Ejemplo n.º 1
0
def calc_gradients(xyzfile, optionfile):
    """calculates DFTB energies and gradients for a molecule in the xyz_file
    with the options given in the optionfile"""

    outputfile = open("output_dftb.txt", "a")  # redirect output to file
    sys.stdout = outputfile

    try:
        options = read_options(optionfile)  # read options
        atomlist = XYZ.read_xyz(xyzfile)[0]  # read structure

        init_options = extract_options(options, TD_INIT_OPTIONLIST)
        td_options = extract_options(options, TD_OPTIONLIST)
        grad_options = extract_options(options, GRAD_OPTIONS)
        kwds = XYZ.extract_keywords_xyz(xyzfile)

        tddftb = LR_TDDFTB(atomlist, **init_options)  # create object
        tddftb.setGeometry(atomlist, charge=kwds.get("charge", 0.0))
        tddftb.getEnergies(**td_options)  # calculate energies

        grad = Gradients(tddftb)  # calculate gradients
        grad.getGradients(**grad_options)

        energies = list(tddftb.dftb2.getEnergies())  # get partial energies

        if tddftb.dftb2.long_range_correction == 1:  # add long range correction to partial energies
            energies.append(tddftb.dftb2.E_HF_x)

        return str(energies)

    except:
        print sys.exc_info()
        return "error"
Ejemplo n.º 2
0
def test_dftb_eigenvector_derivative():
    """compare analytical and numerical gradients of MO coefficients and orbital energies"""
    from DFTB.XYZ import read_xyz, extract_keywords_xyz
    from DFTB.DFTB2 import DFTB2
    from DFTB.Analyse.Cube import CubeExporterEx
    from DFTB.Molden import MoldenExporter
    from DFTB import utils
    from DFTB.LR_TDDFTB import LR_TDDFTB
    from DFTB.ExcGradients import Gradients

    import sys
    import os

    usage = "Usage: %s <xyz-file>\n" % sys.argv[0]
    usage += "   --help option will give more information\n"

    parser = utils.OptionParserFuncWrapper([\
       DFTB2.__init__, DFTB2.runSCC, \
       LR_TDDFTB.getEnergies, LR_TDDFTB.saveAbsorptionSpectrum, LR_TDDFTB.analyseParticleHole, \
       LR_TDDFTB.graphical_analysis, \
       CubeExporterEx.exportCubes, MoldenExporter.export, \
       Gradients.getGradients], \
                usage)

    (options, args) = parser.parse_args(DFTB2.__init__)

    if len(args) < 1:
        print(usage)
        exit(-1)

    xyz_file = args[0]
    atomlist = read_xyz(xyz_file)[0]
    kwds = extract_keywords_xyz(xyz_file)

    tddftb = LR_TDDFTB(atomlist, **options)

    (options, args) = parser.parse_args(tddftb.getEnergies)
    (scf_options, args) = parser.parse_args(tddftb.dftb2.runSCC)
    options.update(scf_options)
    tddftb.setGeometry(atomlist, charge=kwds.get("charge", 0.0))
    tddftb.getEnergies(**options)

    grad = Gradients(tddftb)
    grad.gradient(I=0, save_intermediates_CPKS=1)

    dE_an, dX_an = grad.getMOgradients()

    dftb2 = tddftb.dftb2
    E = dftb2.getKSEnergies()
    X = dftb2.getKSCoefficients()
    dE_num, dX_num = dftb_numerical_mo_gradients(dftb2, atomlist)
    print("eigenvalues")
    print(E)
    print("numerical eigenvalue gradients")
    print(dE_num)
    print("analytical eigenvalue gradients")
    print(dE_an)
    err_dE = la.norm(dE_num - dE_an)
    err_dX = la.norm(dX_num - dX_an)
    assert err_dE < 1.0e-3, "err(dE) = %s" % err_dE
Ejemplo n.º 3
0
    def __init__(self, atomlist, Nst=2, **kwds):
        """
        The DFTB module has many parameters which can be set from the command
        line using options, e.g. --scf_conv=1.0e-10. 
        During the initialization 
           - the command line arguments are parsed for options
           - Slater-Koster tables and repulsive potentials
             are loaded for the atom pair present in the molecule

