Ejemplo n.º 1
0
def navitia_journeys_sections_type_street_network(json, _id=0):
    mode = json['mode']
    mode_to_type = {
        'walking': constants.TYPE_WALK,
        'bike': constants.TYPE_BIKE,
        'car': constants.TYPE_CAR,
    }
    label = '{} FROM {} TO {}'.format(
        mode_to_type[mode],
        json['from']['name'],
        json['to']['name'],
    )
    step = tmw.Journey_step(_id,
                            _type=mode_to_type[mode],
                            label=label,
                            distance_m=json['geojson']['properties'][0]['length'],
                            duration_s=json['duration'],
                            price_EUR=[0],
                            gCO2=json['co2_emission']['value'],
                            departure_point=json['from']['name'],
                            arrival_point=json['to']['name'],
                            departure_stop_name=json['from']['name'],
                            arrival_stop_name=json['to']['name'],
                            departure_date=datetime.strptime(json['departure_date_time'], '%Y%m%dT%H%M%S'),
                            arrival_date=datetime.strptime(json['arrival_date_time'], '%Y%m%dT%H%M%S'),
                            geojson=json['geojson'],
                            )
    return step
Ejemplo n.º 2
0
def navitia_journeys_sections_type_on_demand(json, _id=0):
    display_information = json['display_informations']
    label = '{} {} / {} / direction: {}'.format(
        display_information['physical_mode'],
        display_information['code'],
        display_information['name'],
        display_information['direction'],
    )
    step = tmw.Journey_step(
        _id,
        _type=display_information['network'].lower(),
        label=label,
        distance_m=json['geojson']['properties'][0]['length'],
        duration_s=json['duration'],
        price_EUR=[0],
        gCO2=json['co2_emission']['value'],
        departure_point=json['from']['name'],
        arrival_point=json['to']['name'],
        departure_stop_name=json['from']['name'],
        arrival_stop_name=json['to']['name'],
        departure_date=datetime.strptime(json['departure_date_time'],
                                         '%Y%m%dT%H%M%S'),
        arrival_date=datetime.strptime(json['arrival_date_time'],
                                       '%Y%m%dT%H%M%S'),
        geojson=json['geojson'],
    )
    return step
Ejemplo n.º 3
0
def navitia_journeys_sections_type_public_transport(json, _id=0):
    display_information = json['display_informations']
    label = '{} {} / {} / direction: {}'.format(
        display_information['physical_mode'],
        display_information['code'],
        display_information['name'],
        display_information['direction'],
    )
    switcher_public_transport_type = {
        'Métro': constants.TYPE_METRO,
        'Bus': constants.TYPE_BUS,
        'Tramway': constants.TYPE_TRAM,
        'RER': constants.TYPE_METRO,
    }
    _type = switcher_public_transport_type.get(display_information['commercial_mode'],
                                               "unknown public transport")
    # _type = display_information['commercial_mode']
    # _type = unicodedata.normalize('NFD', _type).encode('ascii', 'ignore').lower()
    step = tmw.Journey_step(_id,
                            _type=_type,
                            label=label,
                            distance_m=json['geojson']['properties'][0]['length'],
                            duration_s=json['duration'],
                            price_EUR=[0],
                            gCO2=json['co2_emission']['value'],
                            departure_point=json['from']['name'],
                            arrival_point=json['to']['name'],
                            departure_stop_name=json['from']['name'],
                            arrival_stop_name=json['to']['name'],
                            departure_date=datetime.strptime(json['departure_date_time'], '%Y%m%dT%H%M%S'),
                            arrival_date=datetime.strptime(json['arrival_date_time'], '%Y%m%dT%H%M%S'),
                            geojson=json['geojson'],
                            )
    return step
Ejemplo n.º 4
0
def ORS_query_directions(query, profile='driving-car', toll_price=True, _id=0, geometry=True):
    '''
    start (class point)
    end (class point)
    profile= ["driving-car", "driving-hgv", "foot-walking","foot-hiking", "cycling-regular", "cycling-road","cycling-mountain",
    "cycling-electric",]
    '''
    ORS_client = start_ORS_client()
    coord = [query.start_point[::-1], query.end_point[::-1]]   # WARNING it seems that [lon,lat] are not in the same order than for other API.
    try:
        ORS_step = ORS_client.directions(
            coord,
            profile=profile,
            instructions=False,
            geometry=geometry,
            options={'avoid_features': ['ferries']},
        )
    except:
        return None

