollatorForSeq2Seq(
            tokenizer,
            model=model,
            label_pad_token_id=label_pad_token_id,
            pad_to_multiple_of=8 if training_args.fp16 else None,
        )

    # Metric
    metric = evaluate.load("sacrebleu")

    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
        labels = [[label.strip()] for label in labels]

        return preds, labels

    def compute_metrics(eval_preds):
        preds, labels = eval_preds
        if isinstance(preds, tuple):
            preds = preds[0]
        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
        if data_args.ignore_pad_token_for_loss:
            # Replace -100 in the labels as we can't decode them.
            labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
        decoded_labels = tokenizer.batch_decode(labels,
                                                skip_special_tokens=True)

        # Some simple post-processing
        decoded_preds, decoded_labels = postprocess_text(
            decoded_preds, decoded_labels)

        result = metric.compute(predictions=decoded_preds,
                                references=decoded_labels)
        result = {"bleu": result["score"]}

        prediction_lens = [
            np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds
        ]
        result["gen_len"] = np.mean(prediction_lens)
        result = {k: round(v, 4) for k, v in result.items()}
        return result

    # Initialize our Trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics
        if training_args.predict_with_generate else None,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()  # Saves the tokenizer too for easy upload

        metrics = train_result.metrics
        max_train_samples = (data_args.max_train_samples
                             if data_args.max_train_samples is not None else
                             len(train_dataset))
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    results = {}
    max_length = (training_args.generation_max_length
                  if training_args.generation_max_length is not None else
                  data_args.val_max_target_length)
    num_beams = data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        metrics = trainer.evaluate(max_length=max_length,
                                   num_beams=num_beams,
                                   metric_key_prefix="eval")
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(
            eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    if training_args.do_predict:
        logger.info("*** Predict ***")

        predict_results = trainer.predict(predict_dataset,
                                          metric_key_prefix="predict",
                                          max_length=max_length,
                                          num_beams=num_beams)
        metrics = predict_results.metrics
        max_predict_samples = (data_args.max_predict_samples
                               if data_args.max_predict_samples is not None
                               else len(predict_dataset))
        metrics["predict_samples"] = min(max_predict_samples,
                                         len(predict_dataset))

        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)

        if trainer.is_world_process_zero():
            if training_args.predict_with_generate:
                predictions = tokenizer.batch_decode(
                    predict_results.predictions,
                    skip_special_tokens=True,
                    clean_up_tokenization_spaces=True)
                predictions = [pred.strip() for pred in predictions]
                output_prediction_file = os.path.join(
                    training_args.output_dir, "generated_predictions.txt")
                with open(output_prediction_file, "w",
                          encoding="utf-8") as writer:
                    writer.write("\n".join(predictions))

    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "translation"
    }
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs[
                "dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name

    languages = [
        l for l in [data_args.source_lang, data_args.target_lang]
        if l is not None
    ]
    if len(languages) > 0:
        kwargs["language"] = languages

    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)

    return results
@dataclass
class IndexHnswArguments:
    d: int = field(
        default=768,
        metadata={
            "help":
            "The dimension of the embeddings to pass to the HNSW Faiss index."
        },
    )
    m: int = field(
        default=128,
        metadata={
            "help":
            "The number of bi-directional links created for every new element during the HNSW index construction."
        },
    )


if __name__ == "__main__":
    logging.basicConfig(level=logging.WARNING)
    logger.setLevel(logging.INFO)

    parser = HfArgumentParser(
        (RagExampleArguments, ProcessingArguments, IndexHnswArguments))
    rag_example_args, processing_args, index_hnsw_args = parser.parse_args_into_dataclasses(
    )
    with TemporaryDirectory() as tmp_dir:
        rag_example_args.output_dir = rag_example_args.output_dir or tmp_dir
        main(rag_example_args, processing_args, index_hnsw_args)
Beispiel #17
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    if (os.path.exists(training_args.output_dir)
            and os.listdir(training_args.output_dir) and training_args.do_train
            and not training_args.overwrite_output_dir):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty."
            "Use --overwrite_output_dir to overcome.")

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Setup logging, we only want one process per machine to log things on the screen.
    logger.setLevel(logging.INFO if jax.process_index() ==
                    0 else logging.ERROR)
    if jax.process_index() == 0:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # Set the verbosity to info of the Transformers logger (on main process only):
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Handle the repository creation
    if training_args.push_to_hub:
        if training_args.hub_model_id is None:
            repo_name = get_full_repo_name(Path(
                training_args.output_dir).absolute().name,
                                           token=training_args.hub_token)
        else:
            repo_name = training_args.hub_model_id
        repo = Repository(training_args.output_dir, clone_from=repo_name)

    #  Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        dataset = load_dataset(data_args.dataset_name,
                               data_args.dataset_config_name,
                               cache_dir=model_args.cache_dir,
                               keep_in_memory=False)

        if "validation" not in dataset.keys():
            dataset["validation"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
            )
            dataset["train"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
            )
    else:
        data_files = {}
        dataset_args = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = data_args.train_file.split(".")[-1]
        if extension == "txt":
            extension = "text"
            dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
        dataset = load_dataset(extension,
                               data_files=data_files,
                               cache_dir=model_args.cache_dir,
                               **dataset_args)

        if "validation" not in dataset.keys():
            dataset["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
                **dataset_args,
            )
            dataset["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
                **dataset_args,
            )
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer

    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name,
                                            cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path,
                                            cache_dir=model_args.cache_dir)
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning(
            "You are instantiating a new config instance from scratch.")

    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.tokenizer_name,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer)
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer)
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = FlaxAutoModelForCausalLM.from_pretrained(
            model_args.model_name_or_path,
            config=config,
            seed=training_args.seed,
            dtype=getattr(jnp, model_args.dtype))
    else:
        model = FlaxAutoModelForCausalLM.from_config(config,
                                                     seed=training_args.seed,
                                                     dtype=getattr(
                                                         jnp,
                                                         model_args.dtype))

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
        column_names = dataset["train"].column_names
    else:
        column_names = dataset["validation"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

    # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
    tok_logger = transformers.utils.logging.get_logger(
        "transformers.tokenization_utils_base")

    def tokenize_function(examples):
        with CaptureLogger(tok_logger) as cl:
            output = tokenizer(examples[text_column_name])
        # clm input could be much much longer than block_size
        if "Token indices sequence length is longer than the" in cl.out:
            tok_logger.warning(
                "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits before being passed to the model."
            )
        return output

    tokenized_datasets = dataset.map(
        tokenize_function,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        remove_columns=column_names,
        load_from_cache_file=not data_args.overwrite_cache,
    )

    if data_args.block_size is None:
        block_size = tokenizer.model_max_length
        if block_size > config.max_position_embeddings:
            logger.warning(
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
                "Picking 1024 instead. You can change that default value by passing --block_size xxx."
            )
            block_size = 1024
    else:
        if data_args.block_size > tokenizer.model_max_length:
            logger.warning(
                f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
                f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
            )
        block_size = min(data_args.block_size, tokenizer.model_max_length)

    # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
    def group_texts(examples):
        # Concatenate all texts.
        concatenated_examples = {
            k: list(chain(*examples[k]))
            for k in examples.keys()
        }
        total_length = len(concatenated_examples[list(examples.keys())[0]])
        # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
        # customize this part to your needs.
        if total_length >= block_size:
            total_length = (total_length // block_size) * block_size
        # Split by chunks of max_len.
        result = {
            k:
            [t[i:i + block_size] for i in range(0, total_length, block_size)]
            for k, t in concatenated_examples.items()
        }
        result["labels"] = result["input_ids"].copy()
        return result

    # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
    # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
    # to preprocess.
    #
    # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
    # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map

    lm_datasets = tokenized_datasets.map(
        group_texts,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        load_from_cache_file=not data_args.overwrite_cache,
    )

    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = lm_datasets["train"]
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(
                range(data_args.max_train_samples))

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = lm_datasets["validation"]
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(
                range(data_args.max_eval_samples))

    # Enable tensorboard only on the master node
    has_tensorboard = is_tensorboard_available()
    if has_tensorboard and jax.process_index() == 0:
        try:
            from flax.metrics.tensorboard import SummaryWriter

            summary_writer = SummaryWriter(
                log_dir=Path(training_args.output_dir))
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run pip install tensorboard to enable.")

    # Initialize our training
    rng = jax.random.PRNGKey(training_args.seed)
    rng, dropout_rng = jax.random.split(rng)

    # Store some constant
    num_epochs = int(training_args.num_train_epochs)
    train_batch_size = int(
        training_args.per_device_train_batch_size) * jax.device_count()
    eval_batch_size = int(
        training_args.per_device_eval_batch_size) * jax.device_count()
    steps_per_epoch = len(train_dataset) // train_batch_size
    total_train_steps = steps_per_epoch * num_epochs

    # Create learning rate schedule
    linear_decay_lr_schedule_fn = create_learning_rate_fn(
        len(train_dataset),
        train_batch_size,
        training_args.num_train_epochs,
        training_args.warmup_steps,
        training_args.learning_rate,
    )

    # We use Optax's "masking" functionality to not apply weight decay
    # to bias and LayerNorm scale parameters. decay_mask_fn returns a
    # mask boolean with the same structure as the parameters.
    # The mask is True for parameters that should be decayed.
    # Note that this mask is specifically adapted for FlaxGPT2.
    # For other models, one should correct the layer norm parameter naming
    # accordingly.
    def decay_mask_fn(params):
        flat_params = traverse_util.flatten_dict(params)
        flat_mask = {
            path: (path[-1] != "bias" and path[-2:] not in [("ln_1", "scale"),
                                                            ("ln_2", "scale"),
                                                            ("ln_f", "scale")])
            for path in flat_params
        }
        return traverse_util.unflatten_dict(flat_mask)

    # create adam optimizer
    if training_args.adafactor:
        # We use the default parameters here to initialize adafactor,
        # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
        optimizer = optax.adafactor(
            learning_rate=linear_decay_lr_schedule_fn, )
    else:
        optimizer = optax.adamw(
            learning_rate=linear_decay_lr_schedule_fn,
            b1=training_args.adam_beta1,
            b2=training_args.adam_beta2,
            eps=training_args.adam_epsilon,
            weight_decay=training_args.weight_decay,
            mask=decay_mask_fn,
        )

    # Setup train state
    state = TrainState.create(apply_fn=model.__call__,
                              params=model.params,
                              tx=optimizer,
                              dropout_rng=dropout_rng)

    def loss_fn(logits, labels):
        shift_logits = logits[..., :-1, :]
        shift_labels = labels[..., 1:]
        loss = optax.softmax_cross_entropy(
            shift_logits, onehot(shift_labels, shift_logits.shape[-1]))
        return loss.mean()

    # Define gradient update step fn
    def train_step(state, batch):
        dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)

        def compute_loss(params):
            labels = batch.pop("labels")
            logits = state.apply_fn(**batch,
                                    params=params,
                                    dropout_rng=dropout_rng,
                                    train=True)[0]
            loss = loss_fn(logits, labels)
            return loss

        grad_fn = jax.value_and_grad(compute_loss)
        loss, grad = grad_fn(state.params)
        grad = jax.lax.pmean(grad, "batch")

        new_state = state.apply_gradients(grads=grad,
                                          dropout_rng=new_dropout_rng)

        metrics = {
            "loss": loss,
            "learning_rate": linear_decay_lr_schedule_fn(state.step)
        }
        metrics = jax.lax.pmean(metrics, axis_name="batch")

        return new_state, metrics

    # Define eval fn
    def eval_step(params, batch):
        labels = batch.pop("labels")
        logits = model(**batch, params=params, train=False)[0]
        loss = loss_fn(logits, labels)

        # summarize metrics
        metrics = {"loss": loss}
        metrics = jax.lax.pmean(metrics, axis_name="batch")
        return metrics

    # Create parallel version of the train and eval step
    p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0, ))
    p_eval_step = jax.pmap(eval_step, "batch")

    # Replicate the train state on each device
    state = state.replicate()

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {num_epochs}")
    logger.info(
        f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}"
    )
    logger.info(
        f"  Total train batch size (w. parallel & distributed) = {train_batch_size}"
    )
    logger.info(f"  Total optimization steps = {total_train_steps}")

    train_time = 0
    train_metrics = []
    epochs = tqdm(range(num_epochs), desc="Epoch ... ", position=0)
    for epoch in epochs:
        # ======================== Training ================================
        train_start = time.time()