        Parameters:
        ===========
        atomlist: list of tuples (Zi,[xi,yi,zi]) for each atom in the molecule
        Nst: number of electronic states (including ground state)
        """
        usage = "Type --help to show all options for DFTB"

        parser = optparse.OptionParserFuncWrapper([
            DFTB2.__init__, DFTB2.runSCC, SolventCavity.__init__,
            LR_TDDFTB.getEnergies
        ],
                                                  usage,
                                                  section_headers=["DFTBaby"],
                                                  unknown_options="ignore")
        options, args = parser.parse_args(DFTB2.__init__)
        self.atomlist = atomlist
        self.tddftb = LR_TDDFTB(atomlist, **options)

        solvent_options, args = parser.parse_args(SolventCavity.__init__)
        solvent_cavity = SolventCavity(**solvent_options)
        self.tddftb.dftb2.setSolventCavity(solvent_cavity)

        self.grads = Gradients(self.tddftb)
        self.tddftb.setGeometry(atomlist, charge=kwds.get("charge", 0.0))
        self.options, args = parser.parse_args(self.tddftb.getEnergies)
        self.scf_options, args = parser.parse_args(self.tddftb.dftb2.runSCC)
        self.options.update(self.scf_options)
        self.Nst = Nst
        #        # always use iterative diagonalizer for lowest Nst-1 excited states
        self.options["nstates"] = Nst - 1
        # save geometry, orbitals and TD-DFT coefficients from
        # last calculation
        self.last_calculation = None
        # save transition dipoles from last calculation
        self.tdip_old = None
Ejemplo n.º 4
0
 def __init__(self, atomlist, options, Nst=2, **kwds):
     usage = "Type --help to show all options for DFTB"
     parser = utils.OptionParserFuncWrapper(
         [DFTB2.__init__, DFTB2.runSCC, LR_TDDFTB.getEnergies], usage)
     self.options = options
     td_init_options = extract_options(self.options, TD_INIT_OPTIONLIST)
     self.atomlist = atomlist
     self.tddftb = LR_TDDFTB(atomlist, **td_init_options)
     self.grads = Gradients(self.tddftb)
     self.tddftb.setGeometry(atomlist, charge=kwds.get("charge", 0.0))
     self.scf_options = extract_options(self.options, SCF_OPTIONLIST)
     self.options = copy(self.scf_options)
     self.Nst = Nst
     #        # always use iterative diagonalizer for lowest Nst-1 excited states
     self.options["nstates"] = Nst - 1
     # save geometry, orbitals and TD-DFT coefficients from
     # last calculation
     self.last_calculation = None
     # save transition dipoles from last calculation
     self.tdip_old = None
Ejemplo n.º 5
0
def test_dftb_charge_derivative():
    """compare analytical and numerical gradients of Mulliken charges"""
    from DFTB.XYZ import read_xyz, extract_keywords_xyz
    from DFTB.DFTB2 import DFTB2
    from DFTB.Analyse.Cube import CubeExporterEx
    from DFTB.Molden import MoldenExporter
    from DFTB import utils
    from DFTB.LR_TDDFTB import LR_TDDFTB
    from DFTB.ExcGradients import Gradients

    import sys
    import os

    usage = "Usage: %s <xyz-file>\n" % sys.argv[0]
    usage += "   --help option will give more information\n"

    parser = utils.OptionParserFuncWrapper([\
       DFTB2.__init__, DFTB2.runSCC, \
       LR_TDDFTB.getEnergies, LR_TDDFTB.saveAbsorptionSpectrum, LR_TDDFTB.analyseParticleHole, \
       LR_TDDFTB.graphical_analysis, \
       CubeExporterEx.exportCubes, MoldenExporter.export, \
       Gradients.getGradients], \
                usage)

    (options, args) = parser.parse_args(DFTB2.__init__)

    if len(args) < 1:
        print usage
        exit(-1)

    xyz_file = args[0]
    atomlist = read_xyz(xyz_file)[0]
    kwds = extract_keywords_xyz(xyz_file)

    tddftb = LR_TDDFTB(atomlist, **options)