    geojson = convert.decode_polyline(ORS_step['routes'][0]['geometry'])

    local_distance = ORS_step['routes'][0]['summary']['distance']
    local_emissions = co2_emissions.calculate_co2_emissions(constants.TYPE_COACH, constants.DEFAULT_CITY,
                                              constants.DEFAULT_FUEL, constants.DEFAULT_NB_SEATS,
                                              constants.DEFAULT_NB_KM) * \
                      constants.DEFAULT_NB_PASSENGERS * local_distance

    step = tmw.Journey_step(_id,
                        _type=ORS_profile(profile),
                        label=profile,
                        distance_m=local_distance,
                        duration_s=ORS_step['routes'][0]['summary']['duration'],
                        price_EUR=[ORS_gas_price(ORS_step['routes'][0]['summary']['distance'])],
                        gCO2=local_emissions,
                        geojson=geojson,
                        departure_date=query.departure_date
                        )
    # Correct arrival_date based on departure_date
    step.arrival_date = (step.departure_date + timedelta(seconds=step.duration_s))

    # Add toll price (optional)
    step = ORS_add_toll_price(step) if toll_price else step

    ors_journey = tmw.Journey(0,
                              departure_date=query.departure_date,
                              arrival_date=step.arrival_date,
                              steps=[step])
    # Add category
    category_journey = list()
    for step in ors_journey.steps:
        if step.type not in [constants.TYPE_TRANSFER, constants.TYPE_WAIT]:
            category_journey.append(step.type)

    ors_journey.category = list(set(category_journey))
    ors_journey.update()
    ors_journey.arrival_date = ors_journey.departure_date + timedelta(seconds=ors_journey.total_duration)