        # Create sampling rng
        rng, input_rng = jax.random.split(rng)

        # Generate an epoch by shuffling sampling indices from the train dataset
        train_loader = data_loader(input_rng,
                                   train_dataset,
                                   train_batch_size,
                                   shuffle=True)
        steps_per_epoch = len(train_dataset) // train_batch_size
        # train
        for step in tqdm(range(steps_per_epoch),
                         desc="Training...",
                         position=1,
                         leave=False):
            batch = next(train_loader)
            batch = shard(batch)
            state, train_metric = p_train_step(state, batch)
            train_metrics.append(train_metric)

            cur_step = epoch * (len(train_dataset) // train_batch_size) + step

            if cur_step % training_args.logging_steps == 0 and cur_step > 0:
                # Save metrics
                train_metric = unreplicate(train_metric)
                train_time += time.time() - train_start
                if has_tensorboard and jax.process_index() == 0:
                    write_train_metric(summary_writer, train_metrics,
                                       train_time, cur_step)

                epochs.write(
                    f"Step... ({cur_step} | Loss: {train_metric['loss'].mean()}, Learning Rate: {train_metric['learning_rate'].mean()})"
                )

                train_metrics = []

            if cur_step % training_args.eval_steps == 0 and cur_step > 0:
                # ======================== Evaluating ==============================
                eval_metrics = []
                eval_loader = data_loader(input_rng, eval_dataset,
                                          eval_batch_size)
                eval_steps = len(eval_dataset) // eval_batch_size
                for _ in tqdm(range(eval_steps),
                              desc="Evaluating...",
                              position=2,
                              leave=False):
                    # Model forward
                    batch = next(eval_loader)
                    batch = shard(batch)
                    metrics = p_eval_step(state.params, batch)
                    eval_metrics.append(metrics)

                # normalize eval metrics
                eval_metrics = get_metrics(eval_metrics)
                eval_metrics = jax.tree_map(jnp.mean, eval_metrics)

                try:
                    eval_metrics["perplexity"] = math.exp(eval_metrics["loss"])
                except OverflowError:
                    eval_metrics["perplexity"] = float("inf")

                # Print metrics and update progress bar
                desc = f"Step... ({cur_step} | Eval Loss: {eval_metrics['loss']} | Eval Perplexity: {eval_metrics['perplexity']})"
                epochs.write(desc)
                epochs.desc = desc

                # Save metrics
                if has_tensorboard and jax.process_index() == 0:
                    write_eval_metric(summary_writer, eval_metrics, cur_step)

            if cur_step % training_args.save_steps == 0 and cur_step > 0:
                # save checkpoint after each epoch and push checkpoint to the hub
                if jax.process_index() == 0:
                    params = jax.device_get(unreplicate(state.params))
                    model.save_pretrained(training_args.output_dir,
                                          params=params)
                    tokenizer.save_pretrained(training_args.output_dir)
                    if training_args.push_to_hub:
                        repo.push_to_hub(
                            commit_message=
                            f"Saving weights and logs of step {cur_step}",
                            blocking=False)

    # Eval after training
    if training_args.do_eval:
        eval_metrics = []
        eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size)
        eval_steps = len(eval_dataset) // eval_batch_size
        for _ in tqdm(range(eval_steps),
                      desc="Evaluating...",
                      position=2,
                      leave=False):
            # Model forward
            batch = shard(next(eval_loader))
            metrics = p_eval_step(state.params, batch)
            eval_metrics.append(metrics)

        # normalize eval metrics
        eval_metrics = get_metrics(eval_metrics)
        eval_metrics = jax.tree_map(lambda x: jnp.mean(x).item(), eval_metrics)

        try:
            eval_metrics["perplexity"] = math.exp(eval_metrics["loss"])
        except OverflowError:
            eval_metrics["perplexity"] = float("inf")

        if jax.process_index() == 0:
            eval_metrics = {
                f"eval_{metric_name}": value
                for metric_name, value in eval_metrics.items()
            }
            path = os.path.join(training_args.output_dir, "eval_results.json")
            with open(path, "w") as f:
                json.dump(eval_metrics, f, indent=4, sort_keys=True)
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    if data_args.source_prefix is None and model_args.model_name_or_path in [
            "t5-small",
            "t5-base",
            "t5-large",
            "t5-3b",
            "t5-11b",
    ]:
        logger.warning(
            "You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with "
            "`--source_prefix 'summarize: ' `")

    # Detecting last checkpoint.
    last_checkpoint = None
    if (os.path.isdir(training_args.output_dir) and training_args.do_train
            and not training_args.overwrite_output_dir):
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif (last_checkpoint is not None
              and training_args.resume_from_checkpoint is None):
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank
                                                    ) else logging.WARN)

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files this script will use the first column for the full texts and the second column for the
    # summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        datasets = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
        )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
        datasets = load_dataset(extension,
                                data_files=data_files,
                                cache_dir=model_args.cache_dir)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    model.resize_token_embeddings(len(tokenizer))

    if model.config.decoder_start_token_id is None:
        raise ValueError(
            "Make sure that `config.decoder_start_token_id` is correctly defined"
        )

    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""

    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if training_args.do_train:
        column_names = datasets["train"].column_names
    elif training_args.do_eval:
        column_names = datasets["validation"].column_names
    elif training_args.do_predict:
        column_names = datasets["test"].column_names
    else:
        logger.info(
            "There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`."
        )
        return

    # Get the column names for input/target.
    dataset_columns = summarization_name_mapping.get(data_args.dataset_name,
                                                     None)
    if data_args.text_column is None:
        text_column = (dataset_columns[0]
                       if dataset_columns is not None else column_names[0])
    else:
        text_column = data_args.text_column
        if text_column not in column_names:
            raise ValueError(
                f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
            )
    if data_args.summary_column is None:
        summary_column = (dataset_columns[1]
                          if dataset_columns is not None else column_names[1])
    else:
        summary_column = data_args.summary_column
        if summary_column not in column_names:
            raise ValueError(
                f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
            )

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length
    padding = "max_length" if data_args.pad_to_max_length else False

    if training_args.label_smoothing_factor > 0 and not hasattr(
            model, "prepare_decoder_input_ids_from_labels"):
        logger.warning(
            "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
            f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
        )

    def preprocess_function(examples):
        inputs = examples[text_column]
        targets = examples[summary_column]
        inputs = [prefix + inp for inp in inputs]
        model_inputs = tokenizer(
            inputs,
            max_length=data_args.max_source_length,
            padding=padding,
            truncation=True,
        )

        # Setup the tokenizer for targets
        with tokenizer.as_target_tokenizer():
            labels = tokenizer(targets,
                               max_length=max_target_length,
                               padding=padding,
                               truncation=True)

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [[
                (l if l != tokenizer.pad_token_id else -100) for l in label
            ] for label in labels["input_ids"]]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    if training_args.do_train:
        train_dataset = datasets["train"]
        if "train" not in datasets:
            raise ValueError("--do_train requires a train dataset")
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(
                range(data_args.max_train_samples))
        train_dataset = train_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
        if "validation" not in datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = datasets["validation"]
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(
                range(data_args.max_eval_samples))
        eval_dataset = eval_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    if training_args.do_predict:
        max_target_length = data_args.val_max_target_length
        if "test" not in datasets:
            raise ValueError("--do_predict requires a test dataset")
        predict_dataset = datasets["test"]
        if data_args.max_predict_samples is not None:
            predict_dataset = predict_dataset.select(
                range(data_args.max_predict_samples))
        predict_dataset = predict_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    # Data collator
    label_pad_token_id = (-100 if data_args.ignore_pad_token_for_loss else
                          tokenizer.pad_token_id)
    data_collator = DataCollatorForSeq2Seq(
        tokenizer,
        model=model,
        label_pad_token_id=label_pad_token_id,
        pad_to_multiple_of=8 if training_args.fp16 else None,
    )

    # Metric
    metric = load_metric("rouge")

    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
        labels = [label.strip() for label in labels]

        # rougeLSum expects newline after each sentence
        preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
        labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]

        return preds, labels

    def compute_metrics(eval_preds):
        preds, labels = eval_preds
        if isinstance(preds, tuple):
            preds = preds[0]
        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
        if data_args.ignore_pad_token_for_loss:
            # Replace -100 in the labels as we can't decode them.
            labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
        decoded_labels = tokenizer.batch_decode(labels,
                                                skip_special_tokens=True)

        # Some simple post-processing
        decoded_preds, decoded_labels = postprocess_text(
            decoded_preds, decoded_labels)

        result = metric.compute(predictions=decoded_preds,
                                references=decoded_labels,
                                use_stemmer=True)
        # Extract a few results from ROUGE
        result = {
            key: value.mid.fmeasure * 100
            for key, value in result.items()
        }

        prediction_lens = [
            np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds
        ]
        result["gen_len"] = np.mean(prediction_lens)
        result = {k: round(v, 4) for k, v in result.items()}
        return result

    # Initialize our Trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics
        if training_args.predict_with_generate else None,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()  # Saves the tokenizer too for easy upload

        metrics = train_result.metrics
        max_train_samples = (data_args.max_train_samples
                             if data_args.max_train_samples is not None else
                             len(train_dataset))
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        metrics = trainer.evaluate(
            max_length=data_args.val_max_target_length,
            num_beams=data_args.num_beams,
            metric_key_prefix="eval",
        )
        max_eval_samples = (data_args.max_eval_samples
                            if data_args.max_eval_samples is not None else
                            len(eval_dataset))
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    if training_args.do_predict:
        logger.info("*** Predict ***")

        predict_results = trainer.predict(
            predict_dataset,
            metric_key_prefix="predict",
            max_length=data_args.val_max_target_length,
            num_beams=data_args.num_beams,
        )
        metrics = predict_results.metrics
        max_predict_samples = (data_args.max_predict_samples
                               if data_args.max_predict_samples is not None
                               else len(predict_dataset))
        metrics["predict_samples"] = min(max_predict_samples,
                                         len(predict_dataset))

        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)

        if trainer.is_world_process_zero():
            if training_args.predict_with_generate:
                predictions = tokenizer.batch_decode(
                    predict_results.predictions,
                    skip_special_tokens=True,
                    clean_up_tokenization_spaces=True,
                )
                predictions = [pred.strip() for pred in predictions]
                output_prediction_file = os.path.join(
                    training_args.output_dir, "generated_predictions.txt")
                with open(output_prediction_file, "w") as writer:
                    writer.write("\n".join(predictions))

    if training_args.push_to_hub:
        trainer.push_to_hub()

    return results
def main():
    parser = HfArgumentParser((ModelArguments, TrainingArguments))
    model_args, training_args = parser.parse_args_into_dataclasses()

    wandb.login()
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO
    )
    logger.info("Training/evaluation parameters %s", training_args)
    set_seed(42)

    data_path = "data/wikitext2"
    train_path, eval_path = f"{data_path}train.txt", f"{data_path}eval.txt"

    dataset = load_dataset('wikitext', 'wikitext-2-raw-v1')
    train, eval = dataset["train"], dataset["validation"]
    if not os.path.exists(data_path):
        os.makedirs(data_path)
        with open(train_path, "w", encoding='utf-8') as f:
            f.write("\n".join([x["text"] for x in train]))
        with open(eval_path, "w", encoding='utf-8') as f:
            f.write("\n".join([x["text"] for x in eval]))
        logger.info(f"Dataset files were saved to {data_path}")

    config = LambdaBertConfig()
    tokenizer = BertTokenizerFast.from_pretrained('bert-base-cased')
    
    if model_args.sop:
        model = LambdaBertForPreTrainingSOP(config)
        train_dataset = SOPTextDataset(tokenizer, file_path=train_path, block_size=tokenizer.max_len)
        eval_dataset = SOPTextDataset(tokenizer, file_path=eval_path, block_size=tokenizer.max_len)
        data_collator = DataCollatorForSOP(tokenizer=tokenizer)
        logger.info("SOP + MLM pretraining")
    else:
        model = LambdaBertForPreTrainingNSP(config)
        train_dataset = NSPTextDataset(tokenizer, file_path=train_path, block_size=tokenizer.max_len)
        eval_dataset = NSPTextDataset(tokenizer, file_path=eval_path, block_size=tokenizer.max_len)
        data_collator = DataCollatorForNextSentencePrediction(tokenizer=tokenizer)
        logger.info("NSP + MLM pretraining")

    model.resize_token_embeddings(len(tokenizer))

    trainer = Trainer(
        model=model,
        args=training_args,
        data_collator=data_collator,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        prediction_loss_only=True,
    )

    if training_args.do_train:
        model_path = (
            model_args.model_name_or_path
            if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path)
            else None
        )
        trainer.train(model_path=model_path)
        trainer.save_model()
        if trainer.is_world_master():
            tokenizer.save_pretrained(training_args.output_dir)