    (options, args) = parser.parse_args(tddftb.getEnergies)
    (scf_options, args) = parser.parse_args(tddftb.dftb2.runSCC)
    options.update(scf_options)
    tddftb.setGeometry(atomlist, charge=kwds.get("charge", 0.0))
    tddftb.getEnergies(**options)

    grad = Gradients(tddftb)
    grad.gradient(I=0, save_intermediates_CPKS=1)

    dQdp_ana = grad.getChargeGradients()

    dftb2 = tddftb.dftb2
    dQdp_num = dftb_numerical_charge_gradients(dftb2, atomlist)
    print "partial Mulliken charges"
    print dftb2.getPartialCharges()
    print "numerical charge gradients"
    print dQdp_num
    print "analytical charge gradients"
    print dQdp_ana
    print "difference"
    print dQdp_num - dQdp_ana

    err_dQ = la.norm(dQdp_num - dQdp_ana)
    print "err(dQdp) = %s" % err_dQ
    #assert err_dQ < 1.0e-4, "err(dQdp) = %s" % err_dQ

    # show timings
    print T
Ejemplo n.º 6
0
class PotentialEnergySurfaces(object):
    def __init__(self, atomlist, Nst=2, **kwds):
        """
        The DFTB module has many parameters which can be set from the command
        line using options, e.g. --scf_conv=1.0e-10. 
        During the initialization 
           - the command line arguments are parsed for options
           - Slater-Koster tables and repulsive potentials
             are loaded for the atom pair present in the molecule

        Parameters:
        ===========
        atomlist: list of tuples (Zi,[xi,yi,zi]) for each atom in the molecule
        Nst: number of electronic states (including ground state)
        """
        usage = "Type --help to show all options for DFTB"

        parser = optparse.OptionParserFuncWrapper([
            DFTB2.__init__, DFTB2.runSCC, SolventCavity.__init__,
            LR_TDDFTB.getEnergies
        ],
                                                  usage,
                                                  section_headers=["DFTBaby"],
                                                  unknown_options="ignore")
        options, args = parser.parse_args(DFTB2.__init__)
        self.atomlist = atomlist
        self.tddftb = LR_TDDFTB(atomlist, **options)

        solvent_options, args = parser.parse_args(SolventCavity.__init__)
        solvent_cavity = SolventCavity(**solvent_options)
        self.tddftb.dftb2.setSolventCavity(solvent_cavity)

        self.grads = Gradients(self.tddftb)
        self.tddftb.setGeometry(atomlist, charge=kwds.get("charge", 0.0))
        self.options, args = parser.parse_args(self.tddftb.getEnergies)
        self.scf_options, args = parser.parse_args(self.tddftb.dftb2.runSCC)
        self.options.update(self.scf_options)
        self.Nst = Nst
        #        # always use iterative diagonalizer for lowest Nst-1 excited states
        self.options["nstates"] = Nst - 1
        # save geometry, orbitals and TD-DFT coefficients from
        # last calculation
        self.last_calculation = None
        # save transition dipoles from last calculation
        self.tdip_old = None

    def getEnergies(self, x):
        """
        This functions computes the adiabatic energies ONLY. It should
        not be used during a dynamics simulation
        """
        self.atomlist = XYZ.vector2atomlist(x, self.atomlist)
        self.tddftb.setGeometry(self.atomlist,
                                keep_charge=True,
                                update_symmetry=False)
        self.tddftb.getEnergies(**self.options)
        # total ground state energy
        E0 = self.tddftb.dftb2.E_tot
        # excitation energies
        Exc = self.tddftb.getExcEnergies()
        # total energies of ground and excited states
        energies = np.hstack(([E0], E0 + Exc))
        return energies[:self.Nst]

    def getEnergy_S0(self, x):
        """
        This function compute the ground state energy ONLY.
        """
        self.atomlist = XYZ.vector2atomlist(x, self.atomlist)
        self.tddftb.setGeometry(self.atomlist,
                                keep_charge=True,
                                update_symmetry=False)
        E0 = self.tddftb.dftb2.getEnergy(**self.scf_options)
        energies = np.array([E0])  # only ground state energy
        return energies

    @T.timer
    def getEnergiesAndGradient(self, x, gradient_state):
        """
        This function computes the adiabatic electronic energies
        for the nuclear geometry contained in 'x' and the gradient
        of the total energy of state 'gradient_state'.

