Ejemplo n.º 1
0
def ORS_query_directions(query, profile='driving-car', toll_price=True, _id=0, geometry=True):
    '''
    start (class point)
    end (class point)
    profile= ["driving-car", "driving-hgv", "foot-walking","foot-hiking", "cycling-regular", "cycling-road","cycling-mountain",
    "cycling-electric",]
    '''
    ORS_client = start_ORS_client()
    coord = [query.start_point[::-1], query.end_point[::-1]]   # WARNING it seems that [lon,lat] are not in the same order than for other API.
    try:
        ORS_step = ORS_client.directions(
            coord,
            profile=profile,
            instructions=False,
            geometry=geometry,
            options={'avoid_features': ['ferries']},
        )
    except:
        return None

    geojson = convert.decode_polyline(ORS_step['routes'][0]['geometry'])

    local_distance = ORS_step['routes'][0]['summary']['distance']
    local_emissions = co2_emissions.calculate_co2_emissions(constants.TYPE_COACH, constants.DEFAULT_CITY,
                                              constants.DEFAULT_FUEL, constants.DEFAULT_NB_SEATS,
                                              constants.DEFAULT_NB_KM) * \
                      constants.DEFAULT_NB_PASSENGERS * local_distance

    step = tmw.Journey_step(_id,
                        _type=ORS_profile(profile),
                        label=profile,
                        distance_m=local_distance,
                        duration_s=ORS_step['routes'][0]['summary']['duration'],
                        price_EUR=[ORS_gas_price(ORS_step['routes'][0]['summary']['distance'])],
                        gCO2=local_emissions,
                        geojson=geojson,
                        departure_date=query.departure_date
                        )
    # Correct arrival_date based on departure_date
    step.arrival_date = (step.departure_date + timedelta(seconds=step.duration_s))

    # Add toll price (optional)
    step = ORS_add_toll_price(step) if toll_price else step

    ors_journey = tmw.Journey(0,
                              departure_date=query.departure_date,
                              arrival_date=step.arrival_date,
                              steps=[step])
    # Add category
    category_journey = list()
    for step in ors_journey.steps:
        if step.type not in [constants.TYPE_TRANSFER, constants.TYPE_WAIT]:
            category_journey.append(step.type)

    ors_journey.category = list(set(category_journey))
    ors_journey.update()
    ors_journey.arrival_date = ors_journey.departure_date + timedelta(seconds=ors_journey.total_duration)

    return ors_journey
Ejemplo n.º 2
0
def navitia_journeys_sections_type_street_network(json, _id=0):
    mode = json['mode']
    mode_to_type = {
        'walking': constants.TYPE_WALK,
        'bike': constants.TYPE_BIKE,
        'car': constants.TYPE_CAR,
    }
    label = '{} FROM {} TO {}'.format(
        mode_to_type[mode],
        json['from']['name'],
        json['to']['name'],
    )
    step = tmw.Journey_step(_id,
                            _type=mode_to_type[mode],
                            label=label,
                            distance_m=json['geojson']['properties'][0]['length'],
                            duration_s=json['duration'],
                            price_EUR=[0],
                            gCO2=json['co2_emission']['value'],
                            departure_point=json['from']['name'],
                            arrival_point=json['to']['name'],
                            departure_stop_name=json['from']['name'],
                            arrival_stop_name=json['to']['name'],
                            departure_date=datetime.strptime(json['departure_date_time'], '%Y%m%dT%H%M%S'),
                            arrival_date=datetime.strptime(json['arrival_date_time'], '%Y%m%dT%H%M%S'),
                            geojson=json['geojson'],
                            )
    return step
Ejemplo n.º 3
0
def navitia_journeys_sections_type_on_demand(json, _id=0):
    display_information = json['display_informations']
    label = '{} {} / {} / direction: {}'.format(
        display_information['physical_mode'],
        display_information['code'],
        display_information['name'],
        display_information['direction'],
    )
    step = tmw.Journey_step(
        _id,
        _type=display_information['network'].lower(),
        label=label,
        distance_m=json['geojson']['properties'][0]['length'],
        duration_s=json['duration'],
        price_EUR=[0],
        gCO2=json['co2_emission']['value'],
        departure_point=json['from']['name'],
        arrival_point=json['to']['name'],
        departure_stop_name=json['from']['name'],
        arrival_stop_name=json['to']['name'],
        departure_date=datetime.strptime(json['departure_date_time'],
                                         '%Y%m%dT%H%M%S'),
        arrival_date=datetime.strptime(json['arrival_date_time'],
                                       '%Y%m%dT%H%M%S'),
        geojson=json['geojson'],
    )
    return step
Ejemplo n.º 4
0
def navitia_journeys_sections_type_public_transport(json, _id=0):
    display_information = json['display_informations']
    label = '{} {} / {} / direction: {}'.format(
        display_information['physical_mode'],
        display_information['code'],
        display_information['name'],
        display_information['direction'],
    )
    switcher_public_transport_type = {
        'Métro': constants.TYPE_METRO,
        'Bus': constants.TYPE_BUS,
        'Tramway': constants.TYPE_TRAM,
        'RER': constants.TYPE_METRO,
    }
    _type = switcher_public_transport_type.get(display_information['commercial_mode'],
                                               "unknown public transport")
    # _type = display_information['commercial_mode']
    # _type = unicodedata.normalize('NFD', _type).encode('ascii', 'ignore').lower()
    step = tmw.Journey_step(_id,
                            _type=_type,
                            label=label,
                            distance_m=json['geojson']['properties'][0]['length'],
                            duration_s=json['duration'],
                            price_EUR=[0],
                            gCO2=json['co2_emission']['value'],
                            departure_point=json['from']['name'],
                            arrival_point=json['to']['name'],
                            departure_stop_name=json['from']['name'],
                            arrival_stop_name=json['to']['name'],
                            departure_date=datetime.strptime(json['departure_date_time'], '%Y%m%dT%H%M%S'),
                            arrival_date=datetime.strptime(json['arrival_date_time'], '%Y%m%dT%H%M%S'),
                            geojson=json['geojson'],
                            )
    return step
Ejemplo n.º 5
0
def compute_complete_journey(departure_date='2019-11-25T09:00:00+0200',
                             geoloc_dep=[48.85, 2.35],
                             geoloc_arrival=[43.60, 1.44]):
    # Let's create the start to finish query
    query_start_finish = tmw.query(0, geoloc_dep, geoloc_arrival,
                                   departure_date)

    # First we look for intercities journeys
    trainline_journeys = Trainline.main(query_start_finish)
    skyscanner_journeys = Skyscanner.main(query_start_finish)
    ouibus_journeys = OuiBus.main(query_start_finish)
    # ors_step = ORS.ORS_query_directions(query_start_finish)

    all_journeys = trainline_journeys + skyscanner_journeys + ouibus_journeys
    # Then we call Navitia to get
    for interurban_journey in all_journeys:
        start_to_station_query = tmw.query(
            0, geoloc_dep, interurban_journey.steps[0].departure_point,
            departure_date)
        start_to_station_steps = Navitia.navitia_query_directions(
            start_to_station_query)
        station_to_arrival_query = tmw.query(
            0, interurban_journey.steps[-1].arrival_point, geoloc_arrival,
            departure_date)
        station_to_arrival_steps = Navitia.navitia_query_directions(
            station_to_arrival_query)
        if (start_to_station_steps is not None) & (station_to_arrival_steps
                                                   is not None):
            interurban_journey.add_steps(start_to_station_steps[0].steps,
                                         start_end=True)
            print(
                f'arrival point is :{interurban_journey.steps[-1].arrival_point}'
            )
            interurban_journey.add_steps(station_to_arrival_steps[0].steps,
                                         start_end=False)
            interurban_journey.update()
        else:
            interurban_journey.reset()

