Beispiel #1
0
    def dump_output(self, *print_properties):
        """ Print output based on level of detail required
        
        The default detail level (low) is the integrator's calc's update 
        property for each named particle array.
        
        The higher detail level dumps all particle array properties.
        
        """

        fname = self.fname + '_'
        props = {}

        cell_size = self.particles.cell_manager.cell_size

        for pa in self.particles.arrays:
            name = pa.name
            _fname = os.path.join(self.output_directory,
                                  fname + name + '_' + str(self.t) + '.npz')

            if self.detailed_output:
                savez(_fname, dt=self.dt, **pa.properties)

            else:
                for prop in print_properties:
                    props[prop] = pa.get(prop)

                savez(_fname,
                      dt=self.dt,
                      cell_size=cell_size,
                      np=pa.num_real_particles,
                      **props)
Beispiel #2
0
    def dump_output(self, *print_properties):
        """ Print output based on level of detail required
        
        The default detail level (low) is the integrator's calc's update 
        property for each named particle array.
        
        The higher detail level dumps all particle array properties.
        
        """

        fname = self.fname + "_"
        props = {}

        cell_size = self.particles.cell_manager.cell_size

        for pa in self.particles.arrays:
            name = pa.name
            _fname = os.path.join(self.output_directory, fname + name + "_" + str(self.t) + ".npz")

            if self.detailed_output:
                savez(_fname, dt=self.dt, **pa.properties)

            else:
                for prop in print_properties:
                    props[prop] = pa.get(prop)

                savez(_fname, dt=self.dt, cell_size=cell_size, np=pa.num_real_particles, **props)
Beispiel #3
0
 def save_current_genealogy(self):
     savefpath = os.path.join(self._logdir,
                              f'genealogy_gen{self._istep:03d}.npz')
     save_kwargs = {
         'image_ids': np.array(self._curr_sample_ids, dtype=str),
         'genealogy': np.array(self._genealogy, dtype=str)
     }
     utils.savez(savefpath, save_kwargs)
Beispiel #4
0
            ImageidTable[stepi][0:len(score_tmp)] = image_ids
    except FileNotFoundError:
        if stepi == 0:
            startnum += 1
            steps += 1
            continue
        else:
            print("maximum steps is %d." % stepi)
            ScoreEvolveTable = ScoreEvolveTable[0:stepi, :]
            ImageidTable = ImageidTable[0:stepi]
            steps = stepi
            break
ImageidTable = np.asarray(ImageidTable)

utils.savez(os.path.join(CurDataDir, "scores_summary_table.npz"), {
    "ScoreEvolveTable": ScoreEvolveTable,
    "ImageidTable": ImageidTable
})

#%% Filter the Samples that has Score in a given range


def select_image(CurDataDir, lb=200, ub=None):
    fncatalog = os.listdir(CurDataDir)
    ScoreEvolveTable, ImageidTable = utils.scores_summary(CurDataDir)
    # it will automatic read the existing summary or generate one.
    if ub is None:
        ub = np.nanmax(ScoreEvolveTable) + 1
    if lb is None:
        lb = np.nanmin(ScoreEvolveTable) - 1
    imgid_list = ImageidTable[np.logical_and(ScoreEvolveTable > lb,
                                             ScoreEvolveTable < ub)]
Beispiel #5
0
    def dump_output(self, dt, *print_properties):
        """ Print output based on level of detail required
        
        The default detail level (low) is the integrator's calc's update 
        property for each named particle array.
        
        The higher detail level dumps all particle array properties.

        Format:
        -------

        A single file named as: <fname>_<rank>_<count>.npz

        The output file contains the following fields:

        solver_data : Solver related data like time step, time and
        iteration count. These are used to resume a simulation.

        arrays : A dictionary keyed on particle array names and with
        particle properties as value.

        version : The version number for this format of file
        output. The current version number is 1

        Example:
        --------

        data = load('foo.npz')

        version = data['version']

        dt = data['solver_data']['dt']
        t = data['solver_data']['t']
        
        array = data['arrays'][array_name].astype(object)
        array['x']

        """

        if self.with_cl:
            self.particles.read_from_buffer()

        fname = self.fname + '_' 
        props = {"arrays":{}, "solver_data":{}}

        cell_size = None
        if not self.with_cl:
            cell_size = self.particles.cell_manager.cell_size

        _fname = os.path.join(self.output_directory,
                              fname  + str(self.count) +'.npz')

        if self.detailed_output:
            for array in self.particles.arrays:
                props["arrays"][array.name]=array.get_property_arrays(all=True)
        else:
            for array in self.particles.arrays:
                props["arrays"][array.name]=array.get_property_arrays(all=False)

        # Add the solver data
        props["solver_data"]["dt"] = dt
        props["solver_data"]["t"] = self.t
        props["solver_data"]["count"] = self.count

        if self.parallel_output_mode == "collected" and self.in_parallel:

            comm = self.comm
            
            arrays = props["arrays"]
            numarrays = len(arrays)
            array_names = arrays.keys()

            # gather the data from all processors
            collected_data = comm.gather(arrays, root=0)
            
            if self.rank == 0:
                props["arrays"] = {}

                size = comm.Get_size()

                # concatenate the arrays
                for array_name in array_names:
                    props["arrays"][array_name] = {}

                    _props = collected_data[0][array_name].keys()

                    for prop in _props:
                        prop_arr = numpy.concatenate( [collected_data[pid][array_name][prop] for pid in range(size)] )
                        
                        props["arrays"][array_name][prop] = prop_arr

                savez(_fname, version=1, **props)

        else:
            savez(_fname, version=1, **props)