    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        eval_output = trainer.evaluate()

        perplexity = math.exp(eval_output["eval_loss"])
        result = {"perplexity": perplexity}

        output_eval_file = os.path.join(training_args.output_dir, "eval_results_lm.txt")
        if trainer.is_world_master():
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))
                    writer.write("%s = %s\n" % (key, str(result[key])))

        results.update(result)

    return results
Beispiel #20
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    if (
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
    ):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty."
            "Use --overwrite_output_dir to overcome."
        )

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Setup logging, we only want one process per machine to log things on the screen.
    logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
    if jax.process_index() == 0:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # Set the verbosity to info of the Transformers logger (on main process only):
    logger.info(f"Training/evaluation parameters {training_args}")

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        dataset = load_dataset(
            data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, keep_in_memory=False
        )

        if "validation" not in dataset.keys():
            dataset["validation"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
            )
            dataset["train"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
            )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = data_args.train_file.split(".")[-1]
        if extension == "txt":
            extension = "text"
        dataset = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained config and tokenizer
    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")

    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
        )
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
        )
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if training_args.do_train:
        column_names = dataset["train"].column_names
    else:
        column_names = dataset["validation"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

    # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
    tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")

    def tokenize_function(examples):
        with CaptureLogger(tok_logger) as cl:
            output = tokenizer(examples[text_column_name])
        # clm input could be much much longer than block_size
        if "Token indices sequence length is longer than the" in cl.out:
            tok_logger.warning(
                "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
                " before being passed to the model."
            )
        return output

    tokenized_datasets = dataset.map(
        tokenize_function,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        remove_columns=column_names,
        load_from_cache_file=not data_args.overwrite_cache,
    )

    if data_args.block_size is None:
        block_size = tokenizer.model_max_length
        if block_size > config.max_position_embeddings:
            logger.warning(
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
                "Picking 1024 instead. You can change that default value by passing --block_size xxx."
            )
            block_size = 1024
    else:
        if data_args.block_size > tokenizer.model_max_length:
            logger.warning(
                f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
                f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
            )
        block_size = min(data_args.block_size, tokenizer.model_max_length)

    # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
    def group_texts(examples):
        # Concatenate all texts.
        concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
        total_length = len(concatenated_examples[list(examples.keys())[0]])
        # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
        # customize this part to your needs.
        if total_length >= block_size:
            total_length = (total_length // block_size) * block_size
        # Split by chunks of max_len.
        result = {
            k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
            for k, t in concatenated_examples.items()
        }
        result["labels"] = result["input_ids"].copy()
        return result

    # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
    # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
    # to preprocess.
    #
    # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
    # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map

    lm_datasets = tokenized_datasets.map(
        group_texts,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        load_from_cache_file=not data_args.overwrite_cache,
    )

    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = lm_datasets["train"]
        if data_args.max_train_samples is not None:
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = lm_datasets["validation"]
        if data_args.max_eval_samples is not None:
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))

    # Enable tensorboard only on the master node
    has_tensorboard = is_tensorboard_available()
    if has_tensorboard and jax.process_index() == 0:
        try:
            from flax.metrics.tensorboard import SummaryWriter

            summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run pip install tensorboard to enable."
        )

    # Initialize our training
    rng = jax.random.PRNGKey(training_args.seed)
    rng, dropout_rng = jax.random.split(rng)

    # Store some constant
    num_epochs = int(training_args.num_train_epochs)
    train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
    eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
    steps_per_epoch = len(train_dataset) // train_batch_size
    total_train_steps = steps_per_epoch * num_epochs

    # TODO: weights should be initialized in pjitted fun, this won't work for REALLY large models
    # TODO: when loading from pre-trained model we need to make sure the vocab is divisible by num_partitions
    # GPT2's vocab is odd, we need to resize it for fine-tuning
    model = FlaxAutoModelForCausalLM.from_pretrained(
        model_args.model_name_or_path, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
    )

    # Create learning rate schedule
    linear_decay_lr_schedule_fn = create_learning_rate_fn(
        len(train_dataset),
        train_batch_size,
        training_args.num_train_epochs,
        training_args.warmup_steps,
        training_args.learning_rate,
    )

    optimizer = optax.adamw(
        learning_rate=linear_decay_lr_schedule_fn,
        b1=training_args.adam_beta1,
        b2=training_args.adam_beta2,
        eps=training_args.adam_epsilon,
        weight_decay=training_args.weight_decay,
    )

    def get_initial_state(params):
        state = optimizer.init(params)
        return tuple(state), params

    # Get PartitionSpec for model params
    param_spec = set_partitions(unfreeze(model.params))

    # Get the PyTree for opt_state, we don't actually initialize the opt_state yet.
    params_shapes = jax.tree_map(lambda x: x.shape, model.params)
    state_shapes = jax.eval_shape(get_initial_state, params_shapes)

    # get PartitionSpec for opt_state, this is very specific to adamw
    # TODO: optax returns different state for different optimizers, how can we handle this generically ?
    # or maybe we don't since in our examples we just use adamw or adafactor
    def get_opt_spec(x):
        if isinstance(x, dict):
            return param_spec
        return None

    opt_state_spec, param_spec = jax.tree_map(
        get_opt_spec, state_shapes, is_leaf=lambda x: isinstance(x, (dict, optax.EmptyState))
    )

    # pjit the get_initial_state function to shard params and init
    # optimizer state in sharded way
    p_get_initial_state = pjit(
        get_initial_state,
        in_axis_resources=None,
        out_axis_resources=(opt_state_spec, param_spec),
    )

    # hack: move the inital params to CPU to free up device memory
    # TODO: allow loading weights on CPU in pre-trained model
    model.params = jax.tree_map(lambda x: np.asarray(x), model.params)

    # mesh defination
    mesh_devices = np.array(jax.devices()).reshape(1, jax.local_device_count())

    # actually initialize the opt_state
    with mesh(mesh_devices, ("dp", "mp")):
        opt_state, params = p_get_initial_state(freeze(model.params))

    # cross-entropy with z loss
    def loss_fn(logits, labels, z_loss=0):
        shift_logits = logits[..., :-1, :]
        shift_labels = labels[..., 1:]

        shift_labels = onehot(shift_labels, shift_logits.shape[-1])

        shift_logits = shift_logits - jax.lax.stop_gradient(shift_logits.max(axis=-1, keepdims=True))
        log_z = jnp.log(jnp.sum(jnp.exp(shift_logits), axis=-1, keepdims=True))
        log_softmax = shift_logits - log_z
        loss = -jnp.sum(shift_labels * log_softmax, axis=-1)

        loss += (1e-4 * jnp.square(log_z.squeeze(-1))) * z_loss

        return loss.mean()

    # Define gradient update step fn
    # TODO: try to use TrainState instead of passing params and opt_state individually
    def train_step(params, opt_state, dropout_rng, batch, step):
        dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)

        def compute_loss(params):
            labels = batch.pop("labels")
            logits = model(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
            loss = loss_fn(logits, labels, z_loss=1.0)
            return loss

        grad_fn = jax.value_and_grad(compute_loss)
        loss, grads = grad_fn(params)

        updates, new_opt_state = optimizer.update(grads, opt_state, params)
        new_params = optax.apply_updates(params, updates)

        metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(step)}
        return new_params, tuple(new_opt_state), new_dropout_rng, metrics, step + 1

    # Define eval fn
    def eval_step(input_ids, labels, params):
        logits = model(input_ids=input_ids, params=params, train=False)[0]
        loss = loss_fn(logits, labels)
        # metrics
        return {"loss": loss}

    p_train_step = pjit(
        train_step,
        in_axis_resources=(param_spec, opt_state_spec, None, None, None),
        out_axis_resources=(param_spec, opt_state_spec, None, None, None),
        donate_argnums=(0, 1),
    )

    p_eval_step = pjit(
        eval_step,
        in_axis_resources=(None, None, param_spec),
        out_axis_resources=None,
    )

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {num_epochs}")
    logger.info(f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel & distributed) = {train_batch_size}")
    logger.info(f"  Total optimization steps = {total_train_steps}")

    train_time = 0
    train_metrics = []
    epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
    global_step = 0
    # we are not doing 2D parallelism (yet!), this just does model parallelism
    with mesh(mesh_devices, ("dp", "mp")):
        for _ in epochs:
            # ======================== Training ================================
            train_start = time.time()

            # Create sampling rng
            rng, input_rng = jax.random.split(rng)

            # Generate an epoch by shuffling sampling indices from the train dataset
            train_metrics = []
            train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True)
            steps_per_epoch = len(train_dataset) // train_batch_size

            # train
            for _ in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False):
                batch = next(train_loader)
                params, opt_state, dropout_rng, train_metric, global_step = p_train_step(
                    params,
                    opt_state,
                    dropout_rng,
                    batch,
                    global_step,
                )
                train_metrics.append(train_metric)

                cur_step = global_step

                if cur_step % training_args.logging_steps == 0 and cur_step > 0:
                    # Save metrics
                    train_time += time.time() - train_start
                    if has_tensorboard and jax.process_index() == 0:
                        write_train_metric(summary_writer, train_metrics, train_time, cur_step)

                    epochs.write(
                        f"Step... ({cur_step} | Loss: {train_metric['loss']}, Learning Rate:"
                        f" {train_metric['learning_rate']})"
                    )

                    train_metrics = []

                if cur_step % training_args.eval_steps == 0 and cur_step > 0:
                    # ======================== Evaluating ==============================
                    eval_metrics = []
                    eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size)
                    eval_steps = len(eval_dataset) // eval_batch_size

                    for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False):
                        batch = next(eval_loader)
                        metrics = p_eval_step(batch["input_ids"], batch["labels"], params)
                        eval_metrics.append(metrics)

                    # normalize eval metrics
                    eval_metrics = stack_forest(eval_metrics)
                    eval_metrics = jax.tree_map(jnp.mean, eval_metrics)

                    try:
                        eval_metrics["perplexity"] = math.exp(eval_metrics["loss"])
                    except OverflowError:
                        eval_metrics["perplexity"] = float("inf")

                    logger.info(
                        f"Step... ({cur_step} | Eval loss: {eval_metrics['loss']} | Eval Perplexity:"
                        f" {eval_metrics['perplexity']}"
                    )

                if cur_step % training_args.save_steps == 0 and cur_step > 0:
                    # save checkpoint after each epoch and push checkpoint to the hub
                    if jax.process_index() == 0:
                        params = jax.device_get(params)
                        model.save_pretrained(
                            training_args.output_dir,
                            params=params,
                            push_to_hub=training_args.push_to_hub,
                            commit_message=f"Saving weights and logs of step {cur_step}",
                        )
Beispiel #21
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    if (
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
    ):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
        )

    module = import_module("tasks")

    try:
        token_classification_task_clazz = getattr(module, model_args.task_type)
        token_classification_task: TokenClassificationTask = token_classification_task_clazz()
    except AttributeError:
        raise ValueError(
            f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. "
            f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}"
        )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(
        "n_replicas: %s, distributed training: %s, 16-bits training: %s",
        training_args.n_replicas,
        bool(training_args.n_replicas > 1),
        training_args.fp16,
    )
    logger.info("Training/evaluation parameters %s", training_args)

    # Prepare Token Classification task
    labels = token_classification_task.get_labels(data_args.labels)
    label_map: Dict[int, str] = {i: label for i, label in enumerate(labels)}
    num_labels = len(labels)

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        num_labels=num_labels,
        id2label=label_map,
        label2id={label: i for i, label in enumerate(labels)},
        cache_dir=model_args.cache_dir,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast,
    )

    with training_args.strategy.scope():
        model = TFAutoModelForTokenClassification.from_pretrained(
            model_args.model_name_or_path,
            from_pt=bool(".bin" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
        )

    # Get datasets
    train_dataset = (
        TFTokenClassificationDataset(
            token_classification_task=token_classification_task,
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.train,
        )
        if training_args.do_train
        else None
    )
    eval_dataset = (
        TFTokenClassificationDataset(
            token_classification_task=token_classification_task,
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.dev,
        )
        if training_args.do_eval
        else None
    )

    def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]:
        preds = np.argmax(predictions, axis=2)
        batch_size, seq_len = preds.shape
        out_label_list = [[] for _ in range(batch_size)]
        preds_list = [[] for _ in range(batch_size)]

        for i in range(batch_size):
            for j in range(seq_len):
                if label_ids[i, j] != -100:
                    out_label_list[i].append(label_map[label_ids[i][j]])
                    preds_list[i].append(label_map[preds[i][j]])

        return preds_list, out_label_list

    def compute_metrics(p: EvalPrediction) -> Dict:
        preds_list, out_label_list = align_predictions(p.predictions, p.label_ids)

        return {
            "precision": precision_score(out_label_list, preds_list),
            "recall": recall_score(out_label_list, preds_list),
            "f1": f1_score(out_label_list, preds_list),
        }

