Ejemplo n.º 1
0
def generateMP4s(dir_path, ftpfile_name):
    t1 = datetime.datetime.utcnow()

    # Load the font for labeling
    try:
        font = ImageFont.truetype("/usr/share/fonts/dejavu/DejaVuSans.ttf", 18)
    except:
        font = ImageFont.load_default()

    print("Preparing files for the timelapse...")
    # load the ftpfile so we know which frames we want
    meteor_list = FTPdetectinfo.readFTPdetectinfo(dir_path, ftpfile_name)
    for meteor in meteor_list:
        ff_name, _, _, n_segments, _, _, _, _, _, _, _, \
            meteor_meas = meteor
        # determine which frames we want

        first_frame = int(meteor_meas[0][1]) - 30
        last_frame = first_frame + 60
        if first_frame < 0:
            first_frame = 0
        if (n_segments > 1):
            lastseg = int(n_segments) - 1
            last_frame = int(meteor_meas[lastseg][1]) + 30
        #if last_frame > 255 :
        #    last_frame = 255
        if last_frame < first_frame + 60:
            last_frame = first_frame + 60

        print(ff_name, ' frames ', first_frame, last_frame)

        # Read the FF file
        ff = readFF(dir_path, ff_name)

        # Skip the file if it could not be read
        if ff is None:
            continue

        # Create temporary directory
        dir_tmp_path = os.path.join(dir_path, "temp_img_dir")

        if os.path.exists(dir_tmp_path):
            shutil.rmtree(dir_tmp_path)
            print("Deleted directory : " + dir_tmp_path)

        mkdirP(dir_tmp_path)
        print("Created directory : " + dir_tmp_path)

        # extract the individual frames
        name_time_list = f2f.FFtoFrames(dir_path + '/' + ff_name, dir_tmp_path,
                                        'jpg', -1, first_frame, last_frame)

        # Get id cam from the file name
        # e.g.  FF499_20170626_020520_353_0005120.bin
        # or FF_CA0001_20170626_020520_353_0005120.fits

        file_split = ff_name.split('_')

        # Check the number of list elements, and the new fits format has one more underscore
        i = 0
        if len(file_split[0]) == 2:
            i = 1
        camid = file_split[i]

        font = cv2.FONT_HERSHEY_SIMPLEX

        # add datestamp to each frame
        for img_file_name, timestamp in name_time_list:
            img = cv2.imread(os.path.join(dir_tmp_path, img_file_name))

            # Draw text to image
            text = camid + " " + timestamp.strftime(
                "%Y-%m-%d %H:%M:%S") + " UTC"
            cv2.putText(img, text, (10, ff.nrows - 6), font, 0.4,
                        (255, 255, 255), 1, cv2.LINE_AA)

            # Save the labelled image to disk
            cv2.imwrite(os.path.join(dir_tmp_path, img_file_name), img,
                        [cv2.IMWRITE_JPEG_QUALITY, 100])

        ffbasename = os.path.splitext(ff_name)[0]
        mp4_path = ffbasename + ".mp4"
        temp_img_path = os.path.join(dir_tmp_path, ffbasename + "_%03d.jpg")

        # If running on Windows, use ffmpeg.exe
        if platform.system() == 'Windows':

            # ffmpeg.exe path
            root = os.path.dirname(__file__)
            ffmpeg_path = os.path.join(root, "ffmpeg.exe")
            # Construct the ecommand for ffmpeg
            com = ffmpeg_path + " -y -f image2 -pattern_type sequence -start_number " + str(
                first_frame) + " -i " + temp_img_path + " " + mp4_path
            print("Creating timelapse using ffmpeg...")
        else:
            # If avconv is not found, try using ffmpeg
            software_name = "avconv"
            print("Checking if avconv is available...")
            if os.system(software_name + " --help > /dev/null"):
                software_name = "ffmpeg"
                # Construct the ecommand for ffmpeg
                com = software_name + " -y -f image2 -pattern_type sequence -start_number " + str(
                    first_frame) + " -i " + temp_img_path + " " + mp4_path
                print("Creating timelapse using ffmpeg...")
            else:
                print("Creating timelapse using avconv...")
                com = "cd " + dir_path + ";" \
                    + software_name + " -v quiet -r 30 -y -start_number " + str(first_frame) + " -i " + temp_img_path \
                    + " -vcodec libx264 -pix_fmt yuv420p -crf 25 -movflags faststart -g 15 -vf \"hqdn3d=4:3:6:4.5,lutyuv=y=gammaval(0.97)\" " \
                    + mp4_path

        #print(com)
        subprocess.call(com, shell=True, cwd=dir_path)

        #Delete temporary directory and files inside
        if os.path.exists(dir_tmp_path):
            try:
                shutil.rmtree(dir_tmp_path)
            except:
                # may occasionally fail due to ffmpeg thread still terminating
                # so catch this and wait a bit
                time.sleep(2)
                shutil.rmtree(dir_tmp_path)

            print("Deleted temporary directory : " + dir_tmp_path)

    print("Total time:", datetime.datetime.utcnow() - t1)
Ejemplo n.º 2
0
def recalibrateIndividualFFsAndApplyAstrometry(dir_path, ftpdetectinfo_path, calstars_list, config, platepar,
    generate_plot=True):
    """ Recalibrate FF files with detections and apply the recalibrated platepar to those detections. 

