Exemplo n.º 1
0
def test_bars(length=50):

    latch = DataLatch(3)
    s1_order_q = DQueue()
    s1_fill_q = DQueue()

    strat_name = 'test_%d' % length
    strategy = MStrategy(strat_name, strategy_params={'length': length})
    strategy.bar_interval = 0
    strategy.IN_fills = s1_fill_q
    strategy.OUT_orders = s1_order_q
    strategy.latch = latch

    porto_name = 'portfolio_%d' % length
    portfolio = Portfolio(porto_name, None)
    portfolio.latch = latch
    portfolio.add(strategy)

    exchange = Exchange()
    exchange.IN_orders = portfolio.OUT_orders
    exchange.OUT_fills = portfolio.IN_fills
    exchange.latch = latch

    exchange.start()
    portfolio.start()
    strategy.start()

    log.info("START JOB %s = %s" % (porto_name, datetime.datetime.now()))

    simData = DataFeedBars('20100315.SPY.1m.csv')
    for market_data in simData:
        latch.trap(market_data)
        ## ORDER MATTERS!
        ## this allows submit-fill loop to happen in a single on_data() event
        strategy.on_data(market_data)
        portfolio.on_data(market_data)
        exchange.on_data(market_data)

    ## do any final processing
    #strategy.flush()

    exchange.shutdown()
    portfolio.shutdown()
    strategy.shutdown()
    exchange.join()
    portfolio.join()
    strategy.join()

    # portfolio.stats(write_data=True)
    filename = 'TEST_BAR_X_%d.xls' % length
    port_stats = portfolio.stats(filename=filename)

    print 'portfolio stats'
    pprint(port_stats)

    log.info("END JOB %s = %s" % (porto_name, datetime.datetime.now()))

    return portfolio
Exemplo n.º 2
0
def test_multiple_symbols():

    latch = DataLatch(3)
    s1_order_q = DQueue()
    s1_fill_q = DQueue()

    strategy = MStrategy('test_strategy', strategy_params={'length': 10})
    strategy.IN_fills = s1_fill_q
    strategy.OUT_orders = s1_order_q
    strategy.latch = latch

    portfolio = Portfolio('test_porto', None)
    portfolio.latch = latch
    portfolio.add(strategy)

    exchange = Exchange()
    exchange.IN_orders = portfolio.OUT_orders
    exchange.OUT_fills = portfolio.IN_fills
    exchange.latch = latch

    exchange.start()
    portfolio.start()
    strategy.start()

    log.info("START JOB= %s" % datetime.datetime.now())

    ## combined file of SPY, IWM, and QQQQ
    simData = DataFeedIntraday('20100315.XXX.csv')
    for market_data in simData:
        latch.trap(market_data)
        ## ORDER MATTERS!
        ## this allows submit-fill loop to happen in a single on_data() event
        strategy.on_data(market_data)
        portfolio.on_data(market_data)
        exchange.on_data(market_data)

    ## do any final processing
    #strategy.flush()

    exchange.shutdown()
    portfolio.shutdown()
    strategy.shutdown()
    exchange.join()
    portfolio.join()
    strategy.join()

    log.info("STAT JOB= %s" % datetime.datetime.now())

    port_stats = portfolio.stats(filename='TESTER.xls')
    pprint(port_stats)

    log.info("END JOB= %s" % datetime.datetime.now())
    log.info("LEN DATA JOB= %s" % simData.count)
Exemplo n.º 3
0
    def __init__(self, name, strategy_setup=None, strategy_params=None):

        super(StrategyBase, self).__init__()

        tag = "$ %s" % name
        self.log = logging.getLogger(tag)

        ## strategy_setup =
        ## dict (or JSON object) that handles setup of strategy specific variables
        ## that need initialization SEPARATE from varying strategy parameters
        ## i.e. contract specifications, data bar_intervals, initial captial, etc

        self.strategy_setup = strategy_setup

        ## strategy_params =
        ## dict (or JSOM object) that holds variables driving strategy execution
        ## i.e.  indicator lengths, thresholds, holding durations, etc

        self.strategy_params = strategy_params

        if len(name) > 15: name = name[:15]
        self.name = name

        self.target_timestamp = None
        self.current_timestamp = None

        self.IN_fills = None
        self.OUT_orders = OutQueue()
        self.IN_data = DQueue()
        self.latch = None
        self.lock = Lock()

        self.price_book = PriceBook()  # market data bucket
        self.current_data = None  # holds copy of last market data bucket
        self.start_up = True

        self.order_book = {}  ## dict[order_id]
        self.orders = []
        self.positions = {}
        self.trading_activity = collections.defaultdict(list)

        ## controls thread run()
        self.running = True

        ## trading size
        self.capital = 1000000.0 * 10

        ## self.bar_interval is used for aggregating tick data into bars (specifically if the strategy is
        ##    to handle real-time, tick by tick feeds...)
        ## bar_interval = 0, means take each data element on its own, do data aggregation is to occur
        ## self.bar_interval = 600  ## seconds
        self.bar_interval = 0
Exemplo n.º 4
0
def test_retrace_strategy(strategy_params, run_id):

    latch = DataLatch(3)
    s1_order_q = DQueue()
    s1_fill_q = DQueue()

    strat_name = 'test_%04d' % run_id

    ## NOTE strategy_params is a dict that the strategy
    ## uses to initialize itself.
    strategy = RetraceStrategy(strat_name, strategy_params=strategy_params)
    strategy.bar_interval = 1
    strategy.IN_fills = s1_fill_q
    strategy.OUT_orders = s1_order_q
    strategy.latch = latch

    porto_name = 'retrace_%d' % run_id
    portfolio = Portfolio(porto_name, None)
    portfolio.latch = latch
    portfolio.add(strategy)

    exchange = Exchange()
    exchange.IN_orders = portfolio.OUT_orders
    exchange.OUT_fills = portfolio.IN_fills
    exchange.latch = latch

    exchange.start()
    portfolio.start()
    strategy.start()

    simData = DataFeedDaily('daily.SPY.csv')
    for market_data in simData:
        latch.trap(market_data)
        ## ORDER MATTERS!
        ## this allows submit-fill loop to happen in a single on_data() event
        strategy.on_data(market_data)
        portfolio.on_data(market_data)
        exchange.on_data(market_data)

    ## do any final processing
    #strategy.flush()

    exchange.shutdown()
    portfolio.shutdown()
    strategy.shutdown()
    exchange.join()
    portfolio.join()
    strategy.join()

    return portfolio.stats()
Exemplo n.º 5
0
def test_strategy_execute():

    latch = DataLatch(2)
    s1_order_q = DQueue()
    s1_fill_q = DQueue()

    strategy = MStrategy('test_strategy', strategy_params={'length': 10})
    strategy.IN_fills = s1_fill_q
    strategy.OUT_orders = s1_order_q
    strategy.latch = latch

    exchange = Exchange()
    exchange.IN_orders = strategy.OUT_orders
    exchange.OUT_fills = strategy.IN_fills
    exchange.latch = latch

    exchange.start()
    strategy.start()

    log.info("START JOB= %s" % datetime.datetime.now())

    simData = DataFeedIntraday('20100315.SPY.csv')
    for market_data in simData:
        latch.trap(market_data)
        exchange.on_data(market_data)
        strategy.on_data(market_data)

    ## do any final processing
    #strategy.flush()

    exchange.shutdown()
    strategy.shutdown()
    exchange.join()
    strategy.join()

    log.info("END JOB= %s" % datetime.datetime.now())
    log.info("LEN DATA JOB= %s" % simData.count)
Exemplo n.º 6
0
def test_exchange():

    latch = DataLatch(1)

    ## exchange queues
    order_q = DQueue()
    fill_q = DQueue()

    exchange = Exchange()
    exchange.latch = latch

    ## bind exchange and portfolio together
    tester = Tester()
    exchange.IN_orders = order_q
    exchange.OUT_fills = fill_q
    tester.IN_queue = fill_q

    exchange.start()
    tester.start()
    o1 = Order('test', 'AAPL', Order.BUY, 100, Order.MARKET, None, None)
    o1.stamp_time(parse_date("20140311"))
    order_q.put(o1)
    o2 = Order('test', 'AAPL', Order.BUY, 200, Order.MARKET, None, None)
    o2.stamp_time(parse_date("20140816"))
    order_q.put(o2)
    o3 = Order('test', 'AAPL', Order.SELL, 300, Order.MARKET, None, None)
    o3.stamp_time(parse_date("20140101"))
    order_q.put(o3)

    simData = DataFeedDaily('AAPL.csv')
    for market_data in simData:
        latch.trap(market_data)
        exchange.on_data(market_data)

    exchange.shutdown()
    tester.shutdown()
    exchange.join()
    tester.join()
Exemplo n.º 7
0
class StrategyBase(Thread):
    def __init__(self, name, strategy_setup=None, strategy_params=None):

        super(StrategyBase, self).__init__()

        tag = "$ %s" % name
        self.log = logging.getLogger(tag)

        ## strategy_setup =
        ## dict (or JSON object) that handles setup of strategy specific variables
        ## that need initialization SEPARATE from varying strategy parameters
        ## i.e. contract specifications, data bar_intervals, initial captial, etc

        self.strategy_setup = strategy_setup

        ## strategy_params =
        ## dict (or JSOM object) that holds variables driving strategy execution
        ## i.e.  indicator lengths, thresholds, holding durations, etc

        self.strategy_params = strategy_params

        if len(name) > 15: name = name[:15]
        self.name = name

        self.target_timestamp = None
        self.current_timestamp = None

        self.IN_fills = None
        self.OUT_orders = OutQueue()
        self.IN_data = DQueue()
        self.latch = None
        self.lock = Lock()

        self.price_book = PriceBook()  # market data bucket
        self.current_data = None  # holds copy of last market data bucket
        self.start_up = True

        self.order_book = {}  ## dict[order_id]
        self.orders = []
        self.positions = {}
        self.trading_activity = collections.defaultdict(list)

        ## controls thread run()
        self.running = True

        ## trading size
        self.capital = 1000000.0 * 10

        ## self.bar_interval is used for aggregating tick data into bars (specifically if the strategy is
        ##    to handle real-time, tick by tick feeds...)
        ## bar_interval = 0, means take each data element on its own, do data aggregation is to occur
        ## self.bar_interval = 600  ## seconds
        self.bar_interval = 0

    def get_size(self, symbol, price):

        lot_size = 1
        units = 0
        base = price

        if base > 0:
            amt = int(self.capital / base)
            if amt >= lot_size:
                units = int(amt / lot_size) * lot_size
            else:
                self.log.warning(
                    '%s: trading units too small: calc=%d, min=%d' %
                    (symbol, amt, lot_size))
        else:
            self.log.warning('%s: zero risk base, no units allocated' % symbol)

        return units

    def open_orders(self, symbol):
        ## check if there are outstanding orders
        ## for a specific symbol
        return [x for x in self.order_book.values() if x.symbol == symbol]

    def send_order(self, order):
        order.stamp_time(self.current_timestamp)
        self.orders.append(order)
        self.order_book[order.order_id] = order

    def update_orders(self, fill):

        ## update outstanding orders
        self.log.info('updating orders (count=%d)' %
                      len(self.order_book.values()))
        if fill.order_id in self.order_book.keys():
            self.order_book[fill.order_id].qty_left -= fill.qty
            if self.order_book[fill.order_id].qty_left == 0:
                self.log.info("rm filled order %s" %
                              self.order_book[fill.order_id])
                del self.order_book[fill.order_id]
        else:
            self.log.error("fill= %s cannot find order_id %d" %
                           (fill, fill.order_id))

        ## for logging purposes only
        self.log.info('remaining orders (count=%d)' %
                      len(self.order_book.values()))
        open_symbols = set([x.symbol for x in self.order_book.values()])
        for symbol in open_symbols:
            opens = self.open_orders(symbol)
            for open_order in opens:
                self.log.info("open= %s" % open_order)

    def update_positions(self, fill):

        self.log.info("grab fill: %s" % fill)

        symbol = fill.symbol
        vqty = vwp = 0
        if symbol in self.positions.keys():
            position = self.positions[symbol]
            vqty, vwp = position.qty, position.price

        #longs
        if vqty > 0:
            # BUYS
            if fill.side == Order.BUY:
                # add long
                vwp = (vqty * vwp) + (fill.price * fill.qty)
                vqty += fill.qty
                vwp = vwp / float(vqty)
                self.profit_loss(None, fill, vqty)  #mark new position
            else:
                # SELLS
                if vqty >= fill.qty:
                    # reduce long
                    vqty -= fill.qty
                    self.profit_loss(fill.qty * (fill.price - vwp), fill, vqty)
                else:
                    # become net short
                    net_qty = vqty - fill.qty
                    self.profit_loss(vqty * (fill.price - vwp), fill, net_qty)
                    vqty = net_qty
                    vwp = fill.price
        #shorts
        elif vqty < 0:
            if fill.side == Order.SELL:
                # add short
                vwp = (-vqty * vwp) + (fill.price * fill.qty)
                vqty -= fill.qty
                vwp = -vwp / float(vqty)
                self.profit_loss(None, fill, vqty)  #mark new position
            else:
                # reduce short
                if abs(vqty) >= fill.qty:
                    vqty += fill.qty
                    self.profit_loss(fill.qty * (vwp - fill.price), fill, vqty)
                else:
                    # become net long
                    net_qty = vqty + fill.qty
                    self.profit_loss(
                        abs(vqty) * (vwp - fill.price), fill, net_qty)
                    vqty = net_qty
                    vwp = fill.price
        #flat
        elif vqty == 0:
            vqty = fill.qty
            if fill.side == Order.SELL: vqty = -fill.qty
            vwp = fill.price
            self.profit_loss(None, fill, vqty)  #mark new position

        # handle flattened positions
        if vqty == 0: vwp = 0

        self.positions[symbol] = Position(symbol, vqty, vwp)
        self.log.info("updated posn: %s" % self.positions[symbol])

    def profit_loss(self, pnl, fill, net_qty):

        fq = fill.qty if fill.side == Order.BUY else -fill.qty
        trade = collections.OrderedDict([('symbol', fill.symbol), ('qty', fq),
                                         ('price', fill.price), ('pnl', pnl),
                                         ('net_qty', net_qty),
                                         ('timestamp', fill.timestamp)])
        self.trading_activity[fill.symbol].append(trade)
        self.log.info("trade: %s" % dict(trade))

    ##exit cleanup
    def cleanup(self):
        for symbol, position in self.positions.iteritems():
            qty = position.qty
            if qty == 0: continue
            side = Order.SELL
            if qty < 0: side = Order.BUY

            ## send closing orders
            self.send_order(
                Order(self.name, symbol, side, qty, Order.MARKET, None, None))

    ## kills the thread
    def shutdown(self):
        self.log.info('Strategy Thread Stopped.')
        self.running = False

    def run(self):

        while self.running:

            ##sent back from portfolio
            ##IN_fills.get() returns a list: [fill0], or [fill1, fill2, ...]

            # FIX NOT NEEDED ?
            # orders = []
            with self.lock:
                try:
                    fill = self.IN_fills.peek()
                    if fill.timestamp <= self.current_timestamp:
                        fill = self.IN_fills.get()
                        self.update_positions(fill)
                        self.update_orders(fill)
                except IndexError:
                    pass

                ### send out new orders to the portfolio
                for order in self.orders:
                    self.log.info("sending: %s" % order)
                    self.OUT_orders.put(copy.deepcopy(order))
                    # FIX NOT NEEDED ?
                    ##orders.append(order)
                if self.orders:
                    del self.orders[:]

            ## report the new fills and orders
            ## to the portfolio
            ##for item in itertools.chain(fills,orders):
            ##    self.OUT_portfolio.put(item)

    def pull(self, interval=0):

        if self.start_up:
            if self.IN_data:
                head = self.IN_data.peek()
                self.target_timestamp = head.timestamp + timedelta(
                    seconds=interval)
                self.log.info("bar interval = %s seconds" % interval)
                self.log.info("next target_timestamp: %s" %
                              self.target_timestamp)
                self.start_up = False

        ## TODO
        ## what happens when price timestamp crosses multiple bar intervals? !!!

        price_book = None
        if self.IN_data:
            ## price_data = self.IN_data.peek()
            price_data = self.IN_data.get()

            self.log.info("price_book update: %s" % price_data)

            if interval == 0:
                price_book = PriceBook()
                price_book.update(price_data)

            else:

                if price_data.timestamp >= self.target_timestamp:

                    ## carry last price forward if current price ts > target_timestamp
                    if price_data.timestamp > self.target_timestamp:
                        self.log.info("filling last price forward to %s" %
                                      self.target_timestamp)
                        self.price_book.fill_forward(price_data,
                                                     self.target_timestamp)
                    else:
                        self.price_book.update(price_data)

                    price_book = copy.deepcopy(self.price_book)
                    self.log.info("bundled: %s to %s" %
                                  (price_book.start_timestamp,
                                   price_book.last_timestamp))

                    self.target_timestamp = self.target_timestamp + timedelta(
                        seconds=interval)
                    self.log.info("next target_timestamp: %s" %
                                  self.target_timestamp)
                    self.price_book.clear()

                self.price_book.update(price_data)

        return price_book

    ## flush out last bit of cached PriceDataBar info
    ## and do processing
    def flush(self):

        with self.lock:

            price_book = copy.deepcopy(self.price_book)
            self.target_timestamp = price_book.last_timestamp + timedelta(
                seconds=self.bar_interval)
            self.log.info(
                "flushed bundle: %s to %s" %
                (price_book.start_timestamp, price_book.last_timestamp))
            self.log.info("next target_timestamp: %s" % self.target_timestamp)
            self.price_book.clear()

            if not price_book.empty():
                self.current_data = copy.deepcopy(price_book)
                self.current_timestamp = price_book.last_timestamp
                self.execute_on(price_book)

    def on_data(self, price_data):

        with self.lock:

            self.IN_data.put(price_data)
            self.log.debug('LIVE_DATA: %s' % price_data)

            self.current_timestamp = price_data.timestamp

            ## deplete fill queue before acting on current data
            report_collect = False
            while self.IN_fills:
                if not report_collect:
                    self.log.info('collecting fills before execute_on() call')
                    report_collect = True

                fill = self.IN_fills.peek()
                if fill.timestamp <= self.current_timestamp:
                    fill = self.IN_fills.get()
                    self.update_positions(fill)
                    self.update_orders(fill)
                else:
                    ## no fills ready to be processed
                    break

            new_data = self.pull(interval=self.bar_interval)
            if new_data:
                self.log.debug('LIVE_BOOK: %s' % new_data)
                self.current_data = copy.deepcopy(new_data)
                self.execute_on(new_data)

            self.latch.notify()

    ### used in simulations
    def on_data_sim(self, price_data):

        self.IN_data.put(price_data)
        self.log.debug('SIM_DATA: %s' % price_data)

        self.current_timestamp = price_data.timestamp

        ## deplete fill queue before acting on current data
        report_collect = False
        while self.IN_fills:
            if not report_collect:
                self.log.info('collecting fills before execute_on() call')
                report_collect = True

            fill = self.IN_fills.peek()
            if fill.timestamp <= self.current_timestamp:
                fill = self.IN_fills.get()
                self.update_positions(fill)
                self.update_orders(fill)
            else:
                ## no fills ready to be processed
                break

        new_data = self.pull(interval=self.bar_interval)
        if new_data:
            self.log.debug('SIM_BOOK: %s' % new_data)
            self.current_data = copy.deepcopy(new_data)
            self.execute_on(new_data)

        ### send out new orders to the EXCHANGE
        for order in self.orders:
            self.log.info("sending: %s" % order)
            self.OUT_orders.put(copy.deepcopy(order))
        if self.orders:
            del self.orders[:]

        self.latch.notify()

    def on_EOD(self):
        self.log.info('EOD reset %s' % self.name)

        with self.lock:
            ## 1. clear orders
            self.OUT_orders.clear()
            ## 2. process remaining fills and MTM
            while self.IN_fills:
                fill = self.IN_fills.peek()
                if fill.timestamp <= self.current_timestamp:
                    fill = self.IN_fills.get()
                    self.log.info('grab EOD fill %s' % fill)
                    self.update_positions(fill)
                    self.update_orders(fill)
                else:
                    ## no fills ready to be processed
                    break
            ## make sure fill queue is cleared
            self.IN_fills.clear()

            ## reset the strategy
            self.reset()

    def __repr__(self):
        setup = "strategy_setup = %s" % pprint.pformat(self.strategy_setup)
        params = "strategy_params = %s" % pprint.pformat(self.strategy_params)
        return "\n".join([setup, params])

    def __str__(self):
        setup = "strategy_setup = %s" % pprint.pformat(self.strategy_setup)
        params = "strategy_params = %s" % pprint.pformat(self.strategy_params)
        return "\n".join([setup, params])

    ## override this to implement strategy
    def execute_on(self, price_book):
        raise NotImplementedError

    ## override this to reset strategy
    def reset(self):
        raise NotImplementedError
Exemplo n.º 8
0
    def add_strategy(self, strategy):
        self.strategies.append(strategy)

        strategy.IN_fills = DQueue()
        self.portfolio.add(strategy)
        self.exchange.add(strategy)
Exemplo n.º 9
0
def test_strategy_fills(side):
    ## handle long and short fills, all possiblities
    ## strategy queues

    latch = DataLatch(1)

    s1_order_q = DQueue()
    s1_fill_q = DQueue()

    strategy = MStrategy('test_strategy', strategy_params={'length': 10})

    strategy.IN_fills = s1_fill_q
    strategy.OUT_orders = s1_order_q
    strategy.latch = latch

    strategy.start()

    ts = datetime.datetime(2014, 8, 16, 12, 30, 0)

    ## build inital position
    s1_fill_q.put(Fill('AAPL', 100.00, 100, side, ts, 1))
    s1_fill_q.put(Fill('AAPL', 101.50, 50, side, ts, 2))
    s1_fill_q.put(
        Fill('AAPL', 110.00, 50, side, ts + datetime.timedelta(seconds=10), 3))

    rev = Order.SELL
    if side == rev: rev = Order.BUY
    ## take some of off
    s1_fill_q.put(
        Fill('AAPL', 107.00, 20, rev, ts + datetime.timedelta(seconds=20), 4))
    s1_fill_q.put(
        Fill('AAPL', 107.00, 20, rev, ts + datetime.timedelta(seconds=25), 5))

    ## flip position
    s1_fill_q.put(
        Fill('AAPL', 110.00, 200, rev, ts + datetime.timedelta(seconds=100),
             6))
    s1_fill_q.put(
        Fill('AAPL', 108.50, 10, rev, ts + datetime.timedelta(seconds=110), 7))
    s1_fill_q.put(
        Fill('AAPL', 106.50, 100, rev, ts + datetime.timedelta(seconds=110),
             8))

    ##close position
    s1_fill_q.put(
        Fill('AAPL', 109.00, 100, side, ts + datetime.timedelta(seconds=200),
             9))
    s1_fill_q.put(
        Fill('AAPL', 109.00, 50, side, ts + datetime.timedelta(seconds=200),
             10))

    time.sleep(5)

    strategy.shutdown()
    strategy.join()
Exemplo n.º 10
0
def test_strategy_order_update():
    ## do partial fill and update, both sides

    latch = DataLatch(1)
    s1_order_q = DQueue()
    s1_fill_q = DQueue()

    ts = datetime.datetime(2014, 8, 16, 12, 30, 0)

    strategy = MStrategy('test_strategy', strategy_params={'length': 10})
    strategy.IN_fills = s1_fill_q
    strategy.OUT_orders = s1_order_q
    strategy.latch = latch

    strategy.start()

    o1 = Order(strategy.name, 'AAPL', Order.SELL, 100, Order.MARKET, None,
               None)
    o2 = Order(strategy.name, 'AAPL', Order.SELL, 200, Order.MARKET, None,
               None)

    p1 = Order(strategy.name, 'AAPL', Order.BUY, 100, Order.MARKET, None, None)
    p2 = Order(strategy.name, 'AAPL', Order.BUY, 200, Order.MARKET, None, None)

    strategy.send_order(o1)
    strategy.send_order(o2)
    strategy.send_order(p1)
    strategy.send_order(p2)

    # allow time for orders to be sent
    time.sleep(2)

    s1_fill_q.put(Fill('AAPL', 100.00, 100, Order.SELL, ts, o1.order_id))
    s1_fill_q.put(
        Fill('AAPL', 101.50, 50, Order.SELL, ts, o2.order_id, qty_left=150))

    s1_fill_q.put(Fill('AAPL', 104.00, 100, Order.BUY, ts, p1.order_id))
    s1_fill_q.put(
        Fill('AAPL', 105.50, 70, Order.BUY, ts, p2.order_id, qty_left=130))

    time.sleep(2)

    strategy.shutdown()
    strategy.join()