    return ors_journey
Ejemplo n.º 5
0
def navitia_journeys_sections_type_waiting(json, _id=0):
    step = tmw.Journey_step(_id,
                            _type=constants.TYPE_WAIT,
                            label='wait',
                            distance_m=0,
                            duration_s=json['duration'],
                            price_EUR=[0],
                            gCO2=0,
                            departure_point=[0,0],
                            arrival_point=[0,0],
                            departure_stop_name='',
                            arrival_stop_name='',
                            departure_date=datetime.strptime(json['departure_date_time'], '%Y%m%dT%H%M%S'),
                            arrival_date=datetime.strptime(json['arrival_date_time'], '%Y%m%dT%H%M%S'),
                            geojson='',
                            )
    return step
Ejemplo n.º 6
0
def create_fake_plane_journey(locations, airport_dep, airport_arrival):
    """
    We create a fake plane journey with only the approximate eqCO2 to be used in the computation in the front end
    :param query:
    :return: fake_journey
    """
    geoloc_dep = locations['departure'][locations['departure'].city_sky ==
                                        airport_dep].sample().geoloc
    geoloc_arrival = locations['arrival'][locations['arrival'].city_sky ==
                                          airport_arrival].sample().geoloc
    distance_m = distance(geoloc_dep, geoloc_arrival).m
    local_range_km = get_range_km(distance_m)
    local_emissions = calculate_co2_emissions(constants.TYPE_PLANE, constants.DEFAULT_CITY,
                                              constants.DEFAULT_FUEL, constants.NB_SEATS_TEST,
                                              local_range_km) * \
                      constants.DEFAULT_NB_PASSENGERS * distance_m
    fake_journey_list = list()
    fake_journey_step = tmw.Journey_step(
        0,
        _type=constants.TYPE_PLANE,
        label=
        f'Arrive at the airport {format_timespan(_AIRPORT_WAITING_PERIOD)} before departure',
        distance_m=0,
        duration_s=_AIRPORT_WAITING_PERIOD,
        price_EUR=[0],
        gCO2=local_emissions,
        departure_point=geoloc_dep,
        arrival_point=geoloc_arrival,
        departure_date=dt.now(),
        arrival_date=dt.now(),
        geojson=[],
    )
    fake_journey_list.append(fake_journey_step)
    fake_journey = tmw.Journey(0,
                               steps=fake_journey_list,
                               departure_date=fake_journey_step.departure_date,
                               arrival_date=fake_journey_step.arrival_date)
    fake_journey.total_gCO2 = local_emissions
    fake_journey.is_real_journey = False
    return fake_journey
Ejemplo n.º 7
0
def create_plane_journey_from_flightradar_data(airports, departure_date):
    """
    We create a fake plane journey with only the approximate eqCO2 to be used in the computation in the front end
    :param query:
    :return: fake_journey
    """
    day_of_week = departure_date.weekday()
    hour_of_day = departure_date.hour
    relevant_flights = _FLIGHTRADAR_DATA[
        _FLIGHTRADAR_DATA.city_sky.isin(airports['departure'])
        & _FLIGHTRADAR_DATA.city_sky_arr.isin(airports['arrival'])]
    relevant_flights = relevant_flights[relevant_flights.day_of_week ==
                                        day_of_week]
    relevant_flights['hour_dep'] = relevant_flights.apply(
        lambda x: dt.strptime(x.hour_dep, '%H:%M:%S') + timedelta(hours=1),
        axis=1)
    relevant_flights['hour_dep_int'] = relevant_flights.apply(
        lambda x: x.hour_dep.hour, axis=1)
    response_flights = pd.DataFrame()
    for airport_dep in airports['departure']:
        for airport_arr in airports['arrival']:
            flights_df = relevant_flights[
                (relevant_flights.city_sky == airport_dep)
                & (relevant_flights.city_sky_arr == airport_arr) &
                (relevant_flights.hour_dep_int >= hour_of_day)]
            response_flights = response_flights.append(flights_df)
    # distance_m = distance(geoloc_dep, geoloc_arrival).m
    response_flights['local_range_km'] = response_flights.apply(
        lambda x: get_range_km(x.distance_m), axis=1)
    response_flights['local_emissions'] = response_flights.apply(
        lambda x: calculate_co2_emissions(
            constants.TYPE_PLANE, constants.DEFAULT_CITY, constants.
            DEFAULT_FUEL, constants.NB_SEATS_TEST, x.local_range_km) *
        constants.DEFAULT_NB_PASSENGERS * x.distance_m,
        axis=1)
    # merge global departure date and flight time to create flight actual departure datetime
    response_flights['flight_departure_date'] = response_flights.apply(
        lambda x: dt.combine(departure_date,
                             dt_time(x.hour_dep.hour, x.hour_dep.minute)),
        axis=1)
    response_flights['flight_arrival_date'] = response_flights.apply(
        lambda x: x.flight_departure_date + timedelta(seconds=x.flight_time_s),
        axis=1)

    journey_list = list()
    for index, flight in response_flights.iterrows():
        lst_sections = list()
        # We add a waiting period at the airport of x hours
        step = tmw.Journey_step(
            0,
            _type=constants.TYPE_WAIT,
            label=
            f'Arrive at the airport {format_timespan(_AIRPORT_WAITING_PERIOD)} before departure',
            distance_m=0,
            duration_s=_AIRPORT_WAITING_PERIOD,
            price_EUR=[],
            gCO2=0,
            departure_point=[flight.latitude, flight.longitude],
            arrival_point=[flight.latitude, flight.longitude],
            departure_date=flight.flight_departure_date -
            timedelta(seconds=_AIRPORT_WAITING_PERIOD),
            arrival_date=flight.flight_departure_date,
            geojson=[],
        )
        lst_sections.append(step)

        step = tmw.Journey_step(
            1,
            _type=constants.TYPE_PLANE,
            label=f'Flight {flight.flight_number} to {flight.airport_to_code}',
            distance_m=flight.distance_m,
            duration_s=flight.flight_time_s,
            price_EUR=[],
            gCO2=flight.local_emissions,
            departure_point=[flight.latitude, flight.longitude],
            arrival_point=[flight.latitude_arr, flight.longitude_arr],
            departure_stop_name=flight.airport_from,
            arrival_stop_name=flight.airport_to_code,
            departure_date=flight.flight_departure_date,
            arrival_date=flight.flight_arrival_date,
            trip_code=flight.flight_number,
            geojson=[],
        )
        lst_sections.append(step)
        departure_date_formated = dt.strptime(
            str(lst_sections[0].departure_date)[0:10], '%Y-%m-%d')
        departure_date_formated = str(departure_date_formated.year)[2:4]+\
                                  ('0'+str(departure_date_formated.month))[-2:]+\
                                  ('0'+str(departure_date_formated.day))[-2:]