    Arguments:
        dir_path: [str] Path where the FTPdetectinfo file is.
        ftpdetectinfo_path: [str] Name of the FTPdetectinfo file.
        calstars_list: [list] A list of entries [[ff_name, star_coordinates], ...].
        config: [Config instance]
        platepar: [Platepar instance] Initial platepar.

    Keyword arguments:
        generate_plot: [bool] Generate the calibration variation plot. True by default.

    Return:
        recalibrated_platepars: [dict] A dictionary where the keys are FF file names and values are 
            recalibrated platepar instances for every FF file.
    """

    # Use a copy of the config file
    config = copy.deepcopy(config)

    # If the given file does not exits, return nothing
    if not os.path.isfile(ftpdetectinfo_path):
        print('ERROR! The FTPdetectinfo file does not exist: {:s}'.format(ftpdetectinfo_path))
        print('    The recalibration on every file was not done!')

        return {}


    # Read the FTPdetectinfo data
    cam_code, fps, meteor_list = FTPdetectinfo.readFTPdetectinfo(*os.path.split(ftpdetectinfo_path), \
        ret_input_format=True)

    # Convert the list of stars to a per FF name dictionary
    calstars = {ff_file: star_data for ff_file, star_data in calstars_list}


    ### Add neighboring FF files for more robust photometry estimation ###

    ff_processing_list = []

    # Make a list of sorted FF files in CALSTARS
    calstars_ffs = sorted([ff_file for ff_file in calstars])

    # Go through the list of FF files with detections and add neighboring FFs
    for meteor_entry in meteor_list:

        ff_name = meteor_entry[0]

        if ff_name in calstars_ffs:

            # Find the index of the given FF file in the list of calstars
            ff_indx = calstars_ffs.index(ff_name)

            # Add neighbours to the processing list
            for k in range(-(RECALIBRATE_NEIGHBOURHOOD_SIZE//2), RECALIBRATE_NEIGHBOURHOOD_SIZE//2 + 1):

                k_indx = ff_indx + k

                if (k_indx > 0) and (k_indx < len(calstars_ffs)):

                    ff_name_tmp = calstars_ffs[k_indx]
                    if ff_name_tmp not in ff_processing_list:
                        ff_processing_list.append(ff_name_tmp)


    # Sort the processing list of FF files
    ff_processing_list = sorted(ff_processing_list)


    ### ###


    # Globally increase catalog limiting magnitude
    config.catalog_mag_limit += 1

    # Load catalog stars (overwrite the mag band ratios if specific catalog is used)
    star_catalog_status = StarCatalog.readStarCatalog(config.star_catalog_path,\
        config.star_catalog_file, lim_mag=config.catalog_mag_limit, \
        mag_band_ratios=config.star_catalog_band_ratios)

    if not star_catalog_status:
        print("Could not load the star catalog!")
        print(os.path.join(config.star_catalog_path, config.star_catalog_file))
        return {}

    catalog_stars, _, config.star_catalog_band_ratios = star_catalog_status


    # Update the platepar coordinates from the config file
    platepar.lat = config.latitude
    platepar.lon = config.longitude
    platepar.elev = config.elevation


    prev_platepar = copy.deepcopy(platepar)

    # Go through all FF files with detections, recalibrate and apply astrometry
    recalibrated_platepars = {}
    for ff_name in ff_processing_list:

        working_platepar = copy.deepcopy(prev_platepar)

        # Skip this meteor if its FF file was already recalibrated
        if ff_name in recalibrated_platepars:
            continue

        print()
        print('Processing: ', ff_name)
        print('------------------------------------------------------------------------------')

        # Find extracted stars on this image
        if not ff_name in calstars:
            print('Skipped because it was not in CALSTARS:', ff_name)
            continue

        # Get stars detected on this FF file (create a dictionaly with only one entry, the residuals function
        #   needs this format)
        calstars_time = FFfile.getMiddleTimeFF(ff_name, config.fps, ret_milliseconds=True)
        jd = date2JD(*calstars_time)
        star_dict_ff = {jd: calstars[ff_name]}

        # Recalibrate the platepar using star matching
        result, min_match_radius = recalibrateFF(config, working_platepar, jd, star_dict_ff, catalog_stars)

        
        # If the recalibration failed, try using FFT alignment
        if result is None:

            print()
            print('Running FFT alignment...')