    # all_journeys = all_journeys + ors_step
    return all_journeys
Ejemplo n.º 6
0
def navitia_journeys_sections_type_waiting(json, _id=0):
    step = tmw.journey_step(
        _id,
        _type=constants.TYPE_WAIT,
        label='wait',
        distance_m=None,
        duration_s=json['duration'],
        price_EUR=[0],
        gCO2=json['co2_emission']['value'],
        geojson='',
    )
    return step
Ejemplo n.º 7
0
def create_fake_plane_journey(locations, airport_dep, airport_arrival):
    """
    We create a fake plane journey with only the approximate eqCO2 to be used in the computation in the front end
    :param query:
    :return: fake_journey
    """
    geoloc_dep = locations['departure'][locations['departure'].city_sky ==
                                        airport_dep].sample().geoloc
    geoloc_arrival = locations['arrival'][locations['arrival'].city_sky ==
                                          airport_arrival].sample().geoloc
    distance_m = distance(geoloc_dep, geoloc_arrival).m
    local_range_km = get_range_km(distance_m)
    local_emissions = calculate_co2_emissions(constants.TYPE_PLANE, constants.DEFAULT_CITY,
                                              constants.DEFAULT_FUEL, constants.NB_SEATS_TEST,
                                              local_range_km) * \
                      constants.DEFAULT_NB_PASSENGERS * distance_m
    fake_journey_list = list()
    fake_journey_step = tmw.Journey_step(
        0,
        _type=constants.TYPE_PLANE,
        label=
        f'Arrive at the airport {format_timespan(_AIRPORT_WAITING_PERIOD)} before departure',
        distance_m=0,
        duration_s=_AIRPORT_WAITING_PERIOD,
        price_EUR=[0],
        gCO2=local_emissions,
        departure_point=geoloc_dep,
        arrival_point=geoloc_arrival,
        departure_date=dt.now(),
        arrival_date=dt.now(),
        geojson=[],
    )
    fake_journey_list.append(fake_journey_step)
    fake_journey = tmw.Journey(0,
                               steps=fake_journey_list,
                               departure_date=fake_journey_step.departure_date,
                               arrival_date=fake_journey_step.arrival_date)
    fake_journey.total_gCO2 = local_emissions
    fake_journey.is_real_journey = False
    return fake_journey
Ejemplo n.º 8
0
def navitia_journeys_sections_type_waiting(json, _id=0):
    step = tmw.Journey_step(_id,
                            _type=constants.TYPE_WAIT,
                            label='wait',
                            distance_m=0,
                            duration_s=json['duration'],
                            price_EUR=[0],
                            gCO2=0,
                            departure_point=[0,0],
                            arrival_point=[0,0],
                            departure_stop_name='',
                            arrival_stop_name='',
                            departure_date=datetime.strptime(json['departure_date_time'], '%Y%m%dT%H%M%S'),
                            arrival_date=datetime.strptime(json['arrival_date_time'], '%Y%m%dT%H%M%S'),
                            geojson='',
                            )
    return step
Ejemplo n.º 9
0
def navitia_journeys_sections_type_public_transport(json, _id=0):
    display_information = json['display_informations']
    label = '{} {} / {} / direction: {}'.format(
        display_information['physical_mode'],
        display_information['code'],
        display_information['name'],
        display_information['direction'],
    )
    step = tmw.journey_step(
        _id,
        _type=display_information['network'].lower(),
        label=label,
        distance_m=None,
        duration_s=json['duration'],
        price_EUR=[0],
        gCO2=json['co2_emission']['value'],
        geojson=json['geojson'],
    )
    return step
Ejemplo n.º 10
0
def navitia_journeys_sections_type_transfer(json, _id=0):
    mode = json['transfer_type']
    mode_to_type = {
        'walking': constants.TYPE_WALK,
        'bike': constants.TYPE_BIKE,
        'car': constants.TYPE_CAR,
    }
    label = '{} FROM {} TO {}'.format(mode_to_type[mode], json['from']['name'],
                                      json['to']['name'])
    step = tmw.journey_step(
        _id,
        _type=mode_to_type[mode],
        label=label,
        distance_m=None,
        duration_s=json['duration'],
        price_EUR=[0],
        gCO2=json['co2_emission']['value'],
        geojson=json['geojson'],
    )
    return step
Ejemplo n.º 11
0
def navitia_journeys(json, _id=0):
    # all journeys loop
    lst_journeys = list()
    try:
        journeys = json['journeys']
    except:
        logger.warning('ERROR {}'.format(json['error']))
        return None
    for j in json['journeys']:
        i = _id
        # journey loop
        lst_sections = list()
        for section in j['sections']:
            try:
                lst_sections.append(navitia_journeys_sections_type(section, _id=i))
            except:
                logger.warning('Navitia ERROR : ')
                logger.warning('id: {}'.format(i))
                logger.warning(section)
            i = i + 1
        lst_journeys.append(tmw.Journey(_id, steps=lst_sections))
    return lst_journeys
Ejemplo n.º 12
0
def get_ferries(date_departure, date_return, departure_point, arrival_point):
    """
    We create a ferry journey based on the ferry database we scraped
    """
    # Find relevant ports
    port_deps, port_arrs = get_ports_from_geo_locs(departure_point,
                                                   arrival_point)

    # Find journeys
    journeys = _FERRY_DATA[
        (_FERRY_DATA.port_dep.isin(port_deps.port_clean.unique()))
        & _FERRY_DATA.port_arr.isin(port_arrs.port_clean.unique())]

    journeys['date_dep'] = pd.to_datetime(journeys.date_dep)
    journeys = journeys[journeys.date_dep > date_departure]

    if len(journeys) == 0:
        logger.info(f'No ferry journey was found')
        return None

    journey_list = list()

    for index, row in journeys.iterrows():

        distance_m = row.distance_m
        local_emissions = calculate_co2_emissions(constants.TYPE_PLANE, constants.DEFAULT_CITY,
                                                  constants.DEFAULT_FUEL, constants.NB_SEATS_TEST,
                                                  constants.DEFAULT_NB_KM) * \
                          constants.DEFAULT_NB_PASSENGERS * distance_m
        journey_steps = list()
        journey_step = tmw.Journey_step(
            0,
            _type=constants.TYPE_WAIT,
            label=
            f'Arrive at the port {format_timespan(_PORT_WAITING_PERIOD)} before departure',
            distance_m=0,
            duration_s=_PORT_WAITING_PERIOD,
            price_EUR=[0],
            gCO2=0,
            departure_point=[row.lat_clean_dep, row.long_clean_dep],
            arrival_point=[row.lat_clean_dep, row.long_clean_dep],
            departure_date=row.date_dep -
            timedelta(seconds=_PORT_WAITING_PERIOD),
            arrival_date=row.date_dep,
            geojson=[],
        )
        journey_steps.append(journey_step)

        journey_step = tmw.Journey_step(
            1,
            _type=constants.TYPE_FERRY,
            label=f'Sail Ferry from {row.port_dep} to {row.port_arr}',
            distance_m=distance_m,
            duration_s=(row.date_arr - row.date_dep).seconds,
            price_EUR=[row.price_clean_ar_eur / 2],
            gCO2=local_emissions,
            departure_point=[row.lat_clean_dep, row.long_clean_dep],
            arrival_point=[row.lat_clean_arr, row.long_clean_arr],
            departure_date=row.date_dep,
            arrival_date=row.date_arr,
            geojson=[],
        )

        journey_steps.append(journey_step)

        journey = tmw.Journey(
            0,
            steps=journey_steps,
            departure_date=journey_steps[0].departure_date,
            arrival_date=journey_steps[1].arrival_date,
        )
        journey.total_gCO2 = local_emissions
        journey.category = constants.CATEGORY_FERRY_JOURNEY
        journey.booking_link = 'https://www.ferrysavers.co.uk/ferry-routes.htm'
        journey.departure_point = [row.lat_clean_dep, row.long_clean_dep]
        journey.arrival_point = [row.lat_clean_arr, row.long_clean_arr]
        journey.update()
        journey_list.append(journey)

    return journey_list
Ejemplo n.º 13
0
def trainline_journeys(df_response, _id=0):
    """
        This function takes in a DF with detailled info about all the Trainline trips
        It returns a list of TMW journey objects
    """
    # affect a price to each leg (otherwise we would multiply the price by the number of legs
    df_response['price_step'] = df_response.cents / (df_response.nb_segments*100)

