Beispiel #1
0
def sparse_select_side(hyperplane, offset, point_inds, point_data, rng_state):
    margin = offset

    hyperplane_inds = arr_unique(hyperplane[0])
    hyperplane_data = hyperplane[1, :hyperplane_inds.shape[0]]

    aux_inds, aux_data = sparse_mul(hyperplane_inds, hyperplane_data,
                                    point_inds, point_data)

    for d in range(aux_data.shape[0]):
        margin += aux_data[d]

    if margin == 0:
        side = abs(tau_rand_int(rng_state)) % 2
        if side == 0:
            return 0
        else:
            return 1
    elif margin > 0:
        return 0
    else:
        return 1
Beispiel #2
0
def sparse_euclidean_random_projection_split(inds, indptr, data, indices,
                                             rng_state):
    """Given a set of ``indices`` for data points from a sparse data set
    presented in csr sparse format as inds, indptr and data, create
    a random hyperplane to split the data, returning two arrays indices
    that fall on either side of the hyperplane. This is the basis for a
    random projection tree, which simply uses this splitting recursively.
    This particular split uses cosine distance to determine the hyperplane
    and which side each data sample falls on.
    Parameters
    ----------
    inds: array
        CSR format index array of the matrix
    indptr: array
        CSR format index pointer array of the matrix
    data: array
        CSR format data array of the matrix
    indices: array of shape (tree_node_size,)
        The indices of the elements in the ``data`` array that are to
        be split in the current operation.
    rng_state: array of int64, shape (3,)
        The internal state of the rng
    Returns
    -------
    indices_left: array
        The elements of ``indices`` that fall on the "left" side of the
        random hyperplane.
    indices_right: array
        The elements of ``indices`` that fall on the "left" side of the
        random hyperplane.
    """
    # Select two random points, set the hyperplane between them
    left_index = tau_rand_int(rng_state) % indices.shape[0]
    right_index = tau_rand_int(rng_state) % indices.shape[0]
    right_index += left_index == right_index
    right_index = right_index % indices.shape[0]
    left = indices[left_index]
    right = indices[right_index]

    left_inds = inds[indptr[left]:indptr[left + 1]]
    left_data = data[indptr[left]:indptr[left + 1]]
    right_inds = inds[indptr[right]:indptr[right + 1]]
    right_data = data[indptr[right]:indptr[right + 1]]

    # Compute the normal vector to the hyperplane (the vector between
    # the two points) and the offset from the origin
    hyperplane_offset = 0.0
    hyperplane_inds, hyperplane_data = sparse_diff(left_inds, left_data,
                                                   right_inds, right_data)
    offset_inds, offset_data = sparse_sum(left_inds, left_data, right_inds,
                                          right_data)
    offset_data = offset_data / 2.0
    offset_inds, offset_data = sparse_mul(hyperplane_inds, hyperplane_data,
                                          offset_inds, offset_data)

    for d in range(offset_data.shape[0]):
        hyperplane_offset -= offset_data[d]

    # For each point compute the margin (project into normal vector, add offset)
    # If we are on lower side of the hyperplane put in one pile, otherwise
    # put it in the other pile (if we hit hyperplane on the nose, flip a coin)
    n_left = 0
    n_right = 0
    side = np.empty(indices.shape[0], np.int8)
    for i in range(indices.shape[0]):
        margin = hyperplane_offset
        i_inds = inds[indptr[indices[i]]:indptr[indices[i] + 1]]
        i_data = data[indptr[indices[i]]:indptr[indices[i] + 1]]

        mul_inds, mul_data = sparse_mul(hyperplane_inds, hyperplane_data,
                                        i_inds, i_data)
        for d in range(mul_data.shape[0]):
            margin += mul_data[d]

        if abs(margin) < EPS:
            side[i] = tau_rand_int(rng_state) % 2
            if side[i] == 0:
                n_left += 1
            else:
                n_right += 1
        elif margin > 0:
            side[i] = 0
            n_left += 1
        else:
            side[i] = 1
            n_right += 1

    # Now that we have the counts allocate arrays
    indices_left = np.empty(n_left, dtype=np.int64)
    indices_right = np.empty(n_right, dtype=np.int64)

    # Populate the arrays with indices according to which side they fell on
    n_left = 0
    n_right = 0
    for i in range(side.shape[0]):
        if side[i] == 0:
            indices_left[n_left] = indices[i]
            n_left += 1
        else:
            indices_right[n_right] = indices[i]
            n_right += 1

    hyperplane = np.vstack((hyperplane_inds, hyperplane_data))

    return indices_left, indices_right, hyperplane, hyperplane_offset