            # Run FFT alignment
            calstars_coords = np.array(star_dict_ff[jd])[:, :2]
            calstars_coords[:, [0, 1]] = calstars_coords[:, [1, 0]]
            print(calstars_time)
            test_platepar = alignPlatepar(config, prev_platepar, calstars_time, calstars_coords, \
                show_plot=False)

            # Try to recalibrate after FFT alignment
            result, _ = recalibrateFF(config, test_platepar, jd, star_dict_ff, catalog_stars)


            # If the FFT alignment failed, align the original platepar using the smallest radius that matched
            #   and force save the the platepar
            if (result is None) and (min_match_radius is not None):
                print()
                print("Using the old platepar with the minimum match radius of: {:.2f}".format(min_match_radius))
                result, _ = recalibrateFF(config, working_platepar, jd, star_dict_ff, catalog_stars, 
                    max_match_radius=min_match_radius, force_platepar_save=True)

                if result is not None:
                    working_platepar = result


            # If the alignment succeeded, save the result
            else:
                working_platepar = result


        else:
            working_platepar = result


        # Store the platepar if the fit succeeded
        if result is not None:

            # Recompute alt/az of the FOV centre
            working_platepar.az_centre, working_platepar.alt_centre = raDec2AltAz(working_platepar.RA_d, \
                working_platepar.dec_d, working_platepar.JD, working_platepar.lat, working_platepar.lon)

            # Recompute the rotation wrt horizon
            working_platepar.rotation_from_horiz = rotationWrtHorizon(working_platepar)

            # Mark the platepar to indicate that it was automatically recalibrated on an individual FF file
            working_platepar.auto_recalibrated = True

            recalibrated_platepars[ff_name] = working_platepar
            prev_platepar = working_platepar

        else:

            print('Recalibration of {:s} failed, using the previous platepar...'.format(ff_name))

            # Mark the platepar to indicate that autorecalib failed
            prev_platepar_tmp = copy.deepcopy(prev_platepar)
            prev_platepar_tmp.auto_recalibrated = False

            # If the aligning failed, set the previous platepar as the one that should be used for this FF file
            recalibrated_platepars[ff_name] = prev_platepar_tmp



    ### Average out photometric offsets within the given neighbourhood size ###

    # Go through the list of FF files with detections
    for meteor_entry in meteor_list:

        ff_name = meteor_entry[0]

        # Make sure the FF was successfuly recalibrated
        if ff_name in recalibrated_platepars:

            # Find the index of the given FF file in the list of calstars
            ff_indx = calstars_ffs.index(ff_name)

            # Compute the average photometric offset and the improved standard deviation using all
            #   neighbors
            photom_offset_tmp_list = []
            photom_offset_std_tmp_list = []
            neighboring_ffs = []
            for k in range(-(RECALIBRATE_NEIGHBOURHOOD_SIZE//2), RECALIBRATE_NEIGHBOURHOOD_SIZE//2 + 1):

                k_indx = ff_indx + k

                if (k_indx > 0) and (k_indx < len(calstars_ffs)):

                    # Get the name of the FF file
                    ff_name_tmp = calstars_ffs[k_indx]

                    # Check that the neighboring FF was successfuly recalibrated
                    if ff_name_tmp in recalibrated_platepars:
                        
                        # Get the computed photometric offset and stddev
                        photom_offset_tmp_list.append(recalibrated_platepars[ff_name_tmp].mag_lev)
                        photom_offset_std_tmp_list.append(recalibrated_platepars[ff_name_tmp].mag_lev_stddev)
                        neighboring_ffs.append(ff_name_tmp)


            # Compute the new photometric offset and improved standard deviation (assume equal sample size)
            #   Source: https://stats.stackexchange.com/questions/55999/is-it-possible-to-find-the-combined-standard-deviation
            photom_offset_new = np.mean(photom_offset_tmp_list)
            photom_offset_std_new = np.sqrt(\
                np.sum([st**2 + (mt - photom_offset_new)**2 \
                for mt, st in zip(photom_offset_tmp_list, photom_offset_std_tmp_list)]) \
                / len(photom_offset_tmp_list)
                )

            # Assign the new photometric offset and standard deviation to all FFs used for computation
            for ff_name_tmp in neighboring_ffs:
                recalibrated_platepars[ff_name_tmp].mag_lev = photom_offset_new
                recalibrated_platepars[ff_name_tmp].mag_lev_stddev = photom_offset_std_new

    ### ###


    ### Store all recalibrated platepars as a JSON file ###

    all_pps = {}
    for ff_name in recalibrated_platepars:

        json_str = recalibrated_platepars[ff_name].jsonStr()
        
        all_pps[ff_name] = json.loads(json_str)

    with open(os.path.join(dir_path, config.platepars_recalibrated_name), 'w') as f:
        
        # Convert all platepars to a JSON file
        out_str = json.dumps(all_pps, default=lambda o: o.__dict__, indent=4, sort_keys=True)

        f.write(out_str)

    ### ###



    # If no platepars were recalibrated, use the single platepar recalibration procedure
    if len(recalibrated_platepars) == 0:

        print('No FF images were used for recalibration, using the single platepar calibration function...')