    # Compute distance for each leg
    # print(df_response.columns)
    df_response['distance_step'] = df_response.apply(lambda x: distance(x.geoloc_depart_seg, x.geoloc_arrival_seg).m,
                                                     axis=1)
    df_response['trip_code'] = df_response.train_name + ' ' + df_response.train_number
    tranportation_mean_to_type = {
        'coach': constants.TYPE_COACH,
        'train': constants.TYPE_TRAIN,
    }


    lst_journeys = list()
    # all itineraries :
    # print(f'nb itinerary : {df_response.id_global.nunique()}')
    for itinerary_id in df_response.id_global.unique():
        itinerary = df_response[df_response.id_global == itinerary_id].reset_index(drop=True)
        # boolean to know whether and when there will be a transfer after the leg
        itinerary['next_departure'] = itinerary.departure_date_seg.shift(-1)
        itinerary['next_stop_name'] = itinerary.name_depart_seg.shift(-1)
        itinerary['next_geoloc'] = itinerary.geoloc_depart_seg.shift(-1)
        itinerary['trip_code'] = itinerary.trip_code.fillna('')

        # get the slugs to create the booking link
        origin_slug = itinerary.origin_slug.unique()[0]
        destination_slug = itinerary.destination_slug.unique()[0]

        i = _id
        lst_sections = list()
        # We add a waiting period at the station of 15 minutes
        step = tmw.Journey_step(i,
                                _type=constants.TYPE_WAIT,
                                label=f'Arrive at the station {format_timespan(_STATION_WAITING_PERIOD)} before departure',
                                distance_m=0,
                                duration_s=_STATION_WAITING_PERIOD,
                                price_EUR=[0],
                                gCO2=0,
                                departure_point=[itinerary.latitude.iloc[0], itinerary.longitude.iloc[0]],
                                arrival_point=[itinerary.latitude.iloc[0], itinerary.longitude.iloc[0]],
                                departure_date=itinerary.departure_date_seg[0] - timedelta(seconds=_STATION_WAITING_PERIOD),
                                arrival_date=itinerary.departure_date_seg[0],
                                bike_friendly=True,
                                geojson=[],
                                )

        lst_sections.append(step)
        i = i + 1
        # Go through all steps of the journey
        for index, leg in itinerary.iterrows():
            local_distance_m = distance(leg.geoloc_depart_seg, leg.geoloc_arrival_seg).m
            local_transportation_type = tranportation_mean_to_type[leg.transportation_mean]
            local_emissions = co2_emissions.calculate_co2_emissions(local_transportation_type, constants.DEFAULT_CITY,
                                                      constants.DEFAULT_FUEL, constants.DEFAULT_NB_SEATS,
                                                      constants.DEFAULT_NB_KM) * \
                              constants.DEFAULT_NB_PASSENGERS * local_distance_m
            step = tmw.Journey_step(i,
                                    _type=local_transportation_type,
                                    label=f'{leg.trip_code} to {leg.name_arrival_seg}',
                                    distance_m=local_distance_m,
                                    duration_s=(leg.arrival_date_seg - leg.departure_date_seg).seconds,
                                    price_EUR=[leg.price_step],
                                    gCO2=local_emissions,
                                    departure_point=leg.geoloc_depart_seg,
                                    arrival_point=leg.geoloc_arrival_seg,
                                    departure_stop_name=leg.name_depart_seg,
                                    arrival_stop_name=leg.name_arrival_seg,
                                    departure_date=leg.departure_date_seg,
                                    arrival_date=leg.arrival_date_seg,
                                    trip_code=leg.trip_code,
                                    bike_friendly='bicycle' in leg.bike_friendliness,
                                    geojson=[],
                                    )
            lst_sections.append(step)
            i = i + 1
            # add transfer steps
            if not pd.isna(leg.next_departure):
                step = tmw.Journey_step(i,
                                        _type=constants.TYPE_TRANSFER,
                                        label=f'Transfer at {leg.name_arrival_seg}',
                                        distance_m=0,
                                        duration_s=(leg['next_departure'] - leg['arrival_date_seg']).seconds,
                                        price_EUR=[0],
                                        departure_point=leg.geoloc_arrival_seg,
                                        arrival_point=leg.next_geoloc,
                                        departure_stop_name=leg.name_depart_seg,
                                        arrival_stop_name=leg.name_arrival_seg,
                                        departure_date=leg.arrival_date_seg,
                                        arrival_date=leg.next_departure,
                                        gCO2=0,
                                        bike_friendly=True,
                                        geojson=[],
                                        )
                lst_sections.append(step)
                i = i + 1
        departure_date_formated = dt.strptime(str(lst_sections[0].departure_date)[0:15], '%Y-%m-%d %H:%M').strftime('%Y-%m-%d %H:00')
        journey_train = tmw.Journey(_id, steps=lst_sections,
                                    departure_date= lst_sections[0].departure_date,
                                    arrival_date= lst_sections[-1].arrival_date,
                                    booking_link=f'https://www.trainline.fr/search/{origin_slug}/{destination_slug}/{departure_date_formated}')
        # Add category
        category_journey = list()
        for step in journey_train.steps:
            if step.type not in [constants.TYPE_TRANSFER, constants.TYPE_WAIT]:
                category_journey.append(step.type)

        journey_train.category = list(set(category_journey))
        lst_journeys.append(journey_train)