        Parameters:
        ===========
        x: a numpy array with the nuclear coordinates, 
           x[3*i:3*(i+1)] should contain the cartesian coordinates of atom i
        gradient_state: index of the electronic state, whose gradient should 
           be calculated. 0 stands for the ground state, 1 for the 1st excited
           state, etc.

        Returns:
        ========
        energies: numpy array with total energies (in Hartree) for all electronic
           states
        gradTot: total gradient of the selected state,
           gradTot[3*i:3*(i+1)] contains the energy derivative w/r/t the 3 cartesian
           coordinates of atom i.
        """
        self.atomlist = XYZ.vector2atomlist(x, self.atomlist)
        self.tddftb.setGeometry(self.atomlist,
                                keep_charge=True,
                                update_symmetry=False)
        self.tddftb.getEnergies(**self.options)
        # total ground state energy
        E0 = self.tddftb.dftb2.E_tot
        # excitation energies
        Exc = self.tddftb.getExcEnergies()
        # total energies of ground and excited states
        energies = np.hstack(([E0], E0 + Exc))

        gradVrep, gradE0, gradExc = self.grads.gradient(
            I=gradient_state, save_intermediates_CPKS=1)
        gradTot = gradVrep + gradE0 + gradExc
        # QM/MM
        if self.tddftb.dftb2.qmmm != None:
            # expand gradient to the full system
            gradTot = self.tddftb.dftb2.qmmm.getGradientFull(gradTot)
        # confining cavity
        if self.tddftb.dftb2.cavity != None:
            if self.tddftb.dftb2.qmmm != None:
                atomlist = self.tddftb.dftb2.qmmm.getGeometryFull()
            else:
                atomlist = self.atomlist
            gradTot += self.tddftb.dftb2.cavity.getGradient(atomlist)
        return energies, gradTot

    def getEnergyAndGradient_S0(self, x, has_scf=False):
        """
        obtain the ground state energy and gradient while skipping an excited state calculation.

        This function should be called with has_scf=True directly after a failed TD-DFTB calculation. Then the scf calculation is skipped as well, assuming that the converged ground state orbitals are available.

        Returns:
        ========
        E0: ground state energy
        gradTot: gradient on ground state
        """
        # ground state energy
        if has_scf == True:
            # SCF calculation has been done already
            E0 = self.tddftb.dftb2.E_tot
        else:
            self.atomlist = XYZ.vector2atomlist(x, self.atomlist)
            self.tddftb.setGeometry(self.atomlist,
                                    keep_charge=True,
                                    update_symmetry=False)
            # SCF calculation
            E0 = self.tddftb.dftb2.getEnergy(**self.scf_options)
        # try to compute gradient on ground state
        gradVrep, gradE0, gradExc = self.grads.gradient(
            I=0, save_intermediates_CPKS=1)
        gradTot = gradVrep + gradE0 + gradExc
        # QM/MM
        if self.tddftb.dftb2.qmmm != None:
            # expand gradient to the full system
            gradTot = self.tddftb.dftb2.qmmm.getGradientFull(gradTot)
        # confining cavity
        if self.tddftb.dftb2.cavity != None:
            if self.tddftb.dftb2.qmmm != None:
                atomlist = self.tddftb.dftb2.qmmm.getGeometryFull()
            else:
                atomlist = self.atomlist
            gradTot += self.tddftb.dftb2.cavity.getGradient(atomlist)

        return E0, gradTot

    def resetXY(self):
        # reset excitation vectors, so that in the next iteration
        # we start with a clean guess
        self.tddftb.XmY = None
        self.tddftb.XpY = None

    def resetSCF(self):
        # set Mulliken partial charges to zero and density matrix P to
        # reference density matrix P0, so that in the next iteration
        # we start with a clean guess
        self.tddftb.dftb2.dq *= 0.0
        self.tddftb.dftb2.P = self.tddftb.dftb2.density_matrix_ref()

    def getScalarCouplings(self, threshold=0.01):
        """
        Parameters:
        ===========
        threshold: smaller excitation coefficients are neglected in the calculation
           of overlaps

