def create_and_check_for_token_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels): config.num_labels = self.num_labels model = LongformerForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_longformer_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels): config.num_labels = self.num_labels model = LongformerForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertListEqual( list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels]) self.check_loss_output(result)