        # for journey in lst_journeys:
        #    journey.update()

    return lst_journeys
Ejemplo n.º 14
0
def create_plane_journey_from_flightradar_data(airports, departure_date):
    """
    We create a fake plane journey with only the approximate eqCO2 to be used in the computation in the front end
    :param query:
    :return: fake_journey
    """
    day_of_week = departure_date.weekday()
    hour_of_day = departure_date.hour
    relevant_flights = _FLIGHTRADAR_DATA[
        _FLIGHTRADAR_DATA.city_sky.isin(airports['departure'])
        & _FLIGHTRADAR_DATA.city_sky_arr.isin(airports['arrival'])]
    relevant_flights = relevant_flights[relevant_flights.day_of_week ==
                                        day_of_week]
    relevant_flights['hour_dep'] = relevant_flights.apply(
        lambda x: dt.strptime(x.hour_dep, '%H:%M:%S') + timedelta(hours=1),
        axis=1)
    relevant_flights['hour_dep_int'] = relevant_flights.apply(
        lambda x: x.hour_dep.hour, axis=1)
    response_flights = pd.DataFrame()
    for airport_dep in airports['departure']:
        for airport_arr in airports['arrival']:
            flights_df = relevant_flights[
                (relevant_flights.city_sky == airport_dep)
                & (relevant_flights.city_sky_arr == airport_arr) &
                (relevant_flights.hour_dep_int >= hour_of_day)]
            response_flights = response_flights.append(flights_df)
    # distance_m = distance(geoloc_dep, geoloc_arrival).m
    response_flights['local_range_km'] = response_flights.apply(
        lambda x: get_range_km(x.distance_m), axis=1)
    response_flights['local_emissions'] = response_flights.apply(
        lambda x: calculate_co2_emissions(
            constants.TYPE_PLANE, constants.DEFAULT_CITY, constants.
            DEFAULT_FUEL, constants.NB_SEATS_TEST, x.local_range_km) *
        constants.DEFAULT_NB_PASSENGERS * x.distance_m,
        axis=1)
    # merge global departure date and flight time to create flight actual departure datetime
    response_flights['flight_departure_date'] = response_flights.apply(
        lambda x: dt.combine(departure_date,
                             dt_time(x.hour_dep.hour, x.hour_dep.minute)),
        axis=1)
    response_flights['flight_arrival_date'] = response_flights.apply(
        lambda x: x.flight_departure_date + timedelta(seconds=x.flight_time_s),
        axis=1)

    journey_list = list()
    for index, flight in response_flights.iterrows():
        lst_sections = list()
        # We add a waiting period at the airport of x hours
        step = tmw.Journey_step(
            0,
            _type=constants.TYPE_WAIT,
            label=
            f'Arrive at the airport {format_timespan(_AIRPORT_WAITING_PERIOD)} before departure',
            distance_m=0,
            duration_s=_AIRPORT_WAITING_PERIOD,
            price_EUR=[],
            gCO2=0,
            departure_point=[flight.latitude, flight.longitude],
            arrival_point=[flight.latitude, flight.longitude],
            departure_date=flight.flight_departure_date -
            timedelta(seconds=_AIRPORT_WAITING_PERIOD),
            arrival_date=flight.flight_departure_date,
            geojson=[],
        )
        lst_sections.append(step)

        step = tmw.Journey_step(
            1,
            _type=constants.TYPE_PLANE,
            label=f'Flight {flight.flight_number} to {flight.airport_to_code}',
            distance_m=flight.distance_m,
            duration_s=flight.flight_time_s,
            price_EUR=[],
            gCO2=flight.local_emissions,
            departure_point=[flight.latitude, flight.longitude],
            arrival_point=[flight.latitude_arr, flight.longitude_arr],
            departure_stop_name=flight.airport_from,
            arrival_stop_name=flight.airport_to_code,
            departure_date=flight.flight_departure_date,
            arrival_date=flight.flight_arrival_date,
            trip_code=flight.flight_number,
            geojson=[],
        )
        lst_sections.append(step)
        departure_date_formated = dt.strptime(
            str(lst_sections[0].departure_date)[0:10], '%Y-%m-%d')
        departure_date_formated = str(departure_date_formated.year)[2:4]+\
                                  ('0'+str(departure_date_formated.month))[-2:]+\
                                  ('0'+str(departure_date_formated.day))[-2:]

        journey_flightradar = tmw.Journey(
            0,
            steps=lst_sections,
            departure_date=lst_sections[0].departure_date,
            arrival_date=lst_sections[-1].arrival_date,
            booking_link=
            f'https://www.skyscanner.fr/transport/vols/{flight.airport_from}/{flight.airport_to_code}/{departure_date_formated}/'
        )
        journey_flightradar.category = [constants.TYPE_PLANE]
        journey_flightradar.update()
        journey_flightradar.is_real_journey = False
        journey_list.append(journey_flightradar)

    return journey_list
Ejemplo n.º 15
0
def ouibus_journeys(df_response, _id=0):
    """
    This function takes in a DF with detailled info about all the OuiBus trips
    It returns a list of TMW journey objects
        """
    # affect a price to each leg
    df_response['price_step'] = df_response.price_cents / (
        df_response.nb_segments * 100)
    # Compute distance for each leg
    # print(df_response.columns)
    df_response['distance_step'] = df_response.apply(
        lambda x: distance(x.geoloc_origin_seg, x.geoloc_destination_seg).m,
        axis=1)
    lst_journeys = list()
    # all itineraries :
    # logger.info(f'nb itinerary : {df_response.id.nunique()}')
    for itinerary_id in df_response.id.unique():
        itinerary = df_response[df_response.id == itinerary_id].reset_index(
            drop=True)
        # boolean to know whether and when there will be a transfer after the leg
        itinerary['next_departure'] = itinerary.departure_seg.shift(-1)
        itinerary['next_stop_name'] = itinerary.short_name_origin_seg.shift(1)
        itinerary['next_geoloc'] = itinerary.geoloc_origin_seg.shift(-1)
        # get the slugs to create the booking link
        origin_slug = itinerary.origin_slug.unique()[0]
        destination_slug = itinerary.destination_slug.unique()[0]
        i = _id
        lst_sections = list()
        # We add a waiting period at the station of 15 minutes
        step = tmw.Journey_step(
            i,
            _type=constants.TYPE_WAIT,
            label=
            f'Arrive at the station {format_timespan(_STATION_WAITING_PERIOD)} before departure',
            distance_m=0,
            duration_s=_STATION_WAITING_PERIOD,
            price_EUR=[0],
            gCO2=0,
            departure_point=itinerary.geoloc.iloc[0],
            arrival_point=itinerary.geoloc.iloc[0],
            departure_date=itinerary.departure_seg[0] -
            timedelta(seconds=_STATION_WAITING_PERIOD),
            arrival_date=itinerary.departure_seg[0],
            geojson=[],
        )
        lst_sections.append(step)
        i = i + 1
        for index, leg in itinerary.iterrows():
            local_distance_m = leg.distance_step
            local_emissions = calculate_co2_emissions(constants.TYPE_COACH, constants.DEFAULT_CITY,
                                                      constants.DEFAULT_FUEL, constants.DEFAULT_NB_SEATS,
                                                      constants.DEFAULT_NB_KM) *\
                              constants.DEFAULT_NB_PASSENGERS*local_distance_m
            step = tmw.Journey_step(
                i,
                _type=constants.TYPE_COACH,
                label=
                f'Coach OuiBus {leg.bus_number} to {leg.short_name_destination_seg}',
                distance_m=local_distance_m,
                duration_s=(leg.arrival_seg - leg.departure_seg).seconds,
                price_EUR=[leg.price_step],
                gCO2=local_emissions,
                departure_point=leg.geoloc_origin_seg,
                arrival_point=leg.geoloc_destination_seg,
                departure_stop_name=leg.short_name_origin_seg,
                arrival_stop_name=leg.short_name_destination_seg,
                departure_date=leg.departure_seg,
                arrival_date=leg.arrival_seg,
                trip_code='OuiBus ' + leg.bus_number,
                geojson=[],
            )
            lst_sections.append(step)
            i = i + 1
            # add transfer steps
            if not pd.isna(leg.next_departure):
                step = tmw.Journey_step(
                    i,
                    _type=constants.TYPE_TRANSFER,
                    label=f'Transfer at {leg.short_name_destination_seg}',
                    distance_m=distance(leg.geoloc_destination_seg,
                                        leg.next_geoloc).m,
                    duration_s=(leg['next_departure'] -
                                leg['arrival_seg']).seconds,
                    price_EUR=[0],
                    departure_point=leg.geoloc_destination_seg,
                    arrival_point=leg.next_geoloc,
                    departure_stop_name=leg.short_name_destination_seg,
                    arrival_stop_name=leg.next_stop_name,
                    gCO2=0,
                    geojson=[],
                )
                lst_sections.append(step)
                i = i + 1
        departure_date_formated = dt.strptime(
            str(lst_sections[0].departure_date)[0:15],
            '%Y-%m-%d %H:%M').strftime('%Y-%m-%d %H:00')
        journey_ouibus = tmw.Journey(
            _id,
            steps=lst_sections,
            booking_link=
            f'https://fr.ouibus.com/recherche?origin={origin_slug}&destination={destination_slug}&outboundDate={departure_date_formated}'
        )
        # Add category
        category_journey = list()
        for step in journey_ouibus.steps:
            if step.type not in [constants.TYPE_TRANSFER, constants.TYPE_WAIT]:
                category_journey.append(step.type)

        journey_ouibus.category = list(set(category_journey))
        lst_journeys.append(journey_ouibus)