        # Use the initial platepar for calibration
        applyAstrometryFTPdetectinfo(dir_path, os.path.basename(ftpdetectinfo_path), None, platepar=platepar)

        return recalibrated_platepars



    ### GENERATE PLOTS ###

    dt_list = []
    ang_dists = []
    rot_angles = []
    hour_list = []
    photom_offset_list = []
    photom_offset_std_list = []

    first_dt = np.min([FFfile.filenameToDatetime(ff_name) for ff_name in recalibrated_platepars])

    for ff_name in recalibrated_platepars:
        
        pp_temp = recalibrated_platepars[ff_name]

        # If the fitting failed, skip the platepar
        if pp_temp is None:
            continue

        # Add the datetime of the FF file to the list
        ff_dt = FFfile.filenameToDatetime(ff_name)
        dt_list.append(ff_dt)


        # Compute the angular separation from the reference platepar
        ang_dist = np.degrees(angularSeparation(np.radians(platepar.RA_d), np.radians(platepar.dec_d), \
            np.radians(pp_temp.RA_d), np.radians(pp_temp.dec_d)))
        ang_dists.append(ang_dist*60)

        # Compute rotation difference
        rot_diff = (platepar.pos_angle_ref - pp_temp.pos_angle_ref + 180)%360 - 180
        rot_angles.append(rot_diff*60)

        # Compute the hour of the FF used for recalibration
        hour_list.append((ff_dt - first_dt).total_seconds()/3600)

        # Add the photometric offset to the list
        photom_offset_list.append(pp_temp.mag_lev)
        photom_offset_std_list.append(pp_temp.mag_lev_stddev)



    if generate_plot:

        # Generate the name the plots
        plot_name = os.path.basename(ftpdetectinfo_path).replace('FTPdetectinfo_', '').replace('.txt', '')

        
        ### Plot difference from reference platepar in angular distance from (0, 0) vs rotation ###    

        plt.figure()

        plt.scatter(0, 0, marker='o', edgecolor='k', label='Reference platepar', s=100, c='none', zorder=3)

        plt.scatter(ang_dists, rot_angles, c=hour_list, zorder=3)
        plt.colorbar(label="Hours from first FF file")
        
        plt.xlabel("Angular distance from reference (arcmin)")
        plt.ylabel("Rotation from reference (arcmin)")

        plt.title("FOV centre drift starting at {:s}".format(first_dt.strftime("%Y/%m/%d %H:%M:%S")))

        plt.grid()
        plt.legend()

        plt.tight_layout()            

        plt.savefig(os.path.join(dir_path, plot_name + '_calibration_variation.png'), dpi=150)

        # plt.show()

        plt.clf()
        plt.close()

        ### ###


        ### Plot the photometric offset variation ###

        plt.figure()

        plt.errorbar(dt_list, photom_offset_list, yerr=photom_offset_std_list, fmt="o", \
            ecolor='lightgray', elinewidth=2, capsize=0, ms=2)

        # Format datetimes
        plt.gca().xaxis.set_major_formatter(mdates.DateFormatter("%H:%M"))

        # rotate and align the tick labels so they look better
        plt.gcf().autofmt_xdate()

        plt.xlabel("UTC time")
        plt.ylabel("Photometric offset")

        plt.title("Photometric offset variation")

        plt.grid()

        plt.tight_layout()

        plt.savefig(os.path.join(dir_path, plot_name + '_photometry_variation.png'), dpi=150)

        plt.clf()
        plt.close()

    ### ###



    ### Apply platepars to FTPdetectinfo ###

    meteor_output_list = []
    for meteor_entry in meteor_list:

        ff_name, meteor_No, rho, phi, meteor_meas = meteor_entry

        # Get the platepar that will be applied to this FF file
        if ff_name in recalibrated_platepars:
            working_platepar = recalibrated_platepars[ff_name]

        else:
            print('Using default platepar for:', ff_name)
            working_platepar = platepar

        # Apply the recalibrated platepar to meteor centroids
        meteor_picks = applyPlateparToCentroids(ff_name, fps, meteor_meas, working_platepar, \
            add_calstatus=True)

        meteor_output_list.append([ff_name, meteor_No, rho, phi, meteor_picks])


