def _construct_placeholders(self): """Create placeholders for our model""" self.input_users = tf.placeholder(tf.int32, [None], 'UserID') self.input_items = tf.placeholder(tf.int32, [None], 'ItemID') self.input_items_negative = tf.placeholder(tf.int32, [None], 'NegativeItemID') self.input_neighborhoods = tf.placeholder(tf.int32, [None, None], 'Neighborhood') self.input_neighborhood_lengths = tf.placeholder(tf.int32, [None], 'NeighborhoodLengthID') self.input_neighborhoods_negative = tf.placeholder(tf.int32, [None, None], 'NeighborhoodNeg') self.input_neighborhood_lengths_negative = tf.placeholder(tf.int32, [None], 'NeighborhoodLengthIDNeg') # Add our placeholders add_to_collection(GraphKeys.PLACEHOLDER, [self.input_users, self.input_items, self.input_items_negative, self.input_neighborhoods, self.input_neighborhood_lengths, self.input_neighborhoods_negative, self.input_neighborhood_lengths_negative, self.dropout])
def _construct_placeholders(self): self.input_users = tf.placeholder(tf.int32, [None], 'UserID') self.input_items = tf.placeholder(tf.int32, [None], 'ItemID') self.input_items_negative = tf.placeholder(tf.int32, [None], 'NegativeItemID') # Add our placeholders add_to_collection(GraphKeys.PLACEHOLDER, [self.input_users, self.input_items, self.input_items_negative])
def _construct_placeholders(self): self.input_users = tf.placeholder(tf.int32, [None], 'UserID') self.input_items = tf.placeholder(tf.int32, [None], 'ItemID') self.input_items_negative = tf.placeholder(tf.int32, [None], 'NegativeItemID') # Add our placeholders add_to_collection( GraphKeys.PLACEHOLDER, [self.input_users, self.input_items, self.input_items_negative])
def _construct_placeholders(self): self.input_users = tf.placeholder(tf.int32, [None], 'UserID') self.input_items = tf.placeholder(tf.int32, [None], 'ItemID') # LC > popularity of positive items self.input_positive_items_popularity = tf.placeholder( tf.float32, [None], 'PositiveItemsPopularity') self.input_items_negative = tf.placeholder(tf.int32, [None], 'NegativeItemID') # LC > popularity of negative items self.input_negative_items_popularity = tf.placeholder( tf.float32, [None], 'NegativeItemsPopularity') # Add our placeholders add_to_collection(GraphKeys.PLACEHOLDER, [ self.input_users, self.input_items, self.input_positive_items_popularity, self.input_items_negative, self.input_negative_items_popularity ])
def _construct_placeholders(self): """Create placeholders for our model""" self.input_users = tf.placeholder(tf.int32, [None], 'UserID') self.input_items = tf.placeholder(tf.int32, [None], 'ItemID') # LC > popularity of positive items self.input_positive_items_popularity = tf.placeholder( tf.float32, [None], 'PositiveItemsPopularity') self.input_items_negative = tf.placeholder(tf.int32, [None], 'NegativeItemID') # LC > popularity of negative items self.input_negative_items_popularity = tf.placeholder( tf.float32, [None], 'NegativeItemsPopularity') self.input_neighborhoods = tf.placeholder(tf.int32, [None, None], 'Neighborhood') self.input_neighborhood_lengths = tf.placeholder( tf.int32, [None], 'NeighborhoodLengthID') self.input_neighborhoods_negative = tf.placeholder( tf.int32, [None, None], 'NeighborhoodNeg') # X self.input_neighborhood_lengths_negative = tf.placeholder( tf.int32, [None], 'NeighborhoodLengthIDNeg') # X # Add our placeholders add_to_collection(GraphKeys.PLACEHOLDER, [ self.input_users, self.input_items, self.input_positive_items_popularity, self.input_items_negative, self.input_negative_items_popularity, self.input_neighborhoods, self.input_neighborhood_lengths, self.input_neighborhoods_negative, self.input_neighborhood_lengths_negative, self.dropout ])