        # for journey in lst_journeys:
        #    journey.update()

    return lst_journeys
Ejemplo n.º 16
0
def skyscanner_journeys(df_response, _id=0):
    """
    This function takes in a dataframe with detailled information on the plane journeys returned by Skyscanner API
        and returns a list containing one TMW journey object for each of those plane journey
    """
    # affect a price to each leg
    df_response[
        'price_step'] = df_response.PriceTotal_AR / df_response.nb_segments
    df_response['DepartureDateTime'] = pd.to_datetime(
        df_response['DepartureDateTime'])
    df_response['ArrivalDateTime'] = pd.to_datetime(
        df_response['ArrivalDateTime'])
    # Compute distance for each leg
    df_response['distance_step'] = df_response.apply(
        lambda x: distance(x.geoloc_origin_seg, x.geoloc_destination_seg).m,
        axis=1)
    lst_journeys = list()

    # all itineraries :
    for itinerary_id in df_response.itinerary_id.unique():
        itinerary = df_response[df_response.itinerary_id ==
                                itinerary_id].reset_index(drop=True)
        i = _id
        # boolean to know whether and when there will be a transfer after the leg
        itinerary['next_departure'] = itinerary.DepartureDateTime.shift(-1)
        itinerary['next_stop_name'] = itinerary.Name_origin_seg.shift(-1)
        itinerary['next_geoloc'] = itinerary.geoloc_origin_seg.shift(-1)
        # get the slugs to create the booking link
        departure_slug = itinerary.departure_slug.unique()[0].lower()[0:4]
        arrival_slug = itinerary.arrival_slug.unique()[0].lower()[0:4]

        lst_sections = list()
        # We add a waiting period at the airport of x hours
        step = tmw.Journey_step(
            i,
            _type=constants.TYPE_WAIT,
            label=
            f'Arrive at the airport {format_timespan(_AIRPORT_WAITING_PERIOD)} before departure',
            distance_m=0,
            duration_s=_AIRPORT_WAITING_PERIOD,
            price_EUR=[0],
            gCO2=0,
            departure_point=itinerary.geoloc.iloc[0],
            arrival_point=itinerary.geoloc.iloc[0],
            departure_date=itinerary.DepartureDateTime[0] -
            timedelta(seconds=_AIRPORT_WAITING_PERIOD),
            arrival_date=itinerary.DepartureDateTime[0],
            geojson=[],
        )
        lst_sections.append(step)
        i = i + 1
        for index, leg in itinerary.sort_values(
                by='DepartureDateTime').iterrows():
            local_distance_m = leg.distance_step
            local_range_km = get_range_km(local_distance_m)
            local_emissions = calculate_co2_emissions(constants.TYPE_PLANE, constants.DEFAULT_CITY,
                                                      constants.DEFAULT_FUEL, constants.NB_SEATS_TEST,
                                                      local_range_km) * \
                              constants.DEFAULT_NB_PASSENGERS * local_distance_m

            step = tmw.Journey_step(
                i,
                _type=constants.TYPE_PLANE,
                label=f'Flight {leg.FlightNumber_rich} to {leg.Name}',
                distance_m=leg.distance_step,
                duration_s=leg.Duration_seg * 60,
                price_EUR=[leg.price_step],
                gCO2=local_emissions,
                departure_point=leg.geoloc_origin_seg,
                arrival_point=leg.geoloc_destination_seg,
                departure_stop_name=leg.Name_origin_seg,
                arrival_stop_name=leg.Name,
                departure_date=leg.DepartureDateTime,
                arrival_date=leg.ArrivalDateTime,
                trip_code=leg.FlightNumber_rich,
                geojson=[],
            )
            lst_sections.append(step)
            i = i + 1
            # add transfer steps
            if not pd.isna(leg.next_departure):
                #duration = dt.strptime(leg['next_departure'], '%Y-%m-%dT%H:%M:%S') - \
                #           dt.strptime(leg['ArrivalDateTime'], '%Y-%m-%dT%H:%M:%S')
                step = tmw.Journey_step(
                    i,
                    _type=constants.TYPE_TRANSFER,
                    label=f'Transfer at {leg.Name}',
                    distance_m=0,
                    duration_s=(leg.next_departure -
                                leg.ArrivalDateTime).seconds,
                    price_EUR=[0],
                    departure_point=leg.geoloc_destination_seg,
                    arrival_point=leg.next_geoloc,
                    departure_date=leg.ArrivalDateTime,
                    arrival_date=leg.next_departure,
                    departure_stop_name=leg.Name,
                    arrival_stop_name=leg.next_stop_name,
                    gCO2=0,
                    geojson=[],
                )
                lst_sections.append(step)
                i = i + 1

        departure_date_formated = dt.strptime(
            str(lst_sections[0].departure_date)[0:10], '%Y-%m-%d')
        departure_date_formated = str(departure_date_formated.year)[2:4]+\
                                  ('0'+str(departure_date_formated.month))[-2:]+\
                                  ('0'+str(departure_date_formated.day))[-2:]
        journey_sky = tmw.Journey(
            _id,
            steps=lst_sections,
            departure_date=lst_sections[0].departure_date,
            arrival_date=lst_sections[-1].arrival_date,
            booking_link=
            f'https://www.skyscanner.fr/transport/vols/{departure_slug}/{arrival_slug}/{departure_date_formated}/'
        )
        # journey_sky = tmw.Journey(_id, steps=lst_sections)
        # Add category
        category_journey = list()
        for step in journey_sky.steps:
            if step.type not in [constants.TYPE_TRANSFER, constants.TYPE_WAIT]:
                category_journey.append(step.type)

        journey_sky.category = list(set(category_journey))
        lst_journeys.append(journey_sky)

        for journey in lst_journeys:
            journey.update()