        journey_flightradar = tmw.Journey(
            0,
            steps=lst_sections,
            departure_date=lst_sections[0].departure_date,
            arrival_date=lst_sections[-1].arrival_date,
            booking_link=
            f'https://www.skyscanner.fr/transport/vols/{flight.airport_from}/{flight.airport_to_code}/{departure_date_formated}/'
        )
        journey_flightradar.category = [constants.TYPE_PLANE]
        journey_flightradar.update()
        journey_flightradar.is_real_journey = False
        journey_list.append(journey_flightradar)

    return journey_list
Ejemplo n.º 8
0
def skyscanner_journeys(df_response, _id=0):
    """
    This function takes in a dataframe with detailled information on the plane journeys returned by Skyscanner API
        and returns a list containing one TMW journey object for each of those plane journey
    """
    # affect a price to each leg
    df_response[
        'price_step'] = df_response.PriceTotal_AR / df_response.nb_segments
    df_response['DepartureDateTime'] = pd.to_datetime(
        df_response['DepartureDateTime'])
    df_response['ArrivalDateTime'] = pd.to_datetime(
        df_response['ArrivalDateTime'])
    # Compute distance for each leg
    df_response['distance_step'] = df_response.apply(
        lambda x: distance(x.geoloc_origin_seg, x.geoloc_destination_seg).m,
        axis=1)
    lst_journeys = list()

    # all itineraries :
    for itinerary_id in df_response.itinerary_id.unique():
        itinerary = df_response[df_response.itinerary_id ==
                                itinerary_id].reset_index(drop=True)
        i = _id
        # boolean to know whether and when there will be a transfer after the leg
        itinerary['next_departure'] = itinerary.DepartureDateTime.shift(-1)
        itinerary['next_stop_name'] = itinerary.Name_origin_seg.shift(-1)
        itinerary['next_geoloc'] = itinerary.geoloc_origin_seg.shift(-1)
        # get the slugs to create the booking link
        departure_slug = itinerary.departure_slug.unique()[0].lower()[0:4]
        arrival_slug = itinerary.arrival_slug.unique()[0].lower()[0:4]

        lst_sections = list()
        # We add a waiting period at the airport of x hours
        step = tmw.Journey_step(
            i,
            _type=constants.TYPE_WAIT,
            label=
            f'Arrive at the airport {format_timespan(_AIRPORT_WAITING_PERIOD)} before departure',
            distance_m=0,
            duration_s=_AIRPORT_WAITING_PERIOD,
            price_EUR=[0],
            gCO2=0,
            departure_point=itinerary.geoloc.iloc[0],
            arrival_point=itinerary.geoloc.iloc[0],
            departure_date=itinerary.DepartureDateTime[0] -
            timedelta(seconds=_AIRPORT_WAITING_PERIOD),
            arrival_date=itinerary.DepartureDateTime[0],
            geojson=[],
        )
        lst_sections.append(step)
        i = i + 1
        for index, leg in itinerary.sort_values(
                by='DepartureDateTime').iterrows():
            local_distance_m = leg.distance_step
            local_range_km = get_range_km(local_distance_m)
            local_emissions = calculate_co2_emissions(constants.TYPE_PLANE, constants.DEFAULT_CITY,
                                                      constants.DEFAULT_FUEL, constants.NB_SEATS_TEST,
                                                      local_range_km) * \
                              constants.DEFAULT_NB_PASSENGERS * local_distance_m