    # Initialize our Trainer
    trainer = TFTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset.get_dataset() if train_dataset else None,
        eval_dataset=eval_dataset.get_dataset() if eval_dataset else None,
        compute_metrics=compute_metrics,
    )

    # Training
    if training_args.do_train:
        trainer.train()
        trainer.save_model()
        tokenizer.save_pretrained(training_args.output_dir)

    # Evaluation
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        result = trainer.evaluate()
        output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")

        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")

            for key, value in result.items():
                logger.info("  %s = %s", key, value)
                writer.write("%s = %s\n" % (key, value))

            results.update(result)

    # Predict
    if training_args.do_predict:
        test_dataset = TFTokenClassificationDataset(
            token_classification_task=token_classification_task,
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.test,
        )

        predictions, label_ids, metrics = trainer.predict(test_dataset.get_dataset())
        preds_list, labels_list = align_predictions(predictions, label_ids)
        report = classification_report(labels_list, preds_list)

        logger.info("\n%s", report)

        output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt")

        with open(output_test_results_file, "w") as writer:
            writer.write("%s\n" % report)

        # Save predictions
        output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt")

        with open(output_test_predictions_file, "w") as writer:
            with open(os.path.join(data_args.data_dir, "test.txt"), "r") as f:
                example_id = 0

                for line in f:
                    if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                        writer.write(line)

                        if not preds_list[example_id]:
                            example_id += 1
                    elif preds_list[example_id]:
                        output_line = line.split()[0] + " " + preds_list[example_id].pop(0) + "\n"

                        writer.write(output_line)
                    else:
                        logger.warning("Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0])

    return results
Beispiel #22
0
def main():
    # region Argument parsing
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TFTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )
    output_dir = Path(training_args.output_dir)
    output_dir.mkdir(parents=True, exist_ok=True)
    # endregion

    # region Checkpoints
    # Detecting last checkpoint.
    checkpoint = None
    if len(os.listdir(training_args.output_dir)
           ) > 0 and not training_args.overwrite_output_dir:
        if (output_dir / CONFIG_NAME).is_file() and (
                output_dir / TF2_WEIGHTS_NAME).is_file():
            checkpoint = output_dir
            logger.info(
                f"Checkpoint detected, resuming training from checkpoint in {training_args.output_dir}. To avoid this"
                " behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
        else:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to continue regardless.")

    # endregion

    # region Logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO)

    logger.info(f"Training/evaluation parameters {training_args}")
    # endregion

    # region Loading data
    # For CSV/JSON files, this script will use the 'label' field as the label and the 'sentence1' and optionally
    # 'sentence2' fields as inputs if they exist. If not, the first two fields not named label are used if at least two
    # columns are provided. Note that the term 'sentence' can be slightly misleading, as they often contain more than
    # a single grammatical sentence, when the task requires it.
    #
    # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
    # single column. You can easily tweak this behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    data_files = {
        "train": data_args.train_file,
        "validation": data_args.validation_file,
        "test": data_args.test_file
    }
    data_files = {
        key: file
        for key, file in data_files.items() if file is not None
    }

    for key in data_files.keys():
        logger.info(f"Loading a local file for {key}: {data_files[key]}")

    if data_args.input_file_extension == "csv":
        # Loading a dataset from local csv files
        datasets = load_dataset("csv",
                                data_files=data_files,
                                cache_dir=model_args.cache_dir)
    else:
        # Loading a dataset from local json files
        datasets = load_dataset("json",
                                data_files=data_files,
                                cache_dir=model_args.cache_dir)
    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.html.
    # endregion

    # region Label preprocessing
    # If you've passed us a training set, we try to infer your labels from it
    if "train" in datasets:
        # By default we assume that if your label column looks like a float then you're doing regression,
        # and if not then you're doing classification. This is something you may want to change!
        is_regression = datasets["train"].features["label"].dtype in [
            "float32", "float64"
        ]
        if is_regression:
            num_labels = 1
        else:
            # A useful fast method:
            # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
            label_list = datasets["train"].unique("label")
            label_list.sort()  # Let's sort it for determinism
            num_labels = len(label_list)
    # If you haven't passed a training set, we read label info from the saved model (this happens later)
    else:
        num_labels = None
        label_list = None
        is_regression = None
    # endregion

    # region Load model config and tokenizer
    if checkpoint is not None:
        config_path = training_args.output_dir
    elif model_args.config_name:
        config_path = model_args.config_name
    else:
        config_path = model_args.model_name_or_path
    if num_labels is not None:
        config = AutoConfig.from_pretrained(
            config_path,
            num_labels=num_labels,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        config = AutoConfig.from_pretrained(
            config_path,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    # endregion

    # region Dataset preprocessing
    # Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
    column_names = {
        col
        for cols in datasets.column_names.values() for col in cols
    }
    non_label_column_names = [name for name in column_names if name != "label"]
    if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
        sentence1_key, sentence2_key = "sentence1", "sentence2"
    elif "sentence1" in non_label_column_names:
        sentence1_key, sentence2_key = "sentence1", None
    else:
        if len(non_label_column_names) >= 2:
            sentence1_key, sentence2_key = non_label_column_names[:2]
        else:
            sentence1_key, sentence2_key = non_label_column_names[0], None

    if data_args.max_seq_length > tokenizer.model_max_length:
        logger.warning(
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

    # Ensure that our labels match the model's, if it has some pre-specified
    if "train" in datasets:
        if not is_regression and config.label2id != PretrainedConfig(
                num_labels=num_labels).label2id:
            label_name_to_id = config.label2id
            if list(sorted(label_name_to_id.keys())) == list(
                    sorted(label_list)):
                label_to_id = label_name_to_id  # Use the model's labels
            else:
                logger.warning(
                    "Your model seems to have been trained with labels, but they don't match the dataset: ",
                    f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
                    "\nIgnoring the model labels as a result.",
                )
                label_to_id = {v: i for i, v in enumerate(label_list)}
        elif not is_regression:
            label_to_id = {v: i for i, v in enumerate(label_list)}
        else:
            label_to_id = None
        # Now we've established our label2id, let's overwrite the model config with it.
        config.label2id = label_to_id
        if config.label2id is not None:
            config.id2label = {id: label for label, id in label_to_id.items()}
        else:
            config.id2label = None
    else:
        label_to_id = config.label2id  # Just load the data from the model

    if "validation" in datasets and config.label2id is not None:
        validation_label_list = datasets["validation"].unique("label")
        for val_label in validation_label_list:
            assert val_label in label_to_id, f"Label {val_label} is in the validation set but not the training set!"

    def preprocess_function(examples):
        # Tokenize the texts
        args = ((examples[sentence1_key], ) if sentence2_key is None else
                (examples[sentence1_key], examples[sentence2_key]))
        result = tokenizer(*args, max_length=max_seq_length, truncation=True)

        # Map labels to IDs
        if config.label2id is not None and "label" in examples:
            result["label"] = [(config.label2id[l] if l != -1 else -1)
                               for l in examples["label"]]
        return result

    datasets = datasets.map(preprocess_function,
                            batched=True,
                            load_from_cache_file=not data_args.overwrite_cache)
    # endregion

    with training_args.strategy.scope():
        # region Load pretrained model
        # Set seed before initializing model
        set_seed(training_args.seed)
        #
        # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
        # download model & vocab.
        if checkpoint is None:
            model_path = model_args.model_name_or_path
        else:
            model_path = checkpoint
        model = TFAutoModelForSequenceClassification.from_pretrained(
            model_path,
            config=config,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )
        # endregion

        # region Optimizer, loss and compilation
        optimizer = tf.keras.optimizers.Adam(
            learning_rate=training_args.learning_rate,
            beta_1=training_args.adam_beta1,
            beta_2=training_args.adam_beta2,
            epsilon=training_args.adam_epsilon,
            clipnorm=training_args.max_grad_norm,
        )
        if is_regression:
            loss_fn = tf.keras.losses.MeanSquaredError()
            metrics = []
        else:
            loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
                from_logits=True)
            metrics = ["accuracy"]
        model.compile(optimizer=optimizer, loss=loss_fn, metrics=metrics)
        # endregion

        # region Convert data to TF format

        # Convert data to a tf.keras.utils.Sequence object for training if we're not using a TPU
        # For TPU, convert to a tf.data.Dataset
        tf_data = dict()
        max_samples = {
            "train": data_args.max_train_samples,
            "validation": data_args.max_val_samples,
            "test": data_args.max_test_samples,
        }
        for key in ("train", "validation", "test"):
            if key not in datasets:
                tf_data[key] = None
                continue
            if key in ("train", "validation"):
                assert "label" in datasets[
                    key].features, f"Missing labels from {key} data!"
            if key == "train":
                shuffle = True
                batch_size = training_args.per_device_train_batch_size
                drop_remainder = True  # Saves us worrying about scaling gradients for the last batch
            else:
                shuffle = False
                batch_size = training_args.per_device_eval_batch_size
                drop_remainder = False
            samples_limit = max_samples[key]
            dataset = datasets[key]
            if samples_limit is not None:
                dataset = dataset.select(range(samples_limit))
            if isinstance(
                    training_args.strategy,
                    tf.distribute.TPUStrategy) or data_args.pad_to_max_length:
                logger.info(
                    "Padding all batches to max length because argument was set or we're on TPU."
                )
                dataset_mode = "constant_batch"
            else:
                dataset_mode = "variable_batch"
            data = convert_dataset_for_tensorflow(
                dataset,
                non_label_column_names,
                batch_size=batch_size,
                dataset_mode=dataset_mode,
                drop_remainder=drop_remainder,
                shuffle=shuffle,
            )
            tf_data[key] = data
        # endregion

        # region Training and validation
        if tf_data["train"] is not None:
            callbacks = [
                SavePretrainedCallback(output_dir=training_args.output_dir)
            ]
            model.fit(
                tf_data["train"],
                validation_data=tf_data["validation"],
                epochs=int(training_args.num_train_epochs),
                callbacks=callbacks,
            )
        elif tf_data["validation"] is not None:
            # If there's a validation dataset but no training set, just evaluate the metrics
            logger.info("Computing metrics on validation data...")
            if is_regression:
                loss = model.evaluate(tf_data["validation"])
                logger.info(f"Loss: {loss:.5f}")
            else:
                loss, accuracy = model.evaluate(tf_data["validation"])
                logger.info(
                    f"Loss: {loss:.5f}, Accuracy: {accuracy * 100:.4f}%")
        # endregion

        # region Prediction
        if tf_data["test"] is not None:
            logger.info("Doing predictions on test dataset...")
            predictions = model.predict(tf_data["test"])["logits"]
            predicted_class = np.squeeze(
                predictions) if is_regression else np.argmax(predictions,
                                                             axis=1)
            output_test_file = os.path.join(training_args.output_dir,
                                            "test_results.txt")
            with open(output_test_file, "w") as writer:
                writer.write("index\tprediction\n")
                for index, item in enumerate(predicted_class):
                    if is_regression:
                        writer.write(f"{index}\t{item:3.3f}\n")
                    else:
                        item = config.id2label[item]
                        writer.write(f"{index}\t{item}\n")
            logger.info(f"Wrote predictions to {output_test_file}!")
        # endregion

    # region Prediction losses
    # This section is outside the scope() because it's very quick to compute, but behaves badly inside it
    if "test" in datasets and "label" in datasets["test"].features:
        print("Computing prediction loss on test labels...")
        labels = datasets["test"]["label"]
        loss = float(loss_fn(labels, predictions).numpy())
        print(f"Test loss: {loss:.4f}")
Beispiel #23
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).

    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).