    return lst_journeys
Ejemplo n.º 17
0
def trainline_journeys(df_response, _id=0):
    # affect a price to each leg
    df_response['price_step'] = df_response.cents / 100
    # Compute distance for each leg
    # print(df_response.columns)
    df_response['distance_step'] = df_response.apply(
        lambda x: distance(x.geoloc_depart_seg, x.geoloc_arrival_seg).m,
        axis=1)
    df_response[
        'trip_code'] = df_response.train_name + ' ' + df_response.train_number
    tranportation_mean_to_type = {
        'coach': constants.TYPE_COACH,
        'train': constants.TYPE_TRAIN,
    }
    lst_journeys = list()
    # all itineraries :
    print(f'nb itinerary : {df_response.id_global.nunique()}')
    for itinerary_id in df_response.id_global.unique():
        itinerary = df_response[df_response.id_global == itinerary_id]
        # boolean to know whether and when there will be a transfer after the leg
        itinerary['next_departure'] = itinerary.departure_date_seg.shift(-1)
        itinerary['next_stop_name'] = itinerary.name_depart_seg.shift(1)
        itinerary['next_geoloc'] = itinerary.geoloc_depart_seg.shift(-1)
        i = _id
        lst_sections = list()
        # We add a waiting period at the station of 15 minutes
        step = tmw.journey_step(
            i,
            _type=constants.TYPE_WAIT,
            label='',
            distance_m=0,
            duration_s=_STATION_WAITING_PERIOD,
            price_EUR=[0],
            gCO2=0,
            departure_point=[
                itinerary.latitude.iloc[0], itinerary.longitude.iloc[0]
            ],
            arrival_point=[
                itinerary.latitude.iloc[0], itinerary.longitude.iloc[0]
            ],
            geojson=[],
        )
        lst_sections.append(step)
        i = i + 1
        for index, leg in itinerary.iterrows():
            local_distance_m = distance(leg.geoloc_depart_seg,
                                        leg.geoloc_arrival_seg).m
            local_emissions = calculate_co2_emissions(constants.TYPE_TRAIN, '', '', '', '') * \
                              constants.DEFAULT_NB_PASSENGERS * local_distance_m
            step = tmw.journey_step(
                i,
                _type=tranportation_mean_to_type[leg.transportation_mean],
                label='',
                distance_m=local_distance_m,
                duration_s=(leg.arrival_date_seg -
                            leg.departure_date_seg).seconds,
                price_EUR=[leg.price_step],
                gCO2=local_emissions,
                departure_point=leg.geoloc_depart_seg,
                arrival_point=leg.geoloc_arrival_seg,
                departure_stop_name=leg.name_depart_seg,
                arrival_stop_name=leg.name_arrival_seg,
                departure_date=leg.departure_date_seg,
                arrival_date=leg.arrival_date_seg,
                trip_code=leg.trip_code,
                geojson=[],
            )
            lst_sections.append(step)
            i = i + 1
            # add transfer steps
            if not pd.isna(leg.next_departure):
                step = tmw.journey_step(
                    i,
                    _type=constants.TYPE_TRANSFER,
                    label='',
                    distance_m=0,
                    duration_s=(leg['next_departure'] -
                                leg['arrival_date_seg']).seconds,
                    price_EUR=[0],
                    departure_point=leg.geoloc_arrival_seg,
                    arrival_point=leg.next_geoloc,
                    departure_stop_name=leg.name_depart_seg,
                    arrival_stop_name=leg.name_arrival_seg,
                    departure_date=leg.arrival_date_seg,
                    arrival_date=leg.next_departure,
                    gCO2=0,
                    geojson=[],
                )
                lst_sections.append(step)
                i = i + 1

        journey_sky = tmw.journey(_id, steps=lst_sections)
        lst_journeys.append(journey_sky)

        # for journey in lst_journeys:
        #    journey.update()

    return lst_journeys
Ejemplo n.º 18
0
def compute_complete_journey(departure_date='2019-11-28',
                             geoloc_dep=[48.85, 2.35],
                             geoloc_arrival=[43.60, 1.44]):
    """
    Build a multi-modal journey:
    First we call each API to get a few journeys for each type of transportation
    Then we create a multi-modal trip by calling NAvitia between the departure point and departure station
        and between arrival station and arrival point.
    To limit the nb of Navitia calls, we first create all the necessary Navitia queries, and deduplicate them
        to make sure we call Navitia only once for each query
    Finally we call the filter function to choose which journeys we keep
    """
    # format date from %Y-%m-%dT%H:%M:%S.xxxZ without considering ms
    departure_date = datetime.datetime.strptime(
        str(departure_date)[0:19], "%Y-%m-%dT%H:%M:%S")
    # We only accept date up to 9 month in the future
    date_within_range = (datetime.datetime.today() + datetime.timedelta(days=9 * 30)) \
                            > departure_date
    if not date_within_range:
        raise Exception('Date out of range')
        # Let's create the start to finish query
    query_start_finish = tmw.Query(0, geoloc_dep, geoloc_arrival,
                                   departure_date)
    # logger.info(f'query_start_finish{query_start_finish.to_json()}')
    # Start the stopwatch / counter
    t1_start = perf_counter()
    # First we look for intercities journeys

    # Création des threads
    thread_skyscanner = tmw.ThreadComputeJourney(api='Skyscanner',
                                                 query=query_start_finish)
    thread_ouibus = tmw.ThreadComputeJourney(api='OuiBus',
                                             query=query_start_finish)
    thread_trainline = tmw.ThreadComputeJourney(api='Trainline',
                                                query=query_start_finish)
    thread_ors = tmw.ThreadComputeJourney(api='ORS', query=query_start_finish)

    # Lancement des threads
    thread_skyscanner.start()
    thread_ouibus.start()
    thread_trainline.start()
    thread_ors.start()

    # Attendre que les threads se terminent
    skyscanner_journeys, time_skyscanner = thread_skyscanner.join()
    ouibus_journeys, time_ouibus = thread_ouibus.join()
    trainline_journeys, time_trainline = thread_trainline.join()
    ors_journey, time_or = thread_ors.join()

    if skyscanner_journeys is None:
        skyscanner_journeys = list()
    if trainline_journeys is None:
        trainline_journeys = list()
    if ouibus_journeys is None:
        ouibus_journeys = list()

    all_journeys = trainline_journeys + skyscanner_journeys + ouibus_journeys
    # all_journeys = trainline_journeys
    i = 0
    logger.info(f'we found {len(all_journeys)} inter urban journeys')
    logger.info(
        f'it took for computing the interrurban journeys {perf_counter() - t1_start}'
    )
    # Then we call Navitia to get the beginning and the end of the journey
    # Let's record all the query we need to send to Navitia, deduplicate them and call NAvitia only once
    navitia_queries = list()
    for interurban_journey in all_journeys:
        # if fake journey no call to Navitia
        if not interurban_journey.is_real_journey:
            continue
        interurban_journey.id = i
        i = i + 1
        navitia_queries.append(
            tmw.Query(0, geoloc_dep,
                      interurban_journey.steps[0].departure_point,
                      departure_date))
        navitia_queries.append(
            tmw.Query(0, interurban_journey.steps[-1].arrival_point,
                      geoloc_arrival, departure_date))

    nav_start = perf_counter()

