def _construct_placeholders(self):
        """Create placeholders for our model"""
        self.input_users = tf.placeholder(tf.int32, [None], 'UserID')
        self.input_items = tf.placeholder(tf.int32, [None], 'ItemID')
        self.input_items_negative = tf.placeholder(tf.int32, [None],
                                                   'NegativeItemID')
        self.input_neighborhoods = tf.placeholder(tf.int32, [None, None],
                                                  'Neighborhood')

        self.input_neighborhood_lengths = tf.placeholder(tf.int32, [None],
                                                         'NeighborhoodLengthID')

        self.input_neighborhoods_negative = tf.placeholder(tf.int32,
                                                           [None, None],
                                                           'NeighborhoodNeg')

        self.input_neighborhood_lengths_negative = tf.placeholder(tf.int32,
                                                                  [None],
                                                                  'NeighborhoodLengthIDNeg')
        # Add our placeholders
        add_to_collection(GraphKeys.PLACEHOLDER, [self.input_users,
                                                  self.input_items,
                                                  self.input_items_negative,
                                                  self.input_neighborhoods,
                                                  self.input_neighborhood_lengths,
                                                  self.input_neighborhoods_negative,
                                                  self.input_neighborhood_lengths_negative,
                                                  self.dropout])
    def _construct_placeholders(self):
        self.input_users = tf.placeholder(tf.int32, [None], 'UserID')
        self.input_items = tf.placeholder(tf.int32, [None], 'ItemID')
        self.input_items_negative = tf.placeholder(tf.int32, [None], 'NegativeItemID')

        # Add our placeholders
        add_to_collection(GraphKeys.PLACEHOLDER, [self.input_users,
                                                  self.input_items,
                                                  self.input_items_negative])
Beispiel #3
0
    def _construct_placeholders(self):
        self.input_users = tf.placeholder(tf.int32, [None], 'UserID')
        self.input_items = tf.placeholder(tf.int32, [None], 'ItemID')
        self.input_items_negative = tf.placeholder(tf.int32, [None],
                                                   'NegativeItemID')

        # Add our placeholders
        add_to_collection(
            GraphKeys.PLACEHOLDER,
            [self.input_users, self.input_items, self.input_items_negative])
    def _construct_placeholders(self):
        self.input_users = tf.placeholder(tf.int32, [None], 'UserID')
        self.input_items = tf.placeholder(tf.int32, [None], 'ItemID')

        # LC > popularity of positive items
        self.input_positive_items_popularity = tf.placeholder(
            tf.float32, [None], 'PositiveItemsPopularity')

        self.input_items_negative = tf.placeholder(tf.int32, [None],
                                                   'NegativeItemID')

        # LC > popularity of negative items
        self.input_negative_items_popularity = tf.placeholder(
            tf.float32, [None], 'NegativeItemsPopularity')

        # Add our placeholders
        add_to_collection(GraphKeys.PLACEHOLDER, [
            self.input_users, self.input_items,
            self.input_positive_items_popularity, self.input_items_negative,
            self.input_negative_items_popularity
        ])
    def _construct_placeholders(self):
        """Create placeholders for our model"""
        self.input_users = tf.placeholder(tf.int32, [None], 'UserID')
        self.input_items = tf.placeholder(tf.int32, [None], 'ItemID')

        # LC > popularity of positive items
        self.input_positive_items_popularity = tf.placeholder(
            tf.float32, [None], 'PositiveItemsPopularity')

        self.input_items_negative = tf.placeholder(tf.int32, [None],
                                                   'NegativeItemID')

        # LC > popularity of negative items
        self.input_negative_items_popularity = tf.placeholder(
            tf.float32, [None], 'NegativeItemsPopularity')

        self.input_neighborhoods = tf.placeholder(tf.int32, [None, None],
                                                  'Neighborhood')

        self.input_neighborhood_lengths = tf.placeholder(
            tf.int32, [None], 'NeighborhoodLengthID')

        self.input_neighborhoods_negative = tf.placeholder(
            tf.int32, [None, None], 'NeighborhoodNeg')  # X

        self.input_neighborhood_lengths_negative = tf.placeholder(
            tf.int32, [None], 'NeighborhoodLengthIDNeg')  # X

        # Add our placeholders
        add_to_collection(GraphKeys.PLACEHOLDER, [
            self.input_users, self.input_items,
            self.input_positive_items_popularity, self.input_items_negative,
            self.input_negative_items_popularity, self.input_neighborhoods,
            self.input_neighborhood_lengths, self.input_neighborhoods_negative,
            self.input_neighborhood_lengths_negative, self.dropout
        ])