def test_bars(length=50): latch = DataLatch(3) s1_order_q = DQueue() s1_fill_q = DQueue() strat_name = 'test_%d' % length strategy = MStrategy(strat_name, strategy_params={'length': length}) strategy.bar_interval = 0 strategy.IN_fills = s1_fill_q strategy.OUT_orders = s1_order_q strategy.latch = latch porto_name = 'portfolio_%d' % length portfolio = Portfolio(porto_name, None) portfolio.latch = latch portfolio.add(strategy) exchange = Exchange() exchange.IN_orders = portfolio.OUT_orders exchange.OUT_fills = portfolio.IN_fills exchange.latch = latch exchange.start() portfolio.start() strategy.start() log.info("START JOB %s = %s" % (porto_name, datetime.datetime.now())) simData = DataFeedBars('20100315.SPY.1m.csv') for market_data in simData: latch.trap(market_data) ## ORDER MATTERS! ## this allows submit-fill loop to happen in a single on_data() event strategy.on_data(market_data) portfolio.on_data(market_data) exchange.on_data(market_data) ## do any final processing #strategy.flush() exchange.shutdown() portfolio.shutdown() strategy.shutdown() exchange.join() portfolio.join() strategy.join() # portfolio.stats(write_data=True) filename = 'TEST_BAR_X_%d.xls' % length port_stats = portfolio.stats(filename=filename) print 'portfolio stats' pprint(port_stats) log.info("END JOB %s = %s" % (porto_name, datetime.datetime.now())) return portfolio
def test_multiple_symbols(): latch = DataLatch(3) s1_order_q = DQueue() s1_fill_q = DQueue() strategy = MStrategy('test_strategy', strategy_params={'length': 10}) strategy.IN_fills = s1_fill_q strategy.OUT_orders = s1_order_q strategy.latch = latch portfolio = Portfolio('test_porto', None) portfolio.latch = latch portfolio.add(strategy) exchange = Exchange() exchange.IN_orders = portfolio.OUT_orders exchange.OUT_fills = portfolio.IN_fills exchange.latch = latch exchange.start() portfolio.start() strategy.start() log.info("START JOB= %s" % datetime.datetime.now()) ## combined file of SPY, IWM, and QQQQ simData = DataFeedIntraday('20100315.XXX.csv') for market_data in simData: latch.trap(market_data) ## ORDER MATTERS! ## this allows submit-fill loop to happen in a single on_data() event strategy.on_data(market_data) portfolio.on_data(market_data) exchange.on_data(market_data) ## do any final processing #strategy.flush() exchange.shutdown() portfolio.shutdown() strategy.shutdown() exchange.join() portfolio.join() strategy.join() log.info("STAT JOB= %s" % datetime.datetime.now()) port_stats = portfolio.stats(filename='TESTER.xls') pprint(port_stats) log.info("END JOB= %s" % datetime.datetime.now()) log.info("LEN DATA JOB= %s" % simData.count)
def __init__(self, name, strategy_setup=None, strategy_params=None): super(StrategyBase, self).__init__() tag = "$ %s" % name self.log = logging.getLogger(tag) ## strategy_setup = ## dict (or JSON object) that handles setup of strategy specific variables ## that need initialization SEPARATE from varying strategy parameters ## i.e. contract specifications, data bar_intervals, initial captial, etc self.strategy_setup = strategy_setup ## strategy_params = ## dict (or JSOM object) that holds variables driving strategy execution ## i.e. indicator lengths, thresholds, holding durations, etc self.strategy_params = strategy_params if len(name) > 15: name = name[:15] self.name = name self.target_timestamp = None self.current_timestamp = None self.IN_fills = None self.OUT_orders = OutQueue() self.IN_data = DQueue() self.latch = None self.lock = Lock() self.price_book = PriceBook() # market data bucket self.current_data = None # holds copy of last market data bucket self.start_up = True self.order_book = {} ## dict[order_id] self.orders = [] self.positions = {} self.trading_activity = collections.defaultdict(list) ## controls thread run() self.running = True ## trading size self.capital = 1000000.0 * 10 ## self.bar_interval is used for aggregating tick data into bars (specifically if the strategy is ## to handle real-time, tick by tick feeds...) ## bar_interval = 0, means take each data element on its own, do data aggregation is to occur ## self.bar_interval = 600 ## seconds self.bar_interval = 0
def test_retrace_strategy(strategy_params, run_id): latch = DataLatch(3) s1_order_q = DQueue() s1_fill_q = DQueue() strat_name = 'test_%04d' % run_id ## NOTE strategy_params is a dict that the strategy ## uses to initialize itself. strategy = RetraceStrategy(strat_name, strategy_params=strategy_params) strategy.bar_interval = 1 strategy.IN_fills = s1_fill_q strategy.OUT_orders = s1_order_q strategy.latch = latch porto_name = 'retrace_%d' % run_id portfolio = Portfolio(porto_name, None) portfolio.latch = latch portfolio.add(strategy) exchange = Exchange() exchange.IN_orders = portfolio.OUT_orders exchange.OUT_fills = portfolio.IN_fills exchange.latch = latch exchange.start() portfolio.start() strategy.start() simData = DataFeedDaily('daily.SPY.csv') for market_data in simData: latch.trap(market_data) ## ORDER MATTERS! ## this allows submit-fill loop to happen in a single on_data() event strategy.on_data(market_data) portfolio.on_data(market_data) exchange.on_data(market_data) ## do any final processing #strategy.flush() exchange.shutdown() portfolio.shutdown() strategy.shutdown() exchange.join() portfolio.join() strategy.join() return portfolio.stats()
def test_strategy_execute(): latch = DataLatch(2) s1_order_q = DQueue() s1_fill_q = DQueue() strategy = MStrategy('test_strategy', strategy_params={'length': 10}) strategy.IN_fills = s1_fill_q strategy.OUT_orders = s1_order_q strategy.latch = latch exchange = Exchange() exchange.IN_orders = strategy.OUT_orders exchange.OUT_fills = strategy.IN_fills exchange.latch = latch exchange.start() strategy.start() log.info("START JOB= %s" % datetime.datetime.now()) simData = DataFeedIntraday('20100315.SPY.csv') for market_data in simData: latch.trap(market_data) exchange.on_data(market_data) strategy.on_data(market_data) ## do any final processing #strategy.flush() exchange.shutdown() strategy.shutdown() exchange.join() strategy.join() log.info("END JOB= %s" % datetime.datetime.now()) log.info("LEN DATA JOB= %s" % simData.count)
def test_exchange(): latch = DataLatch(1) ## exchange queues order_q = DQueue() fill_q = DQueue() exchange = Exchange() exchange.latch = latch ## bind exchange and portfolio together tester = Tester() exchange.IN_orders = order_q exchange.OUT_fills = fill_q tester.IN_queue = fill_q exchange.start() tester.start() o1 = Order('test', 'AAPL', Order.BUY, 100, Order.MARKET, None, None) o1.stamp_time(parse_date("20140311")) order_q.put(o1) o2 = Order('test', 'AAPL', Order.BUY, 200, Order.MARKET, None, None) o2.stamp_time(parse_date("20140816")) order_q.put(o2) o3 = Order('test', 'AAPL', Order.SELL, 300, Order.MARKET, None, None) o3.stamp_time(parse_date("20140101")) order_q.put(o3) simData = DataFeedDaily('AAPL.csv') for market_data in simData: latch.trap(market_data) exchange.on_data(market_data) exchange.shutdown() tester.shutdown() exchange.join() tester.join()
class StrategyBase(Thread): def __init__(self, name, strategy_setup=None, strategy_params=None): super(StrategyBase, self).__init__() tag = "$ %s" % name self.log = logging.getLogger(tag) ## strategy_setup = ## dict (or JSON object) that handles setup of strategy specific variables ## that need initialization SEPARATE from varying strategy parameters ## i.e. contract specifications, data bar_intervals, initial captial, etc self.strategy_setup = strategy_setup ## strategy_params = ## dict (or JSOM object) that holds variables driving strategy execution ## i.e. indicator lengths, thresholds, holding durations, etc self.strategy_params = strategy_params if len(name) > 15: name = name[:15] self.name = name self.target_timestamp = None self.current_timestamp = None self.IN_fills = None self.OUT_orders = OutQueue() self.IN_data = DQueue() self.latch = None self.lock = Lock() self.price_book = PriceBook() # market data bucket self.current_data = None # holds copy of last market data bucket self.start_up = True self.order_book = {} ## dict[order_id] self.orders = [] self.positions = {} self.trading_activity = collections.defaultdict(list) ## controls thread run() self.running = True ## trading size self.capital = 1000000.0 * 10 ## self.bar_interval is used for aggregating tick data into bars (specifically if the strategy is ## to handle real-time, tick by tick feeds...) ## bar_interval = 0, means take each data element on its own, do data aggregation is to occur ## self.bar_interval = 600 ## seconds self.bar_interval = 0 def get_size(self, symbol, price): lot_size = 1 units = 0 base = price if base > 0: amt = int(self.capital / base) if amt >= lot_size: units = int(amt / lot_size) * lot_size else: self.log.warning( '%s: trading units too small: calc=%d, min=%d' % (symbol, amt, lot_size)) else: self.log.warning('%s: zero risk base, no units allocated' % symbol) return units def open_orders(self, symbol): ## check if there are outstanding orders ## for a specific symbol return [x for x in self.order_book.values() if x.symbol == symbol] def send_order(self, order): order.stamp_time(self.current_timestamp) self.orders.append(order) self.order_book[order.order_id] = order def update_orders(self, fill): ## update outstanding orders self.log.info('updating orders (count=%d)' % len(self.order_book.values())) if fill.order_id in self.order_book.keys(): self.order_book[fill.order_id].qty_left -= fill.qty if self.order_book[fill.order_id].qty_left == 0: self.log.info("rm filled order %s" % self.order_book[fill.order_id]) del self.order_book[fill.order_id] else: self.log.error("fill= %s cannot find order_id %d" % (fill, fill.order_id)) ## for logging purposes only self.log.info('remaining orders (count=%d)' % len(self.order_book.values())) open_symbols = set([x.symbol for x in self.order_book.values()]) for symbol in open_symbols: opens = self.open_orders(symbol) for open_order in opens: self.log.info("open= %s" % open_order) def update_positions(self, fill): self.log.info("grab fill: %s" % fill) symbol = fill.symbol vqty = vwp = 0 if symbol in self.positions.keys(): position = self.positions[symbol] vqty, vwp = position.qty, position.price #longs if vqty > 0: # BUYS if fill.side == Order.BUY: # add long vwp = (vqty * vwp) + (fill.price * fill.qty) vqty += fill.qty vwp = vwp / float(vqty) self.profit_loss(None, fill, vqty) #mark new position else: # SELLS if vqty >= fill.qty: # reduce long vqty -= fill.qty self.profit_loss(fill.qty * (fill.price - vwp), fill, vqty) else: # become net short net_qty = vqty - fill.qty self.profit_loss(vqty * (fill.price - vwp), fill, net_qty) vqty = net_qty vwp = fill.price #shorts elif vqty < 0: if fill.side == Order.SELL: # add short vwp = (-vqty * vwp) + (fill.price * fill.qty) vqty -= fill.qty vwp = -vwp / float(vqty) self.profit_loss(None, fill, vqty) #mark new position else: # reduce short if abs(vqty) >= fill.qty: vqty += fill.qty self.profit_loss(fill.qty * (vwp - fill.price), fill, vqty) else: # become net long net_qty = vqty + fill.qty self.profit_loss( abs(vqty) * (vwp - fill.price), fill, net_qty) vqty = net_qty vwp = fill.price #flat elif vqty == 0: vqty = fill.qty if fill.side == Order.SELL: vqty = -fill.qty vwp = fill.price self.profit_loss(None, fill, vqty) #mark new position # handle flattened positions if vqty == 0: vwp = 0 self.positions[symbol] = Position(symbol, vqty, vwp) self.log.info("updated posn: %s" % self.positions[symbol]) def profit_loss(self, pnl, fill, net_qty): fq = fill.qty if fill.side == Order.BUY else -fill.qty trade = collections.OrderedDict([('symbol', fill.symbol), ('qty', fq), ('price', fill.price), ('pnl', pnl), ('net_qty', net_qty), ('timestamp', fill.timestamp)]) self.trading_activity[fill.symbol].append(trade) self.log.info("trade: %s" % dict(trade)) ##exit cleanup def cleanup(self): for symbol, position in self.positions.iteritems(): qty = position.qty if qty == 0: continue side = Order.SELL if qty < 0: side = Order.BUY ## send closing orders self.send_order( Order(self.name, symbol, side, qty, Order.MARKET, None, None)) ## kills the thread def shutdown(self): self.log.info('Strategy Thread Stopped.') self.running = False def run(self): while self.running: ##sent back from portfolio ##IN_fills.get() returns a list: [fill0], or [fill1, fill2, ...] # FIX NOT NEEDED ? # orders = [] with self.lock: try: fill = self.IN_fills.peek() if fill.timestamp <= self.current_timestamp: fill = self.IN_fills.get() self.update_positions(fill) self.update_orders(fill) except IndexError: pass ### send out new orders to the portfolio for order in self.orders: self.log.info("sending: %s" % order) self.OUT_orders.put(copy.deepcopy(order)) # FIX NOT NEEDED ? ##orders.append(order) if self.orders: del self.orders[:] ## report the new fills and orders ## to the portfolio ##for item in itertools.chain(fills,orders): ## self.OUT_portfolio.put(item) def pull(self, interval=0): if self.start_up: if self.IN_data: head = self.IN_data.peek() self.target_timestamp = head.timestamp + timedelta( seconds=interval) self.log.info("bar interval = %s seconds" % interval) self.log.info("next target_timestamp: %s" % self.target_timestamp) self.start_up = False ## TODO ## what happens when price timestamp crosses multiple bar intervals? !!! price_book = None if self.IN_data: ## price_data = self.IN_data.peek() price_data = self.IN_data.get() self.log.info("price_book update: %s" % price_data) if interval == 0: price_book = PriceBook() price_book.update(price_data) else: if price_data.timestamp >= self.target_timestamp: ## carry last price forward if current price ts > target_timestamp if price_data.timestamp > self.target_timestamp: self.log.info("filling last price forward to %s" % self.target_timestamp) self.price_book.fill_forward(price_data, self.target_timestamp) else: self.price_book.update(price_data) price_book = copy.deepcopy(self.price_book) self.log.info("bundled: %s to %s" % (price_book.start_timestamp, price_book.last_timestamp)) self.target_timestamp = self.target_timestamp + timedelta( seconds=interval) self.log.info("next target_timestamp: %s" % self.target_timestamp) self.price_book.clear() self.price_book.update(price_data) return price_book ## flush out last bit of cached PriceDataBar info ## and do processing def flush(self): with self.lock: price_book = copy.deepcopy(self.price_book) self.target_timestamp = price_book.last_timestamp + timedelta( seconds=self.bar_interval) self.log.info( "flushed bundle: %s to %s" % (price_book.start_timestamp, price_book.last_timestamp)) self.log.info("next target_timestamp: %s" % self.target_timestamp) self.price_book.clear() if not price_book.empty(): self.current_data = copy.deepcopy(price_book) self.current_timestamp = price_book.last_timestamp self.execute_on(price_book) def on_data(self, price_data): with self.lock: self.IN_data.put(price_data) self.log.debug('LIVE_DATA: %s' % price_data) self.current_timestamp = price_data.timestamp ## deplete fill queue before acting on current data report_collect = False while self.IN_fills: if not report_collect: self.log.info('collecting fills before execute_on() call') report_collect = True fill = self.IN_fills.peek() if fill.timestamp <= self.current_timestamp: fill = self.IN_fills.get() self.update_positions(fill) self.update_orders(fill) else: ## no fills ready to be processed break new_data = self.pull(interval=self.bar_interval) if new_data: self.log.debug('LIVE_BOOK: %s' % new_data) self.current_data = copy.deepcopy(new_data) self.execute_on(new_data) self.latch.notify() ### used in simulations def on_data_sim(self, price_data): self.IN_data.put(price_data) self.log.debug('SIM_DATA: %s' % price_data) self.current_timestamp = price_data.timestamp ## deplete fill queue before acting on current data report_collect = False while self.IN_fills: if not report_collect: self.log.info('collecting fills before execute_on() call') report_collect = True fill = self.IN_fills.peek() if fill.timestamp <= self.current_timestamp: fill = self.IN_fills.get() self.update_positions(fill) self.update_orders(fill) else: ## no fills ready to be processed break new_data = self.pull(interval=self.bar_interval) if new_data: self.log.debug('SIM_BOOK: %s' % new_data) self.current_data = copy.deepcopy(new_data) self.execute_on(new_data) ### send out new orders to the EXCHANGE for order in self.orders: self.log.info("sending: %s" % order) self.OUT_orders.put(copy.deepcopy(order)) if self.orders: del self.orders[:] self.latch.notify() def on_EOD(self): self.log.info('EOD reset %s' % self.name) with self.lock: ## 1. clear orders self.OUT_orders.clear() ## 2. process remaining fills and MTM while self.IN_fills: fill = self.IN_fills.peek() if fill.timestamp <= self.current_timestamp: fill = self.IN_fills.get() self.log.info('grab EOD fill %s' % fill) self.update_positions(fill) self.update_orders(fill) else: ## no fills ready to be processed break ## make sure fill queue is cleared self.IN_fills.clear() ## reset the strategy self.reset() def __repr__(self): setup = "strategy_setup = %s" % pprint.pformat(self.strategy_setup) params = "strategy_params = %s" % pprint.pformat(self.strategy_params) return "\n".join([setup, params]) def __str__(self): setup = "strategy_setup = %s" % pprint.pformat(self.strategy_setup) params = "strategy_params = %s" % pprint.pformat(self.strategy_params) return "\n".join([setup, params]) ## override this to implement strategy def execute_on(self, price_book): raise NotImplementedError ## override this to reset strategy def reset(self): raise NotImplementedError
def add_strategy(self, strategy): self.strategies.append(strategy) strategy.IN_fills = DQueue() self.portfolio.add(strategy) self.exchange.add(strategy)
def test_strategy_fills(side): ## handle long and short fills, all possiblities ## strategy queues latch = DataLatch(1) s1_order_q = DQueue() s1_fill_q = DQueue() strategy = MStrategy('test_strategy', strategy_params={'length': 10}) strategy.IN_fills = s1_fill_q strategy.OUT_orders = s1_order_q strategy.latch = latch strategy.start() ts = datetime.datetime(2014, 8, 16, 12, 30, 0) ## build inital position s1_fill_q.put(Fill('AAPL', 100.00, 100, side, ts, 1)) s1_fill_q.put(Fill('AAPL', 101.50, 50, side, ts, 2)) s1_fill_q.put( Fill('AAPL', 110.00, 50, side, ts + datetime.timedelta(seconds=10), 3)) rev = Order.SELL if side == rev: rev = Order.BUY ## take some of off s1_fill_q.put( Fill('AAPL', 107.00, 20, rev, ts + datetime.timedelta(seconds=20), 4)) s1_fill_q.put( Fill('AAPL', 107.00, 20, rev, ts + datetime.timedelta(seconds=25), 5)) ## flip position s1_fill_q.put( Fill('AAPL', 110.00, 200, rev, ts + datetime.timedelta(seconds=100), 6)) s1_fill_q.put( Fill('AAPL', 108.50, 10, rev, ts + datetime.timedelta(seconds=110), 7)) s1_fill_q.put( Fill('AAPL', 106.50, 100, rev, ts + datetime.timedelta(seconds=110), 8)) ##close position s1_fill_q.put( Fill('AAPL', 109.00, 100, side, ts + datetime.timedelta(seconds=200), 9)) s1_fill_q.put( Fill('AAPL', 109.00, 50, side, ts + datetime.timedelta(seconds=200), 10)) time.sleep(5) strategy.shutdown() strategy.join()
def test_strategy_order_update(): ## do partial fill and update, both sides latch = DataLatch(1) s1_order_q = DQueue() s1_fill_q = DQueue() ts = datetime.datetime(2014, 8, 16, 12, 30, 0) strategy = MStrategy('test_strategy', strategy_params={'length': 10}) strategy.IN_fills = s1_fill_q strategy.OUT_orders = s1_order_q strategy.latch = latch strategy.start() o1 = Order(strategy.name, 'AAPL', Order.SELL, 100, Order.MARKET, None, None) o2 = Order(strategy.name, 'AAPL', Order.SELL, 200, Order.MARKET, None, None) p1 = Order(strategy.name, 'AAPL', Order.BUY, 100, Order.MARKET, None, None) p2 = Order(strategy.name, 'AAPL', Order.BUY, 200, Order.MARKET, None, None) strategy.send_order(o1) strategy.send_order(o2) strategy.send_order(p1) strategy.send_order(p2) # allow time for orders to be sent time.sleep(2) s1_fill_q.put(Fill('AAPL', 100.00, 100, Order.SELL, ts, o1.order_id)) s1_fill_q.put( Fill('AAPL', 101.50, 50, Order.SELL, ts, o2.order_id, qty_left=150)) s1_fill_q.put(Fill('AAPL', 104.00, 100, Order.BUY, ts, p1.order_id)) s1_fill_q.put( Fill('AAPL', 105.50, 70, Order.BUY, ts, p2.order_id, qty_left=130)) time.sleep(2) strategy.shutdown() strategy.join()