    # Call Navitia only once each time:
    navitia_dict = {}
    navitia_query_done = list()
    navitia_thread_list = list()
    i = 0
    for navitia_query in navitia_queries:
        if navitia_query.to_json() in navitia_query_done:
            # if query has been called then skip
            continue
        # logger.info(f'call Navitia with {navitia_query.to_json()}')
        navitia_thread_list.append(tmw.ThreadNavitiaCall(navitia_query))
        navitia_thread_list[i].start()
        i = i + 1
        # navitia_steps = Navitia.navitia_query_directions(navitia_query)
        # navitia_dict[str(navitia_query.to_json())] = navitia_steps
        navitia_query_done.append(navitia_query.to_json())
        # navitia_dict_list.append(navitia_dict)

    for navitia_thread in navitia_thread_list:
        navitia_steps, navitia_query = navitia_thread.join()
        navitia_dict[str(navitia_query.to_json())] = navitia_steps

    logger.info(f'navitia_dict is {navitia_dict}')
    # Reconsiliate between navitia queries and interrurban journeys
    for interurban_journey in all_journeys:
        # if fake journey no call to Navitia
        # if not interurban_journey.is_real_journey:
        #     continue
        # Get start to station query
        start_to_station_query = tmw.Query(
            0, geoloc_dep, interurban_journey.steps[0].departure_point,
            departure_date)
        start_to_station_steps = navitia_dict[str(
            start_to_station_query.to_json())]
        station_to_arrival_query = tmw.Query(
            0, interurban_journey.steps[-1].arrival_point, geoloc_arrival,
            departure_date)
        station_to_arrival_steps = navitia_dict[str(
            station_to_arrival_query.to_json())]
        if (start_to_station_steps is not None) & (station_to_arrival_steps
                                                   is not None):
            interurban_journey.add_steps(start_to_station_steps[0].steps,
                                         start_end=True)
            interurban_journey.add_steps(station_to_arrival_steps[0].steps,
                                         start_end=False)
            interurban_journey.update()
        else:
            logger.info(f'remove category {interurban_journey.category}')
            # logger.info(f'remove price {interurban_journey.total_price_EUR}')#
            # logger.info(f'remove price {interurban_journey.total_distance}')
            # logger.info(f'remove legs nb {len(interurban_journey.steps)}')
            # logger.info(f'last leg departs from {interurban_journey.steps[-1].departure_stop_name}')
            # logger.info(f'last leg arrives in  {interurban_journey.steps[-1].arrival_stop_name}')
            all_journeys.remove(interurban_journey)
    nav_stop = perf_counter()

    if ors_journey is not None:
        all_journeys.append(ors_journey)

    if len(all_journeys) > 0:
        # Filter most relevant Journeys
        filtered_journeys = filter_and_label_relevant_journey(all_journeys)
        filtered_journeys = [
            filtered_journey.to_json()
            for filtered_journey in filtered_journeys
        ]
    else:
        filtered_journeys = all_journeys
    t1_stop = perf_counter()
    logger.info(f'Elapsed time during computation: {t1_stop-t1_start} s')
    logger.info(f'including: {time_trainline}s for trainline ')
    logger.info(f'including: {time_skyscanner}s for skyscanner ')
    logger.info(f'including: {time_ouibus}s for ouibus ')
    logger.info(f'including: {time_or}s for ors ')
    logger.info(f'including: {nav_stop - nav_start}s for navitia ')
    return filtered_journeys
Ejemplo n.º 19
0
def skyscanner_journeys(df_response, _id=0):
    # affect a price to each leg
    df_response[
        'price_step'] = df_response.PriceTotal_AR / df_response.nb_segments
    # Compute distance for each leg
    print(df_response.columns)
    df_response['distance_step'] = df_response.apply(
        lambda x: distance(x.geoloc_origin_seg, x.geoloc_destination_seg).m,
        axis=1)
    lst_journeys = list()
    # all itineraries :
    for itinerary_id in df_response.itinerary_id.unique():
        itinerary = df_response[df_response.itinerary_id == itinerary_id]
        i = _id
        # boolean to know whether and when there will be a transfert after the leg
        itinerary['next_departure'] = itinerary.DepartureDateTime.shift(1)
        itinerary['next_stop_name'] = itinerary.Name_origin_seg.shift(1)
        itinerary['next_geoloc'] = itinerary.geoloc_origin_seg.shift(-1)
        lst_sections = list()
        # We add a waiting period at the airport of 2 hours
        step = tmw.journey_step(
            i,
            _type=constants.TYPE_WAIT,
            label='',
            distance_m=0,
            duration_s=_AIRPORT_WAITING_PERIOD,
            price_EUR=[0],
            gCO2=0,
            departure_point=itinerary.geoloc.iloc[0],
            arrival_point=itinerary.geoloc.iloc[0],
            geojson=[],
        )
        lst_sections.append(step)
        i = i + 1
        for index, leg in itinerary.sort_values(
                by='DepartureDateTime').iterrows():
            local_distance_m = leg.distance_step
            local_range_km = get_range_km(local_distance_m)
            local_emissions = calculate_co2_emissions(constants.TYPE_PLANE, '', constants.DEFAULT_PLANE_FUEL,
                                                      constants.DEFAULT_NB_SEATS, local_range_km) * \
                              constants.DEFAULT_NB_PASSENGERS * local_distance_m
            step = tmw.journey_step(
                i,
                _type=constants.TYPE_PLANE,
                label='',
                distance_m=leg.distance_step,
                duration_s=leg.Duration_seg * 60,
                price_EUR=[leg.price_step],
                gCO2=local_emissions,
                departure_point=leg.geoloc_origin_seg,
                arrival_point=leg.geoloc_destination_seg,
                departure_stop_name=leg.Name_origin_seg,
                arrival_stop_name=leg.Name,
                departure_date=leg.DepartureDateTime,
                arrival_date=leg.ArrivalDateTime,
                trip_code=leg.FlightNumber_rich,
                geojson=[],
            )
            lst_sections.append(step)
            i = i + 1
            # add transfer steps
            if not pd.isna(leg.next_departure):
                duration = dt.strptime(leg['next_departure'], '%Y-%m-%dT%H:%M:%S') - \
                           dt.strptime(leg['ArrivalDateTime'], '%Y-%m-%dT%H:%M:%S')
                step = tmw.journey_step(
                    i,
                    _type=constants.TYPE_TRANSFER,
                    label='',
                    distance_m=0,
                    duration_s=duration.seconds,
                    price_EUR=[0],
                    departure_point=leg.geoloc_destination_seg,
                    arrival_point=leg.next_geoloc,
                    departure_date=leg.ArrivalDateTime,
                    arrival_date=leg.next_departure,
                    departure_stop_name=leg.Name,
                    arrival_stop_name=leg.next_stop_name,
                    gCO2=0,
                    geojson=[],
                )
                lst_sections.append(step)
                i = i + 1

        journey_sky = tmw.journey(_id, steps=lst_sections)
        lst_journeys.append(journey_sky)

        for journey in lst_journeys:
            journey.update()