        Returns:
        ========
        coupl: antisymmetric matrix with scalar non-adiabatic coupling
          coupl[A,B] ~ <Psi_A|d/dt Psi_B>*dt

        The coupling matrix has to be divided by the nuclear time step dt

        It is important that this function is called
        exactly once after calling 'getEnergiesAndGradient'
        """
        atomlist2 = self.atomlist
        orbs2 = self.tddftb.dftb2.orbs
        C2 = self.tddftb.Cij[:self.Nst -
                             1, :, :]  # only save the states of interest
        # off-diagonal elements of electronic hamiltonian
        SC = ScalarCoupling(self.tddftb)
        # retrieve last calculation
        if self.last_calculation == None:
            # This is the first calculation, so use the same data
            atomlist1, orbs1, C1 = atomlist2, orbs2, C2
        else:
            atomlist1, orbs1, C1 = self.last_calculation
        Sci = SC.ci_overlap(atomlist1,
                            orbs1,
                            C1,
                            atomlist2,
                            orbs2,
                            C2,
                            self.Nst,
                            threshold=threshold)
        # align phases
        # The eigenvalue solver produces vectors with arbitrary global phases
        # (+1 or -1). The orbitals of the ground state can also change their signs.
        # Eigen states from neighbouring geometries should change continuously.
        signs = np.sign(np.diag(Sci))
        self.P = np.diag(signs)
        # align C2 with C1
        C2 = np.tensordot(self.P[1:, :][:, 1:], C2, axes=(0, 0))
        # align overlap matrix
        Sci = np.dot(Sci, self.P)
        # The relative signs for the overlap between the ground and excited states at different geometries
        # cannot be deduced from the diagonal elements of Sci. The phases are chosen such that the coupling
        # between S0 and S1-SN changes smoothly for most of the states.
        if hasattr(self, "last_coupl"):
            s = np.sign(self.last_coupl[0, 1:] / Sci[0, 1:])
            w = np.abs(Sci[0, 1:] - self.last_coupl[0, 1:])
            mean_sign = np.sign(np.sum(w * s) / np.sum(w))
            sign0I = mean_sign
            for I in range(1, self.Nst):
                Sci[0, I] *= sign0I
                Sci[I, 0] *= sign0I
        #
        state_labels = [("S%d" % I) for I in range(0, self.Nst)]
        if self.tddftb.dftb2.verbose > 0:
            print "Overlap <Psi(t)|Psi(t+dt)>"
            print "=========================="
            print utils.annotated_matrix(Sci, state_labels, state_labels)
        # overlap between wavefunctions at different time steps
        olap = np.copy(Sci)
        coupl = Sci
        # coupl[A,B] = <Psi_A(t)|Psi_B(t+dt)> - delta_AB
        #            ~ <Psi_A(t)|d/dR Psi_B(t)>*dR/dt dt
        # TEST
        # The scalar coupling matrix should be more or less anti-symmetric
        # provided the time-step is small enough
        # set diagonal elements of coupl to zero
        coupl[np.diag_indices_from(coupl)] = 0.0
        err = np.sum(abs(coupl + coupl.transpose()))
        if err > 1.0e-1:
            print "WARNING: Scalar coupling matrix is not antisymmetric, error = %s" % err
        #
        # Because of the finite time-step it will not be completely antisymmetric,
        # so antisymmetrize it
        coupl = 0.5 * (coupl - coupl.transpose())
        # save coupling for establishing relative phases
        self.last_coupl = coupl
        state_labels = [("S%d" % I) for I in range(0, self.Nst)]
        if self.tddftb.dftb2.verbose > 0:
            print "Scalar Coupling"
            print "==============="
            print utils.annotated_matrix(coupl, state_labels, state_labels)