    # Calibration string to be written to the FTPdetectinfo file
    calib_str = 'Recalibrated with RMS on: ' + str(datetime.datetime.utcnow()) + ' UTC'

    # If no meteors were detected, set dummpy parameters
    if len(meteor_list) == 0:
        cam_code = ''
        fps = 0


    # Back up the old FTPdetectinfo file
    try:
        shutil.copy(ftpdetectinfo_path, ftpdetectinfo_path.strip('.txt') \
            + '_backup_{:s}.txt'.format(datetime.datetime.utcnow().strftime('%Y%m%d_%H%M%S.%f')))
    except:
        print('ERROR! The FTPdetectinfo file could not be backed up: {:s}'.format(ftpdetectinfo_path))

    # Save the updated FTPdetectinfo
    FTPdetectinfo.writeFTPdetectinfo(meteor_output_list, dir_path, os.path.basename(ftpdetectinfo_path), \
        dir_path, cam_code, fps, calibration=calib_str, celestial_coords_given=True)


    ### ###

    return recalibrated_platepars
Ejemplo n.º 3
0
def FTPdetectinfo2UFOOrbitInput(dir_path,
                                file_name,
                                platepar_path,
                                platepar_dict=None):
    """ Convert the FTPdetectinfo file into UFOOrbit input CSV file. 
        
    Arguments:
        dir_path: [str] Path of the directory which contains the FTPdetectinfo file.
        file_name: [str] Name of the FTPdetectinfo file.
        platepar_path: [str] Full path to the platepar file.

    Keyword arguments:
        platepar_dict: [dict] Dictionary of Platepar instances where keys are FF file names. This will be 
            used instead of the platepar at platepar_path. None by default.
    """

    # Load the FTPdetecinfo file
    meteor_list = FTPdetectinfo.readFTPdetectinfo(dir_path, file_name)

    # Load the platepar file
    if platepar_dict is None:

        pp = RMS.Formats.Platepar.Platepar()
        pp.read(platepar_path, use_flat=None)

    # Init the UFO format list
    ufo_meteor_list = []

    # Go through every meteor in the list
    for meteor in meteor_list:

        ff_name, cam_code, meteor_No, n_segments, fps, hnr, mle, binn, px_fm, rho, phi, \
            meteor_meas = meteor

        # Load the platepar from the platepar dictionary, if given
        if platepar_dict is not None:
            if ff_name in platepar_dict:
                pp = platepar_dict[ff_name]

            else:
                print(
                    'Skipping {:s} becuase no platepar was found for this FF file!'
                    .format(ff_name))
                continue

        # Convert the FF file name into time
        dt = FFfile.filenameToDatetime(ff_name)

        # Extract measurements
        calib_status, frame_n, x, y, ra, dec, azim, elev, inten, mag = np.array(
            meteor_meas).T

        # If the meteor wasn't calibrated, skip it
        if not np.all(calib_status):
            print('Meteor {:d} was not calibrated, skipping it...'.format(
                meteor_No))
            continue

        # Compute the peak magnitude
        peak_mag = np.min(mag)

        # Compute the total duration
        first_frame = np.min(frame_n)
        last_frame = np.max(frame_n)
        duration = (last_frame - first_frame) / fps

        # Compute times of first and last points
        dt1 = dt + datetime.timedelta(seconds=first_frame / fps)
        dt2 = dt + datetime.timedelta(seconds=last_frame / fps)

        ### Fit a great circle to Az/Alt measurements and compute model beg/end RA and Dec ###

        # Convert the measurement Az/Alt to cartesian coordinates
        # NOTE: All values that are used for Great Circle computation are:
        #   theta - the zenith angle (90 deg - altitude)
        #   phi - azimuth +N of due E, which is (90 deg - azim)
        x, y, z = Math.polarToCartesian(np.radians((90 - azim) % 360),
                                        np.radians(90 - elev))

        # Fit a great circle
        C, theta0, phi0 = GreatCircle.fitGreatCircle(x, y, z)

        # Get the first point on the great circle
        phase1 = GreatCircle.greatCirclePhase(np.radians(90 - elev[0]), np.radians((90 - azim[0])%360), \
            theta0, phi0)
        alt1, azim1 = Math.cartesianToPolar(
            *GreatCircle.greatCircle(phase1, theta0, phi0))
        alt1 = 90 - np.degrees(alt1)
        azim1 = (90 - np.degrees(azim1)) % 360

        # Get the last point on the great circle
        phase2 = GreatCircle.greatCirclePhase(np.radians(90 - elev[-1]), np.radians((90 - azim[-1])%360),\
            theta0, phi0)
        alt2, azim2 = Math.cartesianToPolar(
            *GreatCircle.greatCircle(phase2, theta0, phi0))
        alt2 = 90 - np.degrees(alt2)
        azim2 = (90 - np.degrees(azim2)) % 360