    return lst_journeys
Ejemplo n.º 20
0
def ouibus_journeys(df_response, _id=0):
    # affect a price to each leg
    df_response['price_step'] = df_response.price_cents / (
        df_response.nb_segments * 100)
    # Compute distance for each leg
    # print(df_response.columns)
    df_response['distance_step'] = df_response.apply(
        lambda x: distance(x.geoloc_origin_seg, x.geoloc_destination_seg).m,
        axis=1)
    lst_journeys = list()
    # all itineraries :
    print(f'nb itinerary : {df_response.id.nunique()}')
    for itinerary_id in df_response.id.unique():
        itinerary = df_response[df_response.id == itinerary_id]
        # boolean to know whether and when there will be a transfer after the leg
        itinerary['next_departure'] = itinerary.departure_seg.shift(-1)
        itinerary['next_stop_name'] = itinerary.short_name_origin_seg.shift(1)
        itinerary['next_geoloc'] = itinerary.geoloc_origin_seg.shift(-1)
        i = _id
        lst_sections = list()
        # We add a waiting period at the station of 15 minutes
        step = tmw.journey_step(
            i,
            _type=constants.TYPE_WAIT,
            label='',
            distance_m=0,
            duration_s=_STATION_WAITING_PERIOD,
            price_EUR=[0],
            gCO2=0,
            departure_point=itinerary.geoloc.iloc[0],
            arrival_point=itinerary.geoloc.iloc[0],
            geojson=[],
        )
        lst_sections.append(step)
        i = i + 1
        for index, leg in itinerary.iterrows():
            local_distance_m = leg.distance_step
            local_emissions = calculate_co2_emissions(constants.TYPE_COACH, constants.BIG_CITY, '', '', '')*\
                              constants.DEFAULT_NB_PASSENGERS*local_distance_m
            step = tmw.journey_step(
                i,
                _type=constants.TYPE_COACH,
                label='',
                distance_m=local_distance_m,
                duration_s=(leg.arrival_seg - leg.departure_seg).seconds,
                price_EUR=[leg.price_step],
                gCO2=local_emissions,
                departure_point=leg.geoloc_origin_seg,
                arrival_point=leg.geoloc_destination_seg,
                departure_stop_name=leg.short_name_origin_seg,
                arrival_stop_name=leg.short_name_destination_seg,
                departure_date=leg.departure_seg,
                arrival_date=leg.arrival_seg,
                trip_code='OuiBus ' + leg.bus_number,
                geojson=[],
            )
            lst_sections.append(step)
            i = i + 1
            # add transfer steps
            if not pd.isna(leg.next_departure):
                step = tmw.journey_step(
                    i,
                    _type=constants.TYPE_TRANSFER,
                    label='',
                    distance_m=distance(leg.geoloc_destination_seg,
                                        leg.next_geoloc).m,
                    duration_s=(leg['next_departure'] -
                                leg['arrival_seg']).seconds,
                    price_EUR=[0],
                    departure_point=leg.geoloc_destination_seg,
                    arrival_point=leg.next_geoloc,
                    departure_stop_name=leg.short_name_destination_seg,
                    arrival_stop_name=leg.next_stop_name,
                    gCO2=0,
                    geojson=[],
                )
                lst_sections.append(step)
                i = i + 1

        journey_ouibus = tmw.journey(_id, steps=lst_sections)
        lst_journeys.append(journey_ouibus)

        # for journey in lst_journeys:
        #    journey.update()

    return lst_journeys
Ejemplo n.º 21
0
def blablacar_journey(df_response, departure_date, start_point, end_point):
    """
        This function takes in a DF with detailled info about all the BlaBlaCar trips
        It returns a list of TMW journey objects    """

    lst_journeys = list()
    # all itineraries :
    # print(f'nb itinerary : {df_response.id_global.nunique()}')
    _id = 0
    for trip_id in df_response.trip_id.unique():
        itinerary = df_response[df_response.trip_id == trip_id]
        # Get the arrival info on the same line
        itinerary['date_time_arrival'] = itinerary.date_time.shift(-1)
        itinerary['city_arrival'] = itinerary.city.shift(-1)
        itinerary['address_arrival'] = itinerary.address.shift(-1)
        itinerary['latitude_arrival'] = itinerary.latitude.shift(-1)
        itinerary['longitude_arrival'] = itinerary.longitude.shift(-1)

        # boolean to know whether and when there will be a transfer after the leg
        itinerary['next_departure'] = itinerary.date_time.shift(1)

        # Get rid of the "last line" for the last leg of the blablacar trip
        itinerary = itinerary[~pd.isna(itinerary.city_arrival)]

        # Divide price between legs weighted by distance and distance
        itinerary['total_distance'] = itinerary.distance_in_meters.sum()
        itinerary['price'] = float(itinerary['price'])
        itinerary['price_leg'] = itinerary.apply(
            lambda x: x.distance_in_meters / x.total_distance * x.price,
            axis=1)

        i = _id
        lst_sections = list()
        # We add a waiting period at the pick up point of 15 minutes
        #print(itinerary.date_time.get_values())
        #print(type(itinerary.date_time.get_value(0)))
        #print(type(timedelta(seconds=_BLABLACAR_WAITING_PERIOD)))
        #print(itinerary.date_time.get_value(0)-timedelta(seconds=_BLABLACAR_WAITING_PERIOD))
        step = tmw.Journey_step(
            i,
            _type=constants.TYPE_WAIT,
            label=
            f'Arrive at pick up point {format_timespan(_BLABLACAR_WAITING_PERIOD)} before departure',
            distance_m=0,
            duration_s=_BLABLACAR_WAITING_PERIOD,
            price_EUR=[0],
            gCO2=0,
            departure_point=[
                itinerary.latitude.iloc[0], itinerary.longitude.iloc[0]
            ],
            arrival_point=[
                itinerary.latitude.iloc[0], itinerary.longitude.iloc[0]
            ],
            departure_date=itinerary.date_time.iat[0] -
            timedelta(seconds=_BLABLACAR_WAITING_PERIOD),
            arrival_date=itinerary.date_time.iat[0],
            bike_friendly=True,
            geojson=[],
        )

        lst_sections.append(step)
        i = i + 1
        # Go through all steps of the journey
        for index, leg in itinerary.iterrows():
            local_distance_m = leg.distance_in_meters
            local_transportation_type = constants.TYPE_CAR
            local_emissions = co2_emissions.calculate_co2_emissions(local_transportation_type, constants.DEFAULT_CITY,
                                                                    constants.DEFAULT_FUEL, constants.DEFAULT_NB_SEATS,
                                                                    constants.DEFAULT_NB_KM) * \
                              constants.DEFAULT_NB_PASSENGERS * local_distance_m
            step = tmw.Journey_step(
                i,
                _type=constants.TYPE_CARPOOOLING,
                label=f'BlablaCar trip from {leg.city} to {leg.city_arrival}',
                distance_m=local_distance_m,
                duration_s=leg.duration_in_seconds,
                price_EUR=[leg.price_leg],
                gCO2=local_emissions,
                departure_point=[leg.latitude, leg.longitude],
                arrival_point=[leg.latitude_arrival, leg.longitude_arrival],
                departure_stop_name=leg.address + ' ' + leg.city,
                arrival_stop_name=leg.address_arrival + ' ' + leg.city_arrival,
                departure_date=leg.date_time,
                arrival_date=leg.date_time_arrival,
                trip_code='BlaBlaCar_' + str(leg.trip_id),
                bike_friendly=False,
                geojson=[],
            )
            lst_sections.append(step)
            i = i + 1
            # add transfer steps
            if not pd.isna(leg.next_departure):
                step = tmw.Journey_step(
                    i,
                    _type=constants.TYPE_TRANSFER,
                    label=f'Transfer at {leg.name_arrival_seg}',
                    distance_m=0,
                    duration_s=(leg['next_departure'] -
                                leg['arrival_date_seg']).seconds,
                    price_EUR=[0],
                    departure_point=[
                        leg.latitude_arrival, leg.longitude_arrival
                    ],
                    arrival_point=[
                        leg.latitude_arrival, leg.longitude_arrival
                    ],
                    departure_stop_name=leg.address_arrival + ' ' +
                    leg.city_arrival,
                    arrival_stop_name=leg.address_arrival + ' ' +
                    leg.city_arrival,
                    departure_date=leg.date_time_arrival,
                    arrival_date=leg.next_departure,
                    gCO2=0,
                    bike_friendly=False,
                    geojson=[],
                )
                lst_sections.append(step)
                i = i + 1
        journey_blablacar = tmw.Journey(
            _id,
            steps=lst_sections,
            departure_date=lst_sections[0].departure_date,
            arrival_date=lst_sections[-1].arrival_date,
            booking_link=leg.link)
        # Add category
        category_journey = list()
        for step in journey_blablacar.steps:
            if step.type not in [constants.TYPE_TRANSFER, constants.TYPE_WAIT]:
                category_journey.append(step.type)

        journey_blablacar.category = list(set(category_journey))
        lst_journeys.append(journey_blablacar)

        # for journey in lst_journeys:
        #    journey.update()

    return lst_journeys