            step = tmw.Journey_step(
                i,
                _type=constants.TYPE_PLANE,
                label=f'Flight {leg.FlightNumber_rich} to {leg.Name}',
                distance_m=leg.distance_step,
                duration_s=leg.Duration_seg * 60,
                price_EUR=[leg.price_step],
                gCO2=local_emissions,
                departure_point=leg.geoloc_origin_seg,
                arrival_point=leg.geoloc_destination_seg,
                departure_stop_name=leg.Name_origin_seg,
                arrival_stop_name=leg.Name,
                departure_date=leg.DepartureDateTime,
                arrival_date=leg.ArrivalDateTime,
                trip_code=leg.FlightNumber_rich,
                geojson=[],
            )
            lst_sections.append(step)
            i = i + 1
            # add transfer steps
            if not pd.isna(leg.next_departure):
                #duration = dt.strptime(leg['next_departure'], '%Y-%m-%dT%H:%M:%S') - \
                #           dt.strptime(leg['ArrivalDateTime'], '%Y-%m-%dT%H:%M:%S')
                step = tmw.Journey_step(
                    i,
                    _type=constants.TYPE_TRANSFER,
                    label=f'Transfer at {leg.Name}',
                    distance_m=0,
                    duration_s=(leg.next_departure -
                                leg.ArrivalDateTime).seconds,
                    price_EUR=[0],
                    departure_point=leg.geoloc_destination_seg,
                    arrival_point=leg.next_geoloc,
                    departure_date=leg.ArrivalDateTime,
                    arrival_date=leg.next_departure,
                    departure_stop_name=leg.Name,
                    arrival_stop_name=leg.next_stop_name,
                    gCO2=0,
                    geojson=[],
                )
                lst_sections.append(step)
                i = i + 1

        departure_date_formated = dt.strptime(
            str(lst_sections[0].departure_date)[0:10], '%Y-%m-%d')
        departure_date_formated = str(departure_date_formated.year)[2:4]+\
                                  ('0'+str(departure_date_formated.month))[-2:]+\
                                  ('0'+str(departure_date_formated.day))[-2:]
        journey_sky = tmw.Journey(
            _id,
            steps=lst_sections,
            departure_date=lst_sections[0].departure_date,
            arrival_date=lst_sections[-1].arrival_date,
            booking_link=
            f'https://www.skyscanner.fr/transport/vols/{departure_slug}/{arrival_slug}/{departure_date_formated}/'
        )
        # journey_sky = tmw.Journey(_id, steps=lst_sections)
        # Add category
        category_journey = list()
        for step in journey_sky.steps:
            if step.type not in [constants.TYPE_TRANSFER, constants.TYPE_WAIT]:
                category_journey.append(step.type)

        journey_sky.category = list(set(category_journey))
        lst_journeys.append(journey_sky)

        for journey in lst_journeys:
            journey.update()

    return lst_journeys
Ejemplo n.º 9
0
def ouibus_journeys(df_response, _id=0):
    """
    This function takes in a DF with detailled info about all the OuiBus trips
    It returns a list of TMW journey objects
        """
    # affect a price to each leg
    df_response['price_step'] = df_response.price_cents / (
        df_response.nb_segments * 100)
    # Compute distance for each leg
    # print(df_response.columns)
    df_response['distance_step'] = df_response.apply(
        lambda x: distance(x.geoloc_origin_seg, x.geoloc_destination_seg).m,
        axis=1)
    lst_journeys = list()
    # all itineraries :
    # logger.info(f'nb itinerary : {df_response.id.nunique()}')
    for itinerary_id in df_response.id.unique():
        itinerary = df_response[df_response.id == itinerary_id].reset_index(
            drop=True)
        # boolean to know whether and when there will be a transfer after the leg
        itinerary['next_departure'] = itinerary.departure_seg.shift(-1)
        itinerary['next_stop_name'] = itinerary.short_name_origin_seg.shift(1)
        itinerary['next_geoloc'] = itinerary.geoloc_origin_seg.shift(-1)
        # get the slugs to create the booking link
        origin_slug = itinerary.origin_slug.unique()[0]
        destination_slug = itinerary.destination_slug.unique()[0]
        i = _id
        lst_sections = list()
        # We add a waiting period at the station of 15 minutes
        step = tmw.Journey_step(
            i,
            _type=constants.TYPE_WAIT,
            label=
            f'Arrive at the station {format_timespan(_STATION_WAITING_PERIOD)} before departure',
            distance_m=0,
            duration_s=_STATION_WAITING_PERIOD,
            price_EUR=[0],
            gCO2=0,
            departure_point=itinerary.geoloc.iloc[0],
            arrival_point=itinerary.geoloc.iloc[0],
            departure_date=itinerary.departure_seg[0] -
            timedelta(seconds=_STATION_WAITING_PERIOD),
            arrival_date=itinerary.departure_seg[0],
            geojson=[],
        )
        lst_sections.append(step)
        i = i + 1
        for index, leg in itinerary.iterrows():
            local_distance_m = leg.distance_step
            local_emissions = calculate_co2_emissions(constants.TYPE_COACH, constants.DEFAULT_CITY,
                                                      constants.DEFAULT_FUEL, constants.DEFAULT_NB_SEATS,
                                                      constants.DEFAULT_NB_KM) *\
                              constants.DEFAULT_NB_PASSENGERS*local_distance_m
            step = tmw.Journey_step(
                i,
                _type=constants.TYPE_COACH,
                label=
                f'Coach OuiBus {leg.bus_number} to {leg.short_name_destination_seg}',
                distance_m=local_distance_m,
                duration_s=(leg.arrival_seg - leg.departure_seg).seconds,
                price_EUR=[leg.price_step],
                gCO2=local_emissions,
                departure_point=leg.geoloc_origin_seg,
                arrival_point=leg.geoloc_destination_seg,
                departure_stop_name=leg.short_name_origin_seg,
                arrival_stop_name=leg.short_name_destination_seg,
                departure_date=leg.departure_seg,
                arrival_date=leg.arrival_seg,
                trip_code='OuiBus ' + leg.bus_number,
                geojson=[],
            )
            lst_sections.append(step)
            i = i + 1
            # add transfer steps
            if not pd.isna(leg.next_departure):
                step = tmw.Journey_step(
                    i,
                    _type=constants.TYPE_TRANSFER,
                    label=f'Transfer at {leg.short_name_destination_seg}',
                    distance_m=distance(leg.geoloc_destination_seg,
                                        leg.next_geoloc).m,
                    duration_s=(leg['next_departure'] -
                                leg['arrival_seg']).seconds,
                    price_EUR=[0],
                    departure_point=leg.geoloc_destination_seg,
                    arrival_point=leg.next_geoloc,
                    departure_stop_name=leg.short_name_destination_seg,
                    arrival_stop_name=leg.next_stop_name,
                    gCO2=0,
                    geojson=[],
                )
                lst_sections.append(step)
                i = i + 1
        departure_date_formated = dt.strptime(
            str(lst_sections[0].departure_date)[0:15],
            '%Y-%m-%d %H:%M').strftime('%Y-%m-%d %H:00')
        journey_ouibus = tmw.Journey(
            _id,
            steps=lst_sections,
            booking_link=
            f'https://fr.ouibus.com/recherche?origin={origin_slug}&destination={destination_slug}&outboundDate={departure_date_formated}'
        )
        # Add category
        category_journey = list()
        for step in journey_ouibus.steps:
            if step.type not in [constants.TYPE_TRANSFER, constants.TYPE_WAIT]:
                category_journey.append(step.type)

        journey_ouibus.category = list(set(category_journey))
        lst_journeys.append(journey_ouibus)

        # for journey in lst_journeys:
        #    journey.update()

    return lst_journeys
Ejemplo n.º 10
0
def trainline_journeys(df_response, _id=0):
    """
        This function takes in a DF with detailled info about all the Trainline trips
        It returns a list of TMW journey objects
    """
    # affect a price to each leg (otherwise we would multiply the price by the number of legs
    df_response['price_step'] = df_response.cents / (df_response.nb_segments*100)

    # Compute distance for each leg
    # print(df_response.columns)
    df_response['distance_step'] = df_response.apply(lambda x: distance(x.geoloc_depart_seg, x.geoloc_arrival_seg).m,
                                                     axis=1)
    df_response['trip_code'] = df_response.train_name + ' ' + df_response.train_number
    tranportation_mean_to_type = {
        'coach': constants.TYPE_COACH,
        'train': constants.TYPE_TRAIN,
    }


    lst_journeys = list()
    # all itineraries :
    # print(f'nb itinerary : {df_response.id_global.nunique()}')
    for itinerary_id in df_response.id_global.unique():
        itinerary = df_response[df_response.id_global == itinerary_id].reset_index(drop=True)
        # boolean to know whether and when there will be a transfer after the leg
        itinerary['next_departure'] = itinerary.departure_date_seg.shift(-1)
        itinerary['next_stop_name'] = itinerary.name_depart_seg.shift(-1)
        itinerary['next_geoloc'] = itinerary.geoloc_depart_seg.shift(-1)
        itinerary['trip_code'] = itinerary.trip_code.fillna('')

        # get the slugs to create the booking link
        origin_slug = itinerary.origin_slug.unique()[0]
        destination_slug = itinerary.destination_slug.unique()[0]

        i = _id
        lst_sections = list()
        # We add a waiting period at the station of 15 minutes
        step = tmw.Journey_step(i,
                                _type=constants.TYPE_WAIT,
                                label=f'Arrive at the station {format_timespan(_STATION_WAITING_PERIOD)} before departure',
                                distance_m=0,
                                duration_s=_STATION_WAITING_PERIOD,
                                price_EUR=[0],
                                gCO2=0,
                                departure_point=[itinerary.latitude.iloc[0], itinerary.longitude.iloc[0]],
                                arrival_point=[itinerary.latitude.iloc[0], itinerary.longitude.iloc[0]],
                                departure_date=itinerary.departure_date_seg[0] - timedelta(seconds=_STATION_WAITING_PERIOD),
                                arrival_date=itinerary.departure_date_seg[0],
                                bike_friendly=True,
                                geojson=[],
                                )

        lst_sections.append(step)
        i = i + 1
        # Go through all steps of the journey
        for index, leg in itinerary.iterrows():
            local_distance_m = distance(leg.geoloc_depart_seg, leg.geoloc_arrival_seg).m
            local_transportation_type = tranportation_mean_to_type[leg.transportation_mean]
            local_emissions = co2_emissions.calculate_co2_emissions(local_transportation_type, constants.DEFAULT_CITY,
                                                      constants.DEFAULT_FUEL, constants.DEFAULT_NB_SEATS,
                                                      constants.DEFAULT_NB_KM) * \
                              constants.DEFAULT_NB_PASSENGERS * local_distance_m
            step = tmw.Journey_step(i,
                                    _type=local_transportation_type,
                                    label=f'{leg.trip_code} to {leg.name_arrival_seg}',
                                    distance_m=local_distance_m,
                                    duration_s=(leg.arrival_date_seg - leg.departure_date_seg).seconds,
                                    price_EUR=[leg.price_step],
                                    gCO2=local_emissions,
                                    departure_point=leg.geoloc_depart_seg,
                                    arrival_point=leg.geoloc_arrival_seg,
                                    departure_stop_name=leg.name_depart_seg,
                                    arrival_stop_name=leg.name_arrival_seg,
                                    departure_date=leg.departure_date_seg,
                                    arrival_date=leg.arrival_date_seg,
                                    trip_code=leg.trip_code,
                                    bike_friendly='bicycle' in leg.bike_friendliness,
                                    geojson=[],
                                    )
            lst_sections.append(step)
            i = i + 1
            # add transfer steps
            if not pd.isna(leg.next_departure):
                step = tmw.Journey_step(i,
                                        _type=constants.TYPE_TRANSFER,
                                        label=f'Transfer at {leg.name_arrival_seg}',
                                        distance_m=0,
                                        duration_s=(leg['next_departure'] - leg['arrival_date_seg']).seconds,
                                        price_EUR=[0],
                                        departure_point=leg.geoloc_arrival_seg,
                                        arrival_point=leg.next_geoloc,
                                        departure_stop_name=leg.name_depart_seg,
                                        arrival_stop_name=leg.name_arrival_seg,
                                        departure_date=leg.arrival_date_seg,
                                        arrival_date=leg.next_departure,
                                        gCO2=0,
                                        bike_friendly=True,
                                        geojson=[],
                                        )
                lst_sections.append(step)
                i = i + 1
        departure_date_formated = dt.strptime(str(lst_sections[0].departure_date)[0:15], '%Y-%m-%d %H:%M').strftime('%Y-%m-%d %H:00')
        journey_train = tmw.Journey(_id