        # Compute RA/Dec from Alt/Az
        _, ra1, dec1 = RMS.Astrometry.ApplyAstrometry.altAzToRADec(pp.lat, pp.lon, pp.UT_corr, [dt1], \
            [azim1], [alt1], dt_time=True)
        _, ra2, dec2 = RMS.Astrometry.ApplyAstrometry.altAzToRADec(pp.lat, pp.lon, pp.UT_corr, [dt2], \
            [azim2], [alt2], dt_time=True)

        ### ###


        ufo_meteor_list.append([dt1, peak_mag, duration, azim1[0], alt1[0], azim2[0], alt2[0], \
            ra1[0][0], dec1[0][0], ra2[0][0], dec2[0][0], cam_code, pp.lon, pp.lat, pp.elev, pp.UT_corr])

    # Construct a file name for the UFO file, which is the FTPdetectinfo file without the FTPdetectinfo
    #   part
    ufo_file_name = file_name.replace('FTPdetectinfo_', '').replace(
        '.txt', '') + '.csv'

    # Write the UFOorbit file
    UFOOrbit.writeUFOOrbit(dir_path, ufo_file_name, ufo_meteor_list)
Ejemplo n.º 4
0
def FTPdetectinfo2UFOOrbitInput(dir_path, file_name, platepar_path, platepar_dict=None):
    """ Convert the FTPdetectinfo file into UFOOrbit input CSV file. 
        
    Arguments:
        dir_path: [str] Path of the directory which contains the FTPdetectinfo file.
        file_name: [str] Name of the FTPdetectinfo file.
        platepar_path: [str] Full path to the platepar file.

    Keyword arguments:
        platepar_dict: [dict] Dictionary of Platepar instances where keys are FF file names. This will be 
            used instead of the platepar at platepar_path. None by default.
    """

    # Load the FTPdetecinfo file
    meteor_list = FTPdetectinfo.readFTPdetectinfo(dir_path, file_name)


    # Load the platepar file
    if platepar_dict is None:

        pp = RMS.Formats.Platepar.Platepar()
        pp.read(platepar_path)


    # Init the UFO format list
    ufo_meteor_list = []

    # Go through every meteor in the list
    for meteor in meteor_list:

        ff_name, cam_code, meteor_No, n_segments, fps, hnr, mle, binn, px_fm, rho, phi, \
            meteor_meas = meteor

        # Load the platepar from the platepar dictionary, if given
        if platepar_dict is not None:
            if ff_name in platepar_dict:
                pp = platepar_dict[ff_name]

            else:
                print('Skipping {:s} becuase no platepar was found for this FF file!'.format(ff_name))

        # Convert the FF file name into time
        dt = FFfile.filenameToDatetime(ff_name)

        # Extract measurements
        calib_status, frame_n, x, y, ra, dec, azim, elev, inten, mag = np.array(meteor_meas).T

        # If the meteor wasn't calibrated, skip it
        if not np.all(calib_status):
            print('Meteor {:d} was not calibrated, skipping it...'.format(meteor_No))
            continue

        # Compute the peak magnitude
        peak_mag = np.min(mag)

        # Compute the total duration
        first_frame = np.min(frame_n)
        last_frame = np.max(frame_n) 
        duration = (last_frame - first_frame)/fps


        # Compute times of first and last points
        dt1 = dt + datetime.timedelta(seconds=first_frame/fps)
        dt2 = dt + datetime.timedelta(seconds=last_frame/fps)

        
        ### Fit a great circle to Az/Alt measurements and compute model beg/end RA and Dec ###

        # Convert the measurement Az/Alt to cartesian coordinates
        # NOTE: All values that are used for Great Circle computation are:
        #   theta - the zenith angle (90 deg - altitude)
        #   phi - azimuth +N of due E, which is (90 deg - azim)
        x, y, z = Math.polarToCartesian(np.radians((90 - azim)%360), np.radians(90 - elev))

        # Fit a great circle
        C, theta0, phi0 = GreatCircle.fitGreatCircle(x, y, z)

        # Get the first point on the great circle
        phase1 = GreatCircle.greatCirclePhase(np.radians(90 - elev[0]), np.radians((90 - azim[0])%360), \
            theta0, phi0)
        alt1, azim1 = Math.cartesianToPolar(*GreatCircle.greatCircle(phase1, theta0, phi0))
        alt1 = 90 - np.degrees(alt1)
        azim1 = (90 - np.degrees(azim1))%360