    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.train_file is not None or data_args.validation_file is not None:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = data_args.train_file.split(".")[-1]
        datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
    else:
        # Downloading and loading the swag dataset from the hub.
        datasets = load_dataset("swag", "regular", cache_dir=model_args.cache_dir)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer

    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForMultipleChoice.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    # When using your own dataset or a different dataset from swag, you will probably need to change this.
    ending_names = [f"ending{i}" for i in range(4)]
    context_name = "sent1"
    question_header_name = "sent2"

    if data_args.max_seq_length is None:
        max_seq_length = tokenizer.model_max_length
        if max_seq_length > 1024:
            logger.warning(
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
                "Picking 1024 instead. You can change that default value by passing --max_seq_length xxx."
            )
            max_seq_length = 1024
    else:
        if data_args.max_seq_length > tokenizer.model_max_length:
            logger.warning(
                f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
                f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
            )
        max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

    # Preprocessing the datasets.
    def preprocess_function(examples):
        first_sentences = [[context] * 4 for context in examples[context_name]]
        question_headers = examples[question_header_name]
        second_sentences = [
            [f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(question_headers)
        ]

        # Flatten out
        first_sentences = sum(first_sentences, [])
        second_sentences = sum(second_sentences, [])

        # Tokenize
        tokenized_examples = tokenizer(
            first_sentences,
            second_sentences,
            truncation=True,
            max_length=max_seq_length,
            padding="max_length" if data_args.pad_to_max_length else False,
        )
        # Un-flatten
        return {k: [v[i : i + 4] for i in range(0, len(v), 4)] for k, v in tokenized_examples.items()}

    if training_args.do_train:
        train_dataset = datasets["train"]
        if "train" not in datasets:
            raise ValueError("--do_train requires a train dataset")
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))
        train_dataset = train_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    if training_args.do_eval:
        if "validation" not in datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = datasets["validation"]
        if data_args.max_val_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_val_samples))
        eval_dataset = eval_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    # Data collator
    data_collator = (
        default_data_collator
        if data_args.pad_to_max_length
        else DataCollatorForMultipleChoice(tokenizer=tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
    )

    # Metric
    def compute_metrics(eval_predictions):
        predictions, label_ids = eval_predictions
        preds = np.argmax(predictions, axis=1)
        return {"accuracy": (preds == label_ids).astype(np.float32).mean().item()}

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics,
    )

    # Training
    if training_args.do_train:
        if last_checkpoint is not None:
            checkpoint = last_checkpoint
        elif os.path.isdir(model_args.model_name_or_path):
            checkpoint = model_args.model_name_or_path
        else:
            checkpoint = None
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()  # Saves the tokenizer too for easy upload
        metrics = train_result.metrics

        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        metrics = trainer.evaluate()
        max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_val_samples, len(eval_dataset))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    if training_args.push_to_hub:
        trainer.push_to_hub()
Beispiel #24
0
def main():
    ### Dataset processing classes in main due to hugging face custom dataset map
    def prepare_train_features(examples):
        # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
        # in one example possible giving several features when a context is long, each of those features having a
        # context that overlaps a bit the context of the previous feature.
        tokenized_examples = tokenizer(
            examples[
                question_column_name if pad_on_right else context_column_name],
            examples[
                context_column_name if pad_on_right else question_column_name],
            truncation="only_second" if pad_on_right else "only_first",
            max_length=data_args.max_seq_length,
            stride=data_args.doc_stride,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            padding="max_length" if data_args.pad_to_max_length else False,
        )

        # Since one example might give us several features if it has a long context, we need a map from a feature to
        # its corresponding example. This key gives us just that.
        sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
        # The offset mappings will give us a map from token to character position in the original context. This will
        # help us compute the start_positions and end_positions.
        offset_mapping = tokenized_examples.pop("offset_mapping")

        # Let's label those examples!
        tokenized_examples["start_positions"] = []
        tokenized_examples["end_positions"] = []

        for i, offsets in enumerate(offset_mapping):
            # We will label impossible answers with the index of the CLS token.
            input_ids = tokenized_examples["input_ids"][i]
            cls_index = input_ids.index(tokenizer.cls_token_id)

            # Grab the sequence corresponding to that example (to know what is the context and what is the question).
            sequence_ids = tokenized_examples.sequence_ids(i)

            # One example can give several spans, this is the index of the example containing this span of text.
            sample_index = sample_mapping[i]
            answers = examples[answer_column_name][sample_index]
            # If no answers are given, set the cls_index as answer.
            if len(answers["answer_start"]) == 0:
                tokenized_examples["start_positions"].append(cls_index)
                tokenized_examples["end_positions"].append(cls_index)
            else:
                # Start/end character index of the answer in the text.
                start_char = answers["answer_start"][0]
                end_char = start_char + len(answers["text"][0])

                # Start token index of the current span in the text.
                token_start_index = 0
                while sequence_ids[token_start_index] != (1 if pad_on_right
                                                          else 0):
                    token_start_index += 1

                # End token index of the current span in the text.
                token_end_index = len(input_ids) - 1
                while sequence_ids[token_end_index] != (1 if pad_on_right else
                                                        0):
                    token_end_index -= 1

                # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index).
                if not (offsets[token_start_index][0] <= start_char
                        and offsets[token_end_index][1] >= end_char):
                    tokenized_examples["start_positions"].append(cls_index)
                    tokenized_examples["end_positions"].append(cls_index)
                else:
                    # Otherwise move the token_start_index and token_end_index to the two ends of the answer.
                    # Note: we could go after the last offset if the answer is the last word (edge case).
                    while (token_start_index < len(offsets)
                           and offsets[token_start_index][0] <= start_char):
                        token_start_index += 1
                    tokenized_examples["start_positions"].append(
                        token_start_index - 1)
                    while offsets[token_end_index][1] >= end_char:
                        token_end_index -= 1
                    tokenized_examples["end_positions"].append(
                        token_end_index + 1)
        return tokenized_examples

    def compute_metrics(p: EvalPrediction):
        return metric.compute(predictions=p.predictions,
                              references=p.label_ids)

    # Post-processing:
    def post_processing_function(examples, features, predictions):
        predictions = postprocess_qa_predictions(
            examples=examples,
            features=features,
            predictions=predictions,
            version_2_with_negative=data_args.version_2_with_negative,
            n_best_size=data_args.n_best_size,
            max_answer_length=data_args.max_answer_length,
            null_score_diff_threshold=data_args.null_score_diff_threshold,
            output_dir=training_args.output_dir,
            is_world_process_zero=trainer.is_world_process_zero(),
        )
        if data_args.version_2_with_negative:
            formatted_predictions = [{
                "id": k,
                "prediction_text": v,
                "no_answer_probability": 0.0
            } for k, v in predictions.items()]
        else:
            formatted_predictions = [{
                "id": k,
                "prediction_text": v
            } for k, v in predictions.items()]
        references = [{
            "id": ex["id"],
            "answers": ex[answer_column_name]
        } for ex in datasets["validation"]]
        return EvalPrediction(predictions=formatted_predictions,
                              label_ids=references)

    # Validation preprocessing
    def prepare_validation_features(examples):
        # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
        # in one example possible giving several features when a context is long, each of those features having a
        # context that overlaps a bit the context of the previous feature.
        tokenized_examples = tokenizer(
            examples[
                question_column_name if pad_on_right else context_column_name],
            examples[
                context_column_name if pad_on_right else question_column_name],
            truncation="only_second" if pad_on_right else "only_first",
            max_length=data_args.max_seq_length,
            stride=data_args.doc_stride,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            padding="max_length" if data_args.pad_to_max_length else False,
        )

        # Since one example might give us several features if it has a long context, we need a map from a feature to
        # its corresponding example. This key gives us just that.
        sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")

        # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
        # corresponding example_id and we will store the offset mappings.
        tokenized_examples["example_id"] = []

        for i in range(len(tokenized_examples["input_ids"])):
            # Grab the sequence corresponding to that example (to know what is the context and what is the question).
            sequence_ids = tokenized_examples.sequence_ids(i)
            context_index = 1 if pad_on_right else 0

            # One example can give several spans, this is the index of the example containing this span of text.
            sample_index = sample_mapping[i]
            tokenized_examples["example_id"].append(
                examples["id"][sample_index])

            # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
            # position is part of the context or not.
            tokenized_examples["offset_mapping"][i] = [
                (o if sequence_ids[k] == context_index else None)
                for k, o in enumerate(tokenized_examples["offset_mapping"][i])
            ]
        return tokenized_examples

    transformers.utils.logging.set_verbosity_info()
    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )
    if (os.path.exists(training_args.output_dir)
            and os.listdir(training_args.output_dir) and training_args.do_train
            and not training_args.overwrite_output_dir):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty."
            "Use --overwrite_output_dir to overcome.")

    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
    )
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank
                                                    ) else logging.WARN)

    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )

    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
    logger.info("Training/evaluation parameters %s", training_args)

    set_seed(training_args.seed)
    if data_args.dataset_name is not None:
        datasets = load_dataset(data_args.dataset_name,
                                data_args.dataset_config_name)
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = data_args.train_file.split(".")[-1]
        datasets = load_dataset(extension, data_files=data_files, field="data")
    config = AutoConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name else model_args.student_model_name_or_path,
        cache_dir=model_args.cache_dir,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else
        model_args.student_model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=True,
    )
    student_model = AutoModelForQuestionAnswering.from_pretrained(
        model_args.student_model_name_or_path,
        from_tf=bool(".ckpt" in model_args.student_model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
    )
    teacher_model = AutoModelForQuestionAnswering.from_pretrained(
        model_args.teacher_model_name_or_path,
        from_tf=bool(".ckpt" in model_args.teacher_model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
    )

    if data_args.layers_to_keep < len(student_model.bert.encoder.layer):
        logger.info("Keeping %s model layers", data_args.layers_to_keep)
        student_model = drop_layers(student_model, data_args.layers_to_keep)

    student_model_parameters = filter(lambda p: p.requires_grad,
                                      student_model.parameters())
    params = sum([np.prod(p.size()) for p in student_model_parameters])
    logger.info("Student Model has %s parameters", params)
    teacher_model_parameters = filter(lambda p: p.requires_grad,
                                      teacher_model.parameters())
    params = sum([np.prod(p.size()) for p in teacher_model_parameters])
    logger.info("Teacher Model has %s parameters", params)
    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models "
            "at https://huggingface.co/transformers/index.html#bigtable to find the model types that meet this "
            "requirement")

    if training_args.do_train:
        column_names = datasets["train"].column_names
    else:
        column_names = datasets["validation"].column_names
    question_column_name = "question" if "question" in column_names else column_names[
        0]
    context_column_name = "context" if "context" in column_names else column_names[
        1]
    answer_column_name = "answers" if "answers" in column_names else column_names[
        2]

    pad_on_right = tokenizer.padding_side == "right"

    data_collator = (default_data_collator if data_args.pad_to_max_length else
                     DataCollatorWithPadding(tokenizer))

    current_dir = os.path.sep.join(
        os.path.join(__file__).split(os.path.sep)[:-1])
    metric = load_metric(
        os.path.join(current_dir, "squad_v2_local") if data_args.
        version_2_with_negative else "squad")

    if training_args.do_eval:
        validation_dataset = datasets["validation"].map(
            prepare_validation_features,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    if training_args.do_train:
        train_dataset = datasets["train"].map(
            prepare_train_features,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
        )
    ####################################################################################
    # Start SparseML Integration
    ####################################################################################
    if training_args.do_train:
        optim = load_optimizer(student_model, training_args)
        steps_per_epoch = math.ceil(
            len(train_dataset) /
            (training_args.per_device_train_batch_size * training_args._n_gpu))
        manager = ScheduledModifierManager.from_yaml(data_args.nm_prune_config)
        training_args.num_train_epochs = float(manager.modifiers[0].end_epoch)
        optim = ScheduledOptimizer(optim,
                                   student_model,
                                   manager,
                                   steps_per_epoch=steps_per_epoch,
                                   loggers=None)
    ####################################################################################
    # End SparseML Integration
    ####################################################################################
    # Initialize our Trainer
    trainer = DistillQuestionAnsweringTrainer(
        model=student_model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=validation_dataset if training_args.do_eval else None,
        eval_examples=datasets["validation"]
        if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        post_process_function=post_processing_function,
        compute_metrics=compute_metrics,
        optimizers=(optim, None) if training_args.do_train else (None, None),
        teacher=teacher_model,
        distill_hardness=model_args.distill_hardness,
        temperature=model_args.temperature,
    )

    # Training
    if training_args.do_train:
        trainer.train(
            model_path=model_args.student_model_name_or_path if os.path.
            isdir(model_args.student_model_name_or_path) else None)
        trainer.save_model()  # Saves the tokenizer too for easy upload

    # Evaluation
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
        results = trainer.evaluate()

        output_eval_file = os.path.join(training_args.output_dir,
                                        "eval_results.txt")
        if trainer.is_world_process_zero():
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key, value in results.items():
                    logger.info(f"  {key} = {value}")
                    writer.write(f"{key} = {value}\n")

    ####################################################################################
    # Start SparseML Integration
    ####################################################################################
    if data_args.do_onnx_export:
        logger.info("*** Export to ONNX ***")
        os.environ["TOKENIZERS_PARALLELISM"] = "false"
        exporter = ModuleExporter(student_model, output_dir='onnx-export')
        sample_batch = convert_example_to_features(
            datasets["validation"][0],
            tokenizer,
            data_args.max_seq_length,
            data_args.doc_stride,
            data_args.max_query_length,
        )
        exporter.export_onnx(sample_batch=sample_batch)
Beispiel #25
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(data_args.dataset_name,
                                    data_args.dataset_config_name,
                                    cache_dir=model_args.cache_dir)
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
            )
            raw_datasets["train"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
            )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = data_args.train_file.split(".")[-1]
        if extension == "txt":
            extension = "text"
        raw_datasets = load_dataset(extension,
                                    data_files=data_files,
                                    cache_dir=model_args.cache_dir)
        # If no validation data is there, validation_split_percentage will be used to divide the dataset.
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
            )
            raw_datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
            )

