def create_and_check_for_token_classification(self, config, input_ids,
                                               token_type_ids, input_mask,
                                               sequence_labels,
                                               token_labels, choice_labels):
     config.num_labels = self.num_labels
     model = LongformerForTokenClassification(config=config)
     model.to(torch_device)
     model.eval()
     result = model(input_ids,
                    attention_mask=input_mask,
                    token_type_ids=token_type_ids,
                    labels=token_labels)
     self.parent.assertEqual(
         result.logits.shape,
         (self.batch_size, self.seq_length, self.num_labels))
 def create_and_check_longformer_for_token_classification(
         self, config, input_ids, token_type_ids, input_mask,
         sequence_labels, token_labels, choice_labels):
     config.num_labels = self.num_labels
     model = LongformerForTokenClassification(config=config)
     model.to(torch_device)
     model.eval()
     result = model(input_ids,
                    attention_mask=input_mask,
                    token_type_ids=token_type_ids,
                    labels=token_labels)
     self.parent.assertListEqual(
         list(result["logits"].size()),
         [self.batch_size, self.seq_length, self.num_labels])
     self.check_loss_output(result)