        # save last calculation
        self.last_calculation = (atomlist2, orbs2, C2)
        return coupl, olap

    def saveLastCalculation(self):
        """
        save geometry, MO coefficients and TD-DFTB coefficients of last calculation.
        This data is needed to align the phases between neighbouring steps.
        """
        atomlist = self.atomlist
        orbs = self.tddftb.dftb2.orbs
        # only save the states of interest
        C = self.tddftb.Cij[:self.Nst - 1, :, :]
        # save last calculation
        self.last_calculation = (atomlist, orbs, C)

    def alignCoefficients(self, c):
        """
        align phases of coefficients of adiabatic states
        """
        if hasattr(self, "P"):
            c = np.dot(self.P[1:, :][:, 1:], c)
        return c

    def getTransitionDipoles(self):
        """
        computes and aligns transition dipoles between all Nst states
        This function should be called only once directly after getScalarCouplings!
        """
        tdip = self.tddftb.getTransitionDipolesExc(self.Nst)
        # eigenvectors can have arbitrary phases
        # align transition dipoles with old ones
        tdip_old = self.tdip_old
        if type(tdip_old) == type(None):
            tdip_old = tdip
        for A in range(0, self.Nst):
            for B in range(0, self.Nst):
                sign = np.dot(tdip_old[A, B, :], tdip[A, B, :])
                if sign < 0.0:
                    tdip[A, B, :] *= -1.0
        self.tdip_old = tdip
        if self.tddftb.dftb2.verbose > 0:
            state_labels = [("S%d" % I) for I in range(0, self.Nst)]
            print "Transition Dipoles"
            print "=================="
            print "X-Component"
            print utils.annotated_matrix(tdip[:, :, 0], state_labels,
                                         state_labels)
            print "Y-Component"
            print utils.annotated_matrix(tdip[:, :, 1], state_labels,
                                         state_labels)
            print "Z-Component"
            print utils.annotated_matrix(tdip[:, :, 2], state_labels,
                                         state_labels)
        #
        return tdip
Ejemplo n.º 7
0
def calculate_charge_derivative():
    """compute analytical gradients of Mulliken charges"""
    #
    # This long prologue serves for reading all options
    # from the command line or the dftbaby.cfg file.
    # The command-line option
    #
    #    --cpks_solver='direct' or 'iterative'
    #
    # determines whether the full CPKS matrix should be constructed ('direct')
    # or whether the system of linear equations should be solved iteratively using the Krylov
    # subspace method.
    #
    from DFTB.XYZ import read_xyz, extract_keywords_xyz
    from DFTB.DFTB2 import DFTB2
    from DFTB import utils
    from DFTB.LR_TDDFTB import LR_TDDFTB
    from DFTB.ExcGradients import Gradients

    import sys
    import os

    usage = "Usage: %s <xyz-file>\n" % sys.argv[0]
    usage += "   --help option will give more information\n"

    parser = utils.OptionParserFuncWrapper([\
       DFTB2.__init__, DFTB2.runSCC, \
       LR_TDDFTB.getEnergies, LR_TDDFTB.saveAbsorptionSpectrum, LR_TDDFTB.analyseParticleHole, \
       Gradients.getGradients], \
                usage)

    (options, args) = parser.parse_args(DFTB2.__init__)

    if len(args) < 1:
        print usage
        exit(-1)

    xyz_file = args[0]
    atomlist = read_xyz(xyz_file)[0]
    # number of atoms
    Nat = len(atomlist)
    kwds = extract_keywords_xyz(xyz_file)

    tddftb = LR_TDDFTB(atomlist, **options)

    (options, args) = parser.parse_args(tddftb.getEnergies)
    (scf_options, args) = parser.parse_args(tddftb.dftb2.runSCC)
    options.update(scf_options)
    tddftb.setGeometry(atomlist, charge=kwds.get("charge", 0.0))
    tddftb.getEnergies(**options)

    #
    # The important part starts here.
    #
    grad = Gradients(tddftb)
    # A CPKS calculation has to be preceeded by a gradient calculation.
    # The option `save_intermediates_CPKS=1` tells the program to save intermediate
    # variables that are needed later during the CPKS calculation.
    grad.gradient(I=0, save_intermediates_CPKS=1)

    # This runs a CPKS calculation and computes the gradients of the charges
    dQdp = grad.getChargeGradients()
    # The gradient of the charge on atom B w/r/t the position of atom A is
    #   d(Q_B)/dR_A = dQdp[3*A:3*(A+1), B]

    A = 0  # first atom
    B = Nat - 1  # last atom
    print "Gradient of Mulliken charge on atom A=%d w/r/t nucleus B=%d  d(Q_B)/dR_A = %s" \
        % (A, B, dQdp[3*A:3*(A+1), B])