def sparse_select_side(hyperplane, offset, point_inds, point_data, rng_state): margin = offset hyperplane_inds = arr_unique(hyperplane[0]) hyperplane_data = hyperplane[1, :hyperplane_inds.shape[0]] aux_inds, aux_data = sparse_mul(hyperplane_inds, hyperplane_data, point_inds, point_data) for d in range(aux_data.shape[0]): margin += aux_data[d] if margin == 0: side = abs(tau_rand_int(rng_state)) % 2 if side == 0: return 0 else: return 1 elif margin > 0: return 0 else: return 1
def sparse_euclidean_random_projection_split(inds, indptr, data, indices, rng_state): """Given a set of ``indices`` for data points from a sparse data set presented in csr sparse format as inds, indptr and data, create a random hyperplane to split the data, returning two arrays indices that fall on either side of the hyperplane. This is the basis for a random projection tree, which simply uses this splitting recursively. This particular split uses cosine distance to determine the hyperplane and which side each data sample falls on. Parameters ---------- inds: array CSR format index array of the matrix indptr: array CSR format index pointer array of the matrix data: array CSR format data array of the matrix indices: array of shape (tree_node_size,) The indices of the elements in the ``data`` array that are to be split in the current operation. rng_state: array of int64, shape (3,) The internal state of the rng Returns ------- indices_left: array The elements of ``indices`` that fall on the "left" side of the random hyperplane. indices_right: array The elements of ``indices`` that fall on the "left" side of the random hyperplane. """ # Select two random points, set the hyperplane between them left_index = tau_rand_int(rng_state) % indices.shape[0] right_index = tau_rand_int(rng_state) % indices.shape[0] right_index += left_index == right_index right_index = right_index % indices.shape[0] left = indices[left_index] right = indices[right_index] left_inds = inds[indptr[left]:indptr[left + 1]] left_data = data[indptr[left]:indptr[left + 1]] right_inds = inds[indptr[right]:indptr[right + 1]] right_data = data[indptr[right]:indptr[right + 1]] # Compute the normal vector to the hyperplane (the vector between # the two points) and the offset from the origin hyperplane_offset = 0.0 hyperplane_inds, hyperplane_data = sparse_diff(left_inds, left_data, right_inds, right_data) offset_inds, offset_data = sparse_sum(left_inds, left_data, right_inds, right_data) offset_data = offset_data / 2.0 offset_inds, offset_data = sparse_mul(hyperplane_inds, hyperplane_data, offset_inds, offset_data) for d in range(offset_data.shape[0]): hyperplane_offset -= offset_data[d] # For each point compute the margin (project into normal vector, add offset) # If we are on lower side of the hyperplane put in one pile, otherwise # put it in the other pile (if we hit hyperplane on the nose, flip a coin) n_left = 0 n_right = 0 side = np.empty(indices.shape[0], np.int8) for i in range(indices.shape[0]): margin = hyperplane_offset i_inds = inds[indptr[indices[i]]:indptr[indices[i] + 1]] i_data = data[indptr[indices[i]]:indptr[indices[i] + 1]] mul_inds, mul_data = sparse_mul(hyperplane_inds, hyperplane_data, i_inds, i_data) for d in range(mul_data.shape[0]): margin += mul_data[d] if abs(margin) < EPS: side[i] = tau_rand_int(rng_state) % 2 if side[i] == 0: n_left += 1 else: n_right += 1 elif margin > 0: side[i] = 0 n_left += 1 else: side[i] = 1 n_right += 1 # Now that we have the counts allocate arrays indices_left = np.empty(n_left, dtype=np.int64) indices_right = np.empty(n_right, dtype=np.int64) # Populate the arrays with indices according to which side they fell on n_left = 0 n_right = 0 for i in range(side.shape[0]): if side[i] == 0: indices_left[n_left] = indices[i] n_left += 1 else: indices_right[n_right] = indices[i] n_right += 1 hyperplane = np.vstack((hyperplane_inds, hyperplane_data)) return indices_left, indices_right, hyperplane, hyperplane_offset