        # Get the last point on the great circle
        phase2 = GreatCircle.greatCirclePhase(np.radians(90 - elev[-1]), np.radians((90 - azim[-1])%360),\
            theta0, phi0)
        alt2, azim2 = Math.cartesianToPolar(*GreatCircle.greatCircle(phase2, theta0, phi0))
        alt2 = 90 - np.degrees(alt2)
        azim2 = (90 - np.degrees(azim2))%360

        # Compute RA/Dec from Alt/Az
        _, ra1, dec1 = RMS.Astrometry.ApplyAstrometry.altAzToRADec(pp.lat, pp.lon, pp.UT_corr, [dt1], \
            [azim1], [alt1], dt_time=True)
        _, ra2, dec2 = RMS.Astrometry.ApplyAstrometry.altAzToRADec(pp.lat, pp.lon, pp.UT_corr, [dt2], \
            [azim2], [alt2], dt_time=True)


        ### ###


        ufo_meteor_list.append([dt1, peak_mag, duration, azim1[0], alt1[0], azim2[0], alt2[0], \
            ra1[0][0], dec1[0][0], ra2[0][0], dec2[0][0], cam_code, pp.lon, pp.lat, pp.elev, pp.UT_corr])


    # Construct a file name for the UFO file, which is the FTPdetectinfo file without the FTPdetectinfo 
    #   part
    ufo_file_name = file_name.replace('FTPdetectinfo_', '').replace('.txt', '') + '.csv'

    # Write the UFOorbit file
    UFOOrbit.writeUFOOrbit(dir_path, ufo_file_name, ufo_meteor_list)
Ejemplo n.º 5
0
def recalibrateIndividualFFsAndApplyAstrometry(dir_path, ftpdetectinfo_path, calstars_list, config, platepar):
    """ Recalibrate FF files with detections and apply the recalibrated platepar to those detections. 

    Arguments:
        dir_path: [str] Path where the FTPdetectinfo file is.
        ftpdetectinfo_path: [str] Name of the FTPdetectinfo file.
        calstars_list: [list] A list of entries [[ff_name, star_coordinates], ...].
        config: [Config instance]
        platepar: [Platepar instance] Initial platepar.

    Return:
        recalibrated_platepars: [dict] A dictionary where the keys are FF file names and values are 
            recalibrated platepar instances for every FF file.
    """


    # Read the FTPdetectinfo data
    cam_code, fps, meteor_list = FTPdetectinfo.readFTPdetectinfo(*os.path.split(ftpdetectinfo_path), \
        ret_input_format=True)

    # Convert the list of stars to a per FF name dictionary
    calstars = {ff_file: star_data for ff_file, star_data in calstars_list}


    # Load catalog stars (overwrite the mag band ratios if specific catalog is used)
    catalog_stars, _, config.star_catalog_band_ratios = StarCatalog.readStarCatalog(config.star_catalog_path,\
        config.star_catalog_file, lim_mag=config.catalog_mag_limit, \
        mag_band_ratios=config.star_catalog_band_ratios)



    prev_platepar = copy.deepcopy(platepar)

    # Go through all FF files with detections, recalibrate and apply astrometry
    recalibrated_platepars = {}
    for meteor_entry in meteor_list:

        working_platepar = copy.deepcopy(prev_platepar)

        ff_name, meteor_No, rho, phi, meteor_meas = meteor_entry

        # Skip this meteors if its FF file was already recalibrated
        if ff_name in recalibrated_platepars:
            continue

        print()
        print('Processing: ', ff_name)
        print('------------------------------------------------------------------------------')

        # Find extracted stars on this image
        if not ff_name in calstars:
            print('Skipped because it was not in CALSTARS:', ff_name)
            continue

        # Get stars detected on this FF file (create a dictionaly with only one entry, the residuals function
        #   needs this format)
        calstars_time = FFfile.getMiddleTimeFF(ff_name, config.fps, ret_milliseconds=True)
        jd = date2JD(*calstars_time)
        star_dict_ff = {jd: calstars[ff_name]}

        # Recalibrate the platepar using star matching
        result = recalibrateFF(config, working_platepar, jd, star_dict_ff, catalog_stars)

        
        # If the recalibration failed, try using FFT alignment
        if result is None:

            print()
            print('Running FFT alignment...')