    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name,
                                            **config_kwargs)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path,
                                            **config_kwargs)
    else:
        config = XLNetConfig()
        logger.warning(
            "You are instantiating a new config instance from scratch.")
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
            logger.info(f"New config: {config}")

    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name,
                                                  **tokenizer_kwargs)
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path, **tokenizer_kwargs)
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = XLNetLMHeadModel.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        logger.info("Training new model from scratch")
        model = XLNetLMHeadModel(config)

    model.resize_token_embeddings(len(tokenizer))

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
        column_names = raw_datasets["train"].column_names
    else:
        column_names = raw_datasets["validation"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

    if data_args.max_seq_length > tokenizer.model_max_length:
        logger.warning(
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

    if data_args.line_by_line:
        # When using line_by_line, we just tokenize each nonempty line.
        padding = "max_length" if data_args.pad_to_max_length else False

        def tokenize_function(examples):
            # Remove empty lines
            examples["text"] = [
                line for line in examples["text"]
                if len(line) > 0 and not line.isspace()
            ]
            return tokenizer(examples["text"],
                             padding=padding,
                             truncation=True,
                             max_length=max_seq_length)

        with training_args.main_process_first(desc="dataset map tokenization"):
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=[text_column_name],
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on dataset line_by_line",
            )
    else:
        # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
        def tokenize_function(examples):
            return tokenizer(examples[text_column_name])

        with training_args.main_process_first(desc="dataset map tokenization"):
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on every text in dataset",
            )

        # Main data processing function that will concatenate all texts from our dataset and generate chunks of
        # max_seq_length.
        def group_texts(examples):
            # Concatenate all texts.
            concatenated_examples = {
                k: list(chain(*examples[k]))
                for k in examples.keys()
            }
            total_length = len(concatenated_examples[list(examples.keys())[0]])
            # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
            # customize this part to your needs.
            if total_length >= max_seq_length:
                total_length = (total_length //
                                max_seq_length) * max_seq_length
            # Split by chunks of max_len.
            result = {
                k: [
                    t[i:i + max_seq_length]
                    for i in range(0, total_length, max_seq_length)
                ]
                for k, t in concatenated_examples.items()
            }
            return result

        # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
        # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
        # might be slower to preprocess.
        #
        # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
        # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map

        with training_args.main_process_first(desc="grouping texts together"):
            tokenized_datasets = tokenized_datasets.map(
                group_texts,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc=f"Grouping texts in chunks of {max_seq_length}",
            )

    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = tokenized_datasets["train"]
        if data_args.max_train_samples is not None:
            max_train_samples = min(len(train_dataset),
                                    data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = tokenized_datasets["validation"]
        if data_args.max_eval_samples is not None:
            max_eval_samples = min(len(eval_dataset),
                                   data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))

    # Data collator
    data_collator = DataCollatorForPermutationLanguageModeling(
        tokenizer=tokenizer,
        plm_probability=data_args.plm_probability,
        max_span_length=data_args.max_span_length,
    )

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()  # Saves the tokenizer too for easy upload
        metrics = train_result.metrics

        max_train_samples = (data_args.max_train_samples
                             if data_args.max_train_samples is not None else
                             len(train_dataset))
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        metrics = trainer.evaluate()

        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(
            eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
        try:
            perplexity = math.exp(metrics["eval_loss"])
        except OverflowError:
            perplexity = float("inf")
        metrics["perplexity"] = perplexity

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "language-modeling"
    }
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs[
                "dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name

    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)
Beispiel #26
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    if (os.path.exists(training_args.output_dir)
            and os.listdir(training_args.output_dir) and training_args.do_train
            and not training_args.overwrite_output_dir):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty."
            "Use --overwrite_output_dir to overcome.")

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        level=logging.INFO,
        datefmt="[%X]",
    )

    # Log on each process the small summary:
    logger = logging.getLogger(__name__)

    # Set the verbosity to info of the Transformers logger (on main process only):
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Handle the repository creation
    if training_args.push_to_hub:
        if training_args.hub_model_id is None:
            repo_name = get_full_repo_name(Path(
                training_args.output_dir).absolute().name,
                                           token=training_args.hub_token)
        else:
            repo_name = training_args.hub_model_id
        repo = Repository(training_args.output_dir, clone_from=repo_name)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        datasets = load_dataset(data_args.dataset_name,
                                data_args.dataset_config_name,
                                cache_dir=model_args.cache_dir)

        if "validation" not in datasets.keys():
            datasets["validation"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
            )
            datasets["train"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
            )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = data_args.train_file.split(".")[-1]
        if extension == "txt":
            extension = "text"
        datasets = load_dataset(extension,
                                data_files=data_files,
                                cache_dir=model_args.cache_dir)

        if "validation" not in datasets.keys():
            datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
            )
            datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
            )
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer

    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.tokenizer_name,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer)
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer)
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.config_name:
        config = T5Config.from_pretrained(model_args.config_name,
                                          cache_dir=model_args.cache_dir,
                                          vocab_size=len(tokenizer))
    elif model_args.model_name_or_path:
        config = T5Config.from_pretrained(model_args.model_name_or_path,
                                          cache_dir=model_args.cache_dir)
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning(
            "You are instantiating a new config instance from scratch.")

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
        column_names = datasets["train"].column_names
    else:
        column_names = datasets["validation"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

    # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
    # Since we make sure that all sequences are of the same length, no attention_mask is needed.
    def tokenize_function(examples):
        return tokenizer(examples[text_column_name],
                         return_attention_mask=False)

    tokenized_datasets = datasets.map(
        tokenize_function,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        remove_columns=column_names,
        load_from_cache_file=not data_args.overwrite_cache,
    )

    # T5-like span masked language modeling will fuse consecutively masked tokens to a single sentinel token.
    # To ensure that the input length is `max_seq_length`, we need to increase the maximum length
    # according to `mlm_probability` and `mean_noise_span_length`. We can also define the label length accordingly.
    expanded_inputs_length, targets_length = compute_input_and_target_lengths(
        inputs_length=max_seq_length,
        noise_density=data_args.mlm_probability,
        mean_noise_span_length=data_args.mean_noise_span_length,
    )

    # Main data processing function that will concatenate all texts from our dataset and generate chunks of expanded_inputs_length.
    def group_texts(examples):
        # Concatenate all texts.
        concatenated_examples = {
            k: list(chain(*examples[k]))
            for k in examples.keys()
        }
        total_length = len(concatenated_examples[list(examples.keys())[0]])
        # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
        # customize this part to your needs.
        if total_length >= expanded_inputs_length:
            total_length = (total_length //
                            expanded_inputs_length) * expanded_inputs_length
        # Split by chunks of max_len.
        result = {
            k: [
                t[i:i + expanded_inputs_length]
                for i in range(0, total_length, expanded_inputs_length)
            ]
            for k, t in concatenated_examples.items()
        }
        return result

    # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
    # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
    # might be slower to preprocess.
    #
    # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
    # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
    tokenized_datasets = tokenized_datasets.map(
        group_texts,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        load_from_cache_file=not data_args.overwrite_cache,
    )

    # Enable tensorboard only on the master node
    has_tensorboard = is_tensorboard_available()
    if has_tensorboard and jax.process_index() == 0:
        try:
            from flax.metrics.tensorboard import SummaryWriter

            summary_writer = SummaryWriter(
                log_dir=Path(training_args.output_dir))
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run pip install tensorboard to enable.")

    # Initialize our training
    rng = jax.random.PRNGKey(training_args.seed)
    dropout_rngs = jax.random.split(rng, jax.local_device_count())

    if model_args.model_name_or_path:
        model = FlaxT5ForConditionalGeneration.from_pretrained(
            model_args.model_name_or_path,
            config=config,
            seed=training_args.seed,
            dtype=getattr(jnp, model_args.dtype))
    else:
        config.vocab_size = len(tokenizer)
        model = FlaxT5ForConditionalGeneration(config,
                                               seed=training_args.seed,
                                               dtype=getattr(
                                                   jnp, model_args.dtype))

    # Data collator
    # This one will take care of randomly masking the tokens.
    data_collator = FlaxDataCollatorForT5MLM(
        tokenizer=tokenizer,
        noise_density=data_args.mlm_probability,
        mean_noise_span_length=data_args.mean_noise_span_length,
        input_length=max_seq_length,
        target_length=targets_length,
        pad_token_id=model.config.pad_token_id,
        decoder_start_token_id=model.config.decoder_start_token_id,
    )

    # Store some constant
    num_epochs = int(training_args.num_train_epochs)
    train_batch_size = int(
        training_args.per_device_train_batch_size) * jax.device_count()
    eval_batch_size = int(
        training_args.per_device_eval_batch_size) * jax.device_count()

    num_train_steps = len(
        tokenized_datasets["train"]) // train_batch_size * num_epochs

    # Create learning rate schedule
    warmup_fn = optax.linear_schedule(
        init_value=0.0,
        end_value=training_args.learning_rate,
        transition_steps=training_args.warmup_steps)
    decay_fn = optax.linear_schedule(
        init_value=training_args.learning_rate,
        end_value=0,
        transition_steps=num_train_steps - training_args.warmup_steps,
    )
    linear_decay_lr_schedule_fn = optax.join_schedules(
        schedules=[warmup_fn, decay_fn],
        boundaries=[training_args.warmup_steps])

    # We use Optax's "masking" functionality to not apply weight decay
    # to bias and LayerNorm scale parameters. decay_mask_fn returns a
    # mask boolean with the same structure as the parameters.
    # The mask is True for parameters that should be decayed.
    def decay_mask_fn(params):
        flat_params = traverse_util.flatten_dict(params)
        flat_mask = {
            path: (path[-1] != "bias"
                   and path[-2:] not in [("layer_norm", "scale"),
                                         ("final_layer_norm", "scale")])
            for path in flat_params
        }
        return traverse_util.unflatten_dict(flat_mask)

    # create adam optimizer
    if training_args.adafactor:
        # We use the default parameters here to initialize adafactor,
        # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
        optimizer = optax.adafactor(
            learning_rate=linear_decay_lr_schedule_fn, )
    else:
        optimizer = optax.adamw(
            learning_rate=linear_decay_lr_schedule_fn,
            b1=training_args.adam_beta1,
            b2=training_args.adam_beta2,
            weight_decay=training_args.weight_decay,
            mask=decay_mask_fn,
        )

    # Setup train state
    state = train_state.TrainState.create(apply_fn=model.__call__,
                                          params=model.params,
                                          tx=optimizer)

    # Define gradient update step fn
    def train_step(state, batch, dropout_rng):
        dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)

        def loss_fn(params):
            labels = batch.pop("labels")

            logits = state.apply_fn(**batch,
                                    params=params,
                                    dropout_rng=dropout_rng,
                                    train=True)[0]

            # compute loss
            loss = optax.softmax_cross_entropy(
                logits, onehot(labels, logits.shape[-1])).mean()

            return loss

        grad_fn = jax.value_and_grad(loss_fn)
        loss, grad = grad_fn(state.params)
        grad = jax.lax.pmean(grad, "batch")
        new_state = state.apply_gradients(grads=grad)

        metrics = jax.lax.pmean(
            {
                "loss": loss,
                "learning_rate": linear_decay_lr_schedule_fn(state.step)
            },
            axis_name="batch")

        return new_state, metrics, new_dropout_rng

    # Create parallel version of the train step
    p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0, ))

    # Define eval fn
    def eval_step(params, batch):
        labels = batch.pop("labels")

        logits = model(**batch, params=params, train=False)[0]

        # compute loss
        loss = optax.softmax_cross_entropy(logits,
                                           onehot(labels, logits.shape[-1]))

        # compute accuracy
        accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels)

        # summarize metrics
        metrics = {"loss": loss.mean(), "accuracy": accuracy.mean()}
        metrics = jax.lax.pmean(metrics, axis_name="batch")

        return metrics

    p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0, ))

    # Replicate the train state on each device
    state = jax_utils.replicate(state)

    train_time = 0
    epochs = tqdm(range(num_epochs), desc="Epoch ... ", position=0)
    for epoch in epochs:
        # ======================== Training ================================
        train_start = time.time()
        train_metrics = []

        # Create sampling rng
        rng, input_rng = jax.random.split(rng)

        # Generate an epoch by shuffling sampling indices from the train dataset
        num_train_samples = len(tokenized_datasets["train"])
        train_samples_idx = np.random.permutation(np.arange(num_train_samples))
        train_batch_idx = generate_batch_splits(train_samples_idx,
                                                train_batch_size)

        # Gather the indexes for creating the batch and do a training step
        for step, batch_idx in enumerate(
                tqdm(train_batch_idx, desc="Training...", position=1)):
            samples = [
                tokenized_datasets["train"][int(idx)] for idx in batch_idx
            ]
            model_inputs = data_collator(samples)

            # Model forward
            model_inputs = shard(model_inputs.data)
            state, train_metric, dropout_rngs = p_train_step(
                state, model_inputs, dropout_rngs)
            train_metrics.append(train_metric)

            cur_step = epoch * (num_train_samples // train_batch_size) + step

            if cur_step % training_args.logging_steps == 0 and cur_step > 0:
                # Save metrics
                train_metric = jax_utils.unreplicate(train_metric)
                train_time += time.time() - train_start
                if has_tensorboard and jax.process_index() == 0:
                    write_train_metric(summary_writer, train_metrics,
                                       train_time, cur_step)

                epochs.write(
                    f"Step... ({cur_step} | Loss: {train_metric['loss'].mean()}, Learning Rate: {train_metric['learning_rate'].mean()})"
                )

                train_metrics = []

            if cur_step % training_args.eval_steps == 0 and cur_step > 0:
                # ======================== Evaluating ==============================
                num_eval_samples = len(tokenized_datasets["validation"])
                eval_samples_idx = jnp.arange(num_eval_samples)
                eval_batch_idx = generate_batch_splits(eval_samples_idx,
                                                       eval_batch_size)

                eval_metrics = []
                for i, batch_idx in enumerate(
                        tqdm(eval_batch_idx, desc="Evaluating ...",
                             position=2)):
                    samples = [
                        tokenized_datasets["validation"][int(idx)]
                        for idx in batch_idx
                    ]
                    model_inputs = data_collator(samples)

                    # Model forward
                    model_inputs = shard(model_inputs.data)
                    metrics = p_eval_step(state.params, model_inputs)
                    eval_metrics.append(metrics)

                # get eval metrics
                eval_metrics = get_metrics(eval_metrics)
                eval_metrics = jax.tree_map(jnp.mean, eval_metrics)

                # Update progress bar
                epochs.write(
                    f"Step... ({cur_step} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})"
                )

                # Save metrics
                if has_tensorboard and jax.process_index() == 0:
                    write_eval_metric(summary_writer, eval_metrics, cur_step)

            if cur_step % training_args.save_steps == 0 and cur_step > 0:
                # save checkpoint after each epoch and push checkpoint to the hub
                if jax.process_index() == 0:
                    params = jax.device_get(
                        jax.tree_map(lambda x: x[0], state.params))
                    model.save_pretrained(training_args.output_dir,
                                          params=params)
                    tokenizer.save_pretrained(training_args.output_dir)
                    if training_args.push_to_hub:
                        repo.push_to_hub(
                            commit_message=
                            f"Saving weights and logs of step {cur_step}",
                            blocking=False)

    # Eval after training
    if training_args.do_eval:
        num_eval_samples = len(tokenized_datasets["validation"])
        eval_samples_idx = jnp.arange(num_eval_samples)
        eval_batch_idx = generate_batch_splits(eval_samples_idx,
                                               eval_batch_size)

        eval_metrics = []
        for i, batch_idx in enumerate(
                tqdm(eval_batch_idx, desc="Evaluating ...", position=2)):
            samples = [
                tokenized_datasets["validation"][int(idx)] for idx in batch_idx
            ]
            model_inputs = data_collator(samples)

            # Model forward
            model_inputs = shard(model_inputs.data)
            metrics = p_eval_step(state.params, model_inputs)
            eval_metrics.append(metrics)

        # get eval metrics
        eval_metrics = get_metrics(eval_metrics)
        eval_metrics = jax.tree_map(lambda metric: jnp.mean(metric).item(),
                                    eval_metrics)

        if jax.process_index() == 0:
            eval_metrics = {
                f"eval_{metric_name}": value
                for metric_name, value in eval_metrics.items()
            }
            path = os.path.join(training_args.output_dir, "eval_results.json")
            with open(path, "w") as f:
                json.dump(eval_metrics, f, indent=4, sort_keys=True)
Beispiel #27
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        (
            model_args,
            data_args,
            training_args,
        ) = parser.parse_args_into_dataclasses()

    if (os.path.exists(training_args.output_dir)
            and os.listdir(training_args.output_dir) and training_args.do_train
            and not training_args.overwrite_output_dir):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty."
            "Use --overwrite_output_dir to overcome.")

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO
        if is_main_process(training_args.local_rank) else logging.WARN,
    )

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        datasets = load_dataset(data_args.dataset_name,
                                data_args.dataset_config_name)
        if "validation" not in datasets.keys():
            datasets["validation"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
            )
            datasets["train"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
            )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = data_args.train_file.split(".")[-1]
        if extension == "txt":
            extension = "text"
        datasets = load_dataset(extension, data_files=data_files)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name,
                                            **config_kwargs)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path,
                                            **config_kwargs)
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning(
            "You are instantiating a new config instance from scratch.")

    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name,
                                                  **tokenizer_kwargs)
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path, **tokenizer_kwargs)
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = AutoModelForCausalLM.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelForCausalLM.from_config(config)

    model.resize_token_embeddings(len(tokenizer))

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
        column_names = datasets["train"].column_names
    else:
        column_names = datasets["validation"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

    def tokenize_function(examples):
        return tokenizer(examples[text_column_name])

    tokenized_datasets = datasets.map(
        tokenize_function,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        remove_columns=column_names,
        load_from_cache_file=not data_args.overwrite_cache,
    )

    if data_args.block_size is None:
        block_size = tokenizer.model_max_length
        if block_size > 1024:
            logger.warn(
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
                "Picking 1024 instead. You can change that default value by passing --block_size xxx."
            )
        block_size = 1024
    else:
        if data_args.block_size > tokenizer.model_max_length:
            logger.warn(
                f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
                f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
            )
        block_size = min(data_args.block_size, tokenizer.model_max_length)

    # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
    def group_texts(examples):
        # Concatenate all texts.
        concatenated_examples = {
            k: sum(examples[k], [])
            for k in examples.keys()
        }
        total_length = len(concatenated_examples[list(examples.keys())[0]])
        # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
        # customize this part to your needs.
        total_length = (total_length // block_size) * block_size
        # Split by chunks of max_len.
        result = {
            k:
            [t[i:i + block_size] for i in range(0, total_length, block_size)]
            for k, t in concatenated_examples.items()
        }
        result["labels"] = result["input_ids"].copy()
        return result

    # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
    # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
    # to preprocess.
    #
    # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
    # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
    lm_datasets = tokenized_datasets.map(
        group_texts,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        load_from_cache_file=not data_args.overwrite_cache,
    )

    # MINE

    special_tokens_dict = {
        "bos_token": "<BOS>",
        "eos_token": "<EOS>",
        "pad_token": "<PAD>",
    }
    num_added_toks = tokenizer.add_special_tokens(special_tokens_dict)
    model.resize_token_embeddings(len(tokenizer))

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=lm_datasets["train"] if training_args.do_train else None,
        eval_dataset=lm_datasets["validation"]
        if training_args.do_eval else None,
        tokenizer=tokenizer,
        # Data collator will default to DataCollatorWithPadding, so we change it.
        data_collator=default_data_collator,
    )

    # Training
    if training_args.do_train:
        model_path = (model_args.model_name_or_path if
                      (model_args.model_name_or_path is not None
                       and os.path.isdir(model_args.model_name_or_path)) else
                      None)
        train_result = trainer.train(model_path=model_path)
        trainer.save_model()  # Saves the tokenizer too for easy upload

        output_train_file = os.path.join(training_args.output_dir,
                                         "train_results.txt")
        if trainer.is_world_process_zero():
            with open(output_train_file, "w") as writer:
                logger.info("***** Train results *****")
                for key, value in sorted(train_result.metrics.items()):
                    logger.info(f"  {key} = {value}")
                    writer.write(f"{key} = {value}\n")

            # Need to save the state, since Trainer.save_model saves only the tokenizer with the model
            trainer.state.save_to_json(
                os.path.join(training_args.output_dir, "trainer_state.json"))

    # Evaluation
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        eval_output = trainer.evaluate()

        perplexity = math.exp(eval_output["eval_loss"])
        results["perplexity"] = perplexity

        output_eval_file = os.path.join(training_args.output_dir,
                                        "eval_results_clm.txt")
        if trainer.is_world_process_zero():
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key, value in sorted(results.items()):
                    logger.info(f"  {key} = {value}")
                    writer.write(f"{key} = {value}\n")

    return results
Beispiel #28
0
def main():
    # 1. Parse input arguments
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))

    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # 2. Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank
                                                    ) else logging.WARN)

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
    logger.info("Training/evaluation parameters %s", training_args)

    # 3. Detecting last checkpoint and eventualy continue from last checkpoint
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # 4. Load dataset
    raw_datasets = DatasetDict()

    if training_args.do_train:
        raw_datasets["train"] = load_dataset(data_args.dataset_name,
                                             data_args.dataset_config_name,
                                             split=data_args.train_split_name)

    if training_args.do_eval:
        raw_datasets["eval"] = load_dataset(data_args.dataset_name,
                                            data_args.dataset_config_name,
                                            split=data_args.eval_split_name)

    if data_args.audio_column_name not in next(iter(
            raw_datasets.values())).column_names:
        raise ValueError(
            f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
            "Make sure to set `--audio_column_name` to the correct audio column - one of "
            f"{', '.join(next(iter(raw_datasets.values())).column_names)}.")

    if data_args.text_column_name not in next(iter(
            raw_datasets.values())).column_names:
        raise ValueError(
            f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
            "Make sure to set `--text_column_name` to the correct text column - one of "
            f"{', '.join(next(iter(raw_datasets.values())).column_names)}.")

    # 5. Load pretrained model, tokenizer, and feature extractor
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    config = AutoConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.feature_extractor_name if model_args.feature_extractor_name
        else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForSpeechSeq2Seq.from_pretrained(
        model_args.model_name_or_path,
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    if model.config.decoder_start_token_id is None:
        raise ValueError(
            "Make sure that `config.decoder_start_token_id` is correctly defined"
        )

    if model_args.freeze_feature_encoder:
        model.freeze_feature_encoder()

    # 6. Resample speech dataset if necassary
    dataset_sampling_rate = next(iter(raw_datasets.values())).features[
        data_args.audio_column_name].sampling_rate
    if dataset_sampling_rate != feature_extractor.sampling_rate:
        raw_datasets = raw_datasets.cast_column(
            data_args.audio_column_name,
            datasets.features.Audio(
                sampling_rate=feature_extractor.sampling_rate))

    # 7. Preprocessing the datasets.
    # We need to read the audio files as arrays and tokenize the targets.
    max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
    min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
    audio_column_name = data_args.audio_column_name
    num_workers = data_args.preprocessing_num_workers
    text_column_name = data_args.text_column_name
    model_input_name = feature_extractor.model_input_names[0]
    do_lower_case = data_args.do_lower_case

    if data_args.max_train_samples is not None:
        raw_datasets["train"] = raw_datasets["train"].select(
            range(data_args.max_train_samples))

    if data_args.max_eval_samples is not None:
        raw_datasets["eval"] = raw_datasets["eval"].select(
            range(data_args.max_eval_samples))

    def prepare_dataset(batch):
        # process audio
        sample = batch[audio_column_name]
        inputs = feature_extractor(sample["array"],
                                   sampling_rate=sample["sampling_rate"])
        # process audio length
        batch[model_input_name] = inputs.input_values[0]
        batch["input_length"] = len(batch["input_values"])

        # process targets
        input_str = batch[text_column_name].lower(
        ) if do_lower_case else batch[text_column_name]
        batch["labels"] = tokenizer(input_str).input_ids
        return batch

    with training_args.main_process_first(desc="dataset map pre-processing"):
        vectorized_datasets = raw_datasets.map(
            prepare_dataset,
            remove_columns=next(iter(raw_datasets.values())).column_names,
            num_proc=data_args.preprocessing_num_workers,
            desc="preprocess train dataset",
        )

    # filter data that is shorter than min_input_length or longer than
    # max_input_length
    def is_audio_in_length_range(length):
        return length > min_input_length and length < max_input_length

    vectorized_datasets = vectorized_datasets.filter(
        is_audio_in_length_range,
        num_proc=num_workers,
        input_columns=["input_length"],
    )

    # for large datasets it is advised to run the preprocessing on a
    # single machine first with `args.preprocessing_only` since there will mostly likely
    # be a timeout when running the script in distributed mode.
    # In a second step `args.preprocessing_only` can then be set to `False` to load the
    # cached dataset
    if data_args.preprocessing_only:
        cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
        logger.info(f"Data preprocessing finished. Files cached at {cache}.")
        return

    # 8. Load Metric
    metric = load_metric("wer")

    def compute_metrics(pred):
        pred_ids = pred.predictions

        pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id

        pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
        # we do not want to group tokens when computing the metrics
        label_str = tokenizer.batch_decode(pred.label_ids,
                                           skip_special_tokens=True)

        wer = metric.compute(predictions=pred_str, references=label_str)

        return {"wer": wer}

    # 9. Create a single speech processor
    if is_main_process(training_args.local_rank):
        # save feature extractor, tokenizer and config
        feature_extractor.save_pretrained(training_args.output_dir)
        tokenizer.save_pretrained(training_args.output_dir)
        config.save_pretrained(training_args.output_dir)

    processor = AutoProcessor.from_pretrained(training_args.output_dir)

    # 10. Define data collator
    data_collator = DataCollatorSpeechSeq2SeqWithPadding(
        processor=processor,
        decoder_start_token_id=model.config.decoder_start_token_id)

    # 11. Initialize Trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=vectorized_datasets["train"]
        if training_args.do_train else None,
        eval_dataset=vectorized_datasets["eval"]
        if training_args.do_eval else None,
        tokenizer=feature_extractor,
        data_collator=data_collator,
        compute_metrics=compute_metrics
        if training_args.predict_with_generate else None,
    )

    # 12. Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()  # Saves the feature extractor too for easy upload

        metrics = train_result.metrics
        max_train_samples = (data_args.max_train_samples
                             if data_args.max_train_samples is not None else
                             len(vectorized_datasets["train"]))
        metrics["train_samples"] = min(max_train_samples,
                                       len(vectorized_datasets["train"]))
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # 13. Evaluation
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
        metrics = trainer.evaluate(metric_key_prefix="eval",
                                   max_length=model.config.max_length,
                                   num_beams=model.config.num_beams)
        max_eval_samples = (data_args.max_eval_samples
                            if data_args.max_eval_samples is not None else len(
                                vectorized_datasets["eval"]))
        metrics["eval_samples"] = min(max_eval_samples,
                                      len(vectorized_datasets["eval"]))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # 14. Write Training Stats
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "speech recognition"
    }
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs[
                "dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name

    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)

    return results
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))

    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    if (os.path.exists(training_args.output_dir)
            and os.listdir(training_args.output_dir) and training_args.do_train
            and not training_args.overwrite_output_dir):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
        )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO
        if training_args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16,
    )
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed
    set_seed(training_args.seed)

    try:
        num_labels = glue_tasks_num_labels[data_args.task_name]
        output_mode = glue_output_modes[data_args.task_name]
    except KeyError:
        raise ValueError("Task not found: %s" % (data_args.task_name))

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    config = AutoConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name else model_args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
    )

    config.label2id["negative"] = config.label2id.pop("LABEL_0")
    config.label2id["neutral"] = config.label2id.pop("LABEL_1")
    config.label2id["positive"] = config.label2id.pop("LABEL_2")
    config.id2label[0] = "negative"
    config.id2label[1] = "neutral"
    config.id2label[2] = "positive"

    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
    )
    model = AutoModelForSequenceClassification.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
    )

    # Get datasets
    train_dataset = (GlueDataset(
        data_args, tokenizer=tokenizer, cache_dir=model_args.cache_dir)
                     if training_args.do_train else None)
    eval_dataset = (GlueDataset(data_args,
                                tokenizer=tokenizer,
                                mode="dev",
                                cache_dir=model_args.cache_dir)
                    if training_args.do_eval else None)
    test_dataset = (GlueDataset(data_args,
                                tokenizer=tokenizer,
                                mode="test",
                                cache_dir=model_args.cache_dir)
                    if training_args.do_predict else None)

    def build_compute_metrics_fn(
            task_name: str) -> Callable[[EvalPrediction], Dict]:
        def compute_metrics_fn(p: EvalPrediction):
            if output_mode == "classification":
                preds = np.argmax(p.predictions, axis=1)
            elif output_mode == "regression":
                preds = np.squeeze(p.predictions)
            return glue_compute_metrics(task_name, preds, p.label_ids)

        return compute_metrics_fn

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        compute_metrics=build_compute_metrics_fn(data_args.task_name),
    )

    # Training
    if training_args.do_train:
        trainer.train(model_path=model_args.model_name_or_path if os.path.
                      isdir(model_args.model_name_or_path) else None)
        trainer.save_model()
        # For convenience, we also re-save the tokenizer to the same directory,
        # so that you can share your model easily on huggingface.co/models =)
        if trainer.is_world_master():
            tokenizer.save_pretrained(training_args.output_dir)

    # Evaluation
    eval_results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        # Loop to handle MNLI double evaluation (matched, mis-matched)
        eval_datasets = [eval_dataset]
        if data_args.task_name == "mnli":
            mnli_mm_data_args = dataclasses.replace(data_args,
                                                    task_name="mnli-mm")
            eval_datasets.append(
                GlueDataset(mnli_mm_data_args,
                            tokenizer=tokenizer,
                            mode="dev",
                            cache_dir=model_args.cache_dir))

        for eval_dataset in eval_datasets:
            trainer.compute_metrics = build_compute_metrics_fn(
                eval_dataset.args.task_name)
            eval_result = trainer.evaluate(eval_dataset=eval_dataset)

            output_eval_file = os.path.join(
                training_args.output_dir,
                f"eval_results_{eval_dataset.args.task_name}.txt")
            if trainer.is_world_master():
                with open(output_eval_file, "w") as writer:
                    logger.info("***** Eval results {} *****".format(
                        eval_dataset.args.task_name))
                    for key, value in eval_result.items():
                        logger.info("  %s = %s", key, value)
                        writer.write("%s = %s\n" % (key, value))

            eval_results.update(eval_result)

    if training_args.do_predict:
        logging.info("*** Test ***")
        test_datasets = [test_dataset]
        if data_args.task_name == "mnli":
            mnli_mm_data_args = dataclasses.replace(data_args,
                                                    task_name="mnli-mm")
            test_datasets.append(
                GlueDataset(mnli_mm_data_args,
                            tokenizer=tokenizer,
                            mode="test",
                            cache_dir=model_args.cache_dir))

        for test_dataset in test_datasets:
            predictions = trainer.predict(
                test_dataset=test_dataset).predictions
            if output_mode == "classification":
                predictions = np.argmax(predictions, axis=1)

            output_test_file = os.path.join(
                training_args.output_dir,
                f"test_results_{test_dataset.args.task_name}.txt")
            if trainer.is_world_master():
                with open(output_test_file, "w") as writer:
                    logger.info("***** Test results {} *****".format(
                        test_dataset.args.task_name))
                    writer.write("index\tprediction\n")
                    for index, item in enumerate(predictions):
                        if output_mode == "regression":
                            writer.write("%d\t%3.3f\n" % (index, item))
                        else:
                            item = test_dataset.get_labels()[item]
                            writer.write("%d\t%s\n" % (index, item))
    return eval_results
Beispiel #30
0
def main():

    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank
                                                    ) else logging.WARN)

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column. You can easily tweak this
    # behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        datasets = load_dataset(data_args.dataset_name,
                                data_args.dataset_config_name,
                                cache_dir=model_args.cache_dir)
        if "validation" not in datasets.keys():
            datasets["validation"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
            )
            datasets["train"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
            )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = data_args.train_file.split(".")[-1]
        if extension == "txt":
            extension = "text"
        datasets = load_dataset(extension,
                                data_files=data_files,
                                cache_dir=model_args.cache_dir)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }

    # load this separately, outside of configuration
    # this might be a bad idea -- check on config.name
    # model_args.model_name_or_path =  load_models.get_model_path('all', 'all', True)
    # if not os.path.exists(model_args.model_name_or_path):
    #     os.makedirs(model_args.model_name_or_path)

    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name,
                                            **config_kwargs)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path,
                                            **config_kwargs)
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning(
            "You are instantiating a new config instance from scratch.")

    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name,
                                                  **tokenizer_kwargs)
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path, **tokenizer_kwargs)
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    # I added the add_tokens and the print statements here.
    logger.info('Adding the speaker tags to the tokenizers')
    tokenizer.add_tokens(['[chi]', '[cgv]'])

    logger.info('Result of tokenizing tags')
    logger.info(
        tokenizer.convert_ids_to_tokens(
            tokenizer.encode("[CHI] i'm not going to do anything.")))
    logger.info(
        tokenizer.convert_ids_to_tokens(
            tokenizer.encode(
                '[CGV] back on the table if you wanna finish it.')))

    if model_args.model_name_or_path:
        model = AutoModelForMaskedLM.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelForMaskedLM.from_config(config)

    model.resize_token_embeddings(len(tokenizer))

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
        column_names = datasets["train"].column_names
    else:
        column_names = datasets["validation"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

    if data_args.max_seq_length is None:
        max_seq_length = tokenizer.model_max_length
        if max_seq_length > 1024:
            logger.warning(
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
                "Picking 1024 instead. You can change that default value by passing --max_seq_length xxx."
            )
            max_seq_length = 1024
    else:
        if data_args.max_seq_length > tokenizer.model_max_length:
            logger.warning(
                f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
                f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
            )
        max_seq_length = min(data_args.max_seq_length,
                             tokenizer.model_max_length)

    if data_args.line_by_line:
        # When using line_by_line, we just tokenize each nonempty line.
        padding = "max_length" if data_args.pad_to_max_length else False

        def tokenize_function(examples):
            # Remove empty lines
            examples["text"] = [
                line for line in examples["text"]
                if len(line) > 0 and not line.isspace()
            ]
            return tokenizer(
                examples["text"],
                padding=padding,
                truncation=True,
                max_length=max_seq_length,
                # We use this option because DataCollatorForLanguageModeling (see below) is more efficient when it
                # receives the `special_tokens_mask`.
                return_special_tokens_mask=True,
            )

        tokenized_datasets = datasets.map(
            tokenize_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=[text_column_name],
            load_from_cache_file=not data_args.overwrite_cache,
        )
    else:
        # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
        # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
        # efficient when it receives the `special_tokens_mask`.
        def tokenize_function(examples):
            return tokenizer(examples[text_column_name],
                             return_special_tokens_mask=True)

        tokenized_datasets = datasets.map(
            tokenize_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
        )

        # Main data processing function that will concatenate all texts from our dataset and generate chunks of
        # max_seq_length.
        def group_texts(examples):
            # Concatenate all texts.
            concatenated_examples = {
                k: sum(examples[k], [])
                for k in examples.keys()
            }
            total_length = len(concatenated_examples[list(examples.keys())[0]])
            # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
            # customize this part to your needs.
            total_length = (total_length // max_seq_length) * max_seq_length
            # Split by chunks of max_len.
            result = {
                k: [
                    t[i:i + max_seq_length]
                    for i in range(0, total_length, max_seq_length)
                ]
                for k, t in concatenated_examples.items()
            }
            return result

        # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
        # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
        # might be slower to preprocess.
        #
        # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
        # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map

        tokenized_datasets = tokenized_datasets.map(
            group_texts,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = tokenized_datasets["train"]
        train_dataset = train_dataset.shuffle(
            config_repository.SEED)  # Added this line 8/16/21
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(
                range(data_args.max_train_samples))

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = tokenized_datasets["validation"]
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(
                range(data_args.max_eval_samples))

    # Data collator
    # This one will take care of randomly masking the tokens.
    pad_to_multiple_of_8 = data_args.line_by_line and training_args.fp16 and not data_args.pad_to_max_length
    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer,
        mlm_probability=data_args.mlm_probability,
        pad_to_multiple_of=8 if pad_to_multiple_of_8 else None,
    )

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()  # Saves the tokenizer too for easy upload
        metrics = train_result.metrics

        max_train_samples = (data_args.max_train_samples
                             if data_args.max_train_samples is not None else
                             len(train_dataset))
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        metrics = trainer.evaluate()

        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(
            eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
        perplexity = math.exp(metrics["eval_loss"])
        metrics["perplexity"] = perplexity

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    if training_args.push_to_hub:
        kwargs = {
            "finetuned_from": model_args.model_name_or_path,
            "tags": "fill-mask"
        }
        if data_args.dataset_name is not None:
            kwargs["dataset_tags"] = data_args.dataset_name
            if data_args.dataset_config_name is not None:
                kwargs["dataset_args"] = data_args.dataset_config_name
                kwargs[
                    "dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
            else:
                kwargs["dataset"] = data_args.dataset_name

        trainer.push_to_hub(**kwargs)

    logger.info('Training and evaluation complete')