            # Run FFT alignment
            calstars_coords = np.array(star_dict_ff[jd])[:, :2]
            calstars_coords[:, [0, 1]] = calstars_coords[:, [1, 0]]
            print(calstars_time)
            working_platepar = alignPlatepar(config, prev_platepar, calstars_time, calstars_coords, \
                show_plot=False)

            # Try to recalibrate after FFT alignment
            result = recalibrateFF(config, working_platepar, jd, star_dict_ff, catalog_stars)

            if result is not None:
                working_platepar = result


        else:
            working_platepar = result


        # Store the platepar if the fit succeeded
        if result is not None:
            recalibrated_platepars[ff_name] = working_platepar
            prev_platepar = working_platepar

        else:

            print('Recalibration of {:s} failed, using the previous platepar...'.format(ff_name))

            # If the aligning failed, set the previous platepar as the one that should be used for this FF file
            recalibrated_platepars[ff_name] = prev_platepar


    ### Store all recalibrated platepars as a JSON file ###

    all_pps = {}
    for ff_name in recalibrated_platepars:

        json_str = recalibrated_platepars[ff_name].jsonStr()
        
        all_pps[ff_name] = json.loads(json_str)

    with open(os.path.join(dir_path, config.platepars_recalibrated_name), 'w') as f:
        
        # Convert all platepars to a JSON file
        out_str = json.dumps(all_pps, default=lambda o: o.__dict__, indent=4, sort_keys=True)

        f.write(out_str)

    ### ###



    # If no platepars were recalibrated, use the single platepar recalibration procedure
    if len(recalibrated_platepars) == 0:

        print('No FF images were used for recalibration, using the single platepar calibration function...')

        # Use the initial platepar for calibration
        applyAstrometryFTPdetectinfo(dir_path, os.path.basename(ftpdetectinfo_path), None, platepar=platepar)

        return recalibrated_platepars



    ### Plot difference from reference platepar in angular distance from (0, 0) vs rotation ###

    ang_dists = []
    rot_angles = []
    hour_list = []

    first_jd = np.min([FFfile.filenameToDatetime(ff_name) for ff_name in recalibrated_platepars])

    for ff_name in recalibrated_platepars:
        
        pp_temp = recalibrated_platepars[ff_name]

        # If the fitting failed, skip the platepar
        if pp_temp is None:
            continue

        # Compute the angular separation from the reference platepar
        ang_dist = np.degrees(angularSeparation(np.radians(platepar.RA_d), np.radians(platepar.dec_d), \
            np.radians(pp_temp.RA_d), np.radians(pp_temp.dec_d)))
        ang_dists.append(ang_dist*60)

        rot_angles.append((platepar.pos_angle_ref - pp_temp.pos_angle_ref)*60)

        # Compute the hour of the FF used for recalibration
        hour_list.append((FFfile.filenameToDatetime(ff_name) - first_jd).total_seconds()/3600)


    plt.figure()

    plt.scatter(0, 0, marker='o', edgecolor='k', label='Reference platepar', s=100, c='none', zorder=3)

    plt.scatter(ang_dists, rot_angles, c=hour_list, zorder=3)
    plt.colorbar(label='Hours from first FF file')
    
    plt.xlabel("Angular distance from reference (arcmin)")
    plt.ylabel('Rotation from reference (arcmin)')

    plt.grid()
    plt.legend()

    plt.tight_layout()

    # Generate the name for the plot
    calib_plot_name = os.path.basename(ftpdetectinfo_path).replace('FTPdetectinfo_', '').replace('.txt', '') \
        + '_calibration_variation.png'

    plt.savefig(os.path.join(dir_path, calib_plot_name), dpi=150)

    # plt.show()

    plt.clf()
    plt.close()

    ### ###



    ### Apply platepars to FTPdetectinfo ###

    meteor_output_list = []
    for meteor_entry in meteor_list:

        ff_name, meteor_No, rho, phi, meteor_meas = meteor_entry

        # Get the platepar that will be applied to this FF file
        if ff_name in recalibrated_platepars:
            working_platepar = recalibrated_platepars[ff_name]

        else:
            print('Using default platepar for:', ff_name)
            working_platepar = platepar

        # Apply the recalibrated platepar to meteor centroids
        meteor_picks = applyPlateparToCentroids(ff_name, fps, meteor_meas, working_platepar, \
            add_calstatus=True)

        meteor_output_list.append([ff_name, meteor_No, rho, phi, meteor_picks])


    # Calibration string to be written to the FTPdetectinfo file
    calib_str = 'Recalibrated with RMS on: ' + str(datetime.datetime.utcnow()) + ' UTC'

    # If no meteors were detected, set dummpy parameters
    if len(meteor_list) == 0:
        cam_code = ''
        fps = 0


    # Back up the old FTPdetectinfo file
    shutil.copy(ftpdetectinfo_path, ftpdetectinfo_path.strip('.txt') \
        + '_backup_{:s}.txt'.format(datetime.datetime.utcnow().strftime('%Y%m%d_%H%M%S.%f')))

    # Save the updated FTPdetectinfo
    FTPdetectinfo.writeFTPdetectinfo(meteor_output_list, dir_path, os.path.basename(ftpdetectinfo_path), \
        dir_path, cam_code, fps, calibration=calib_str, celestial_coords_given=True)


    ### ###

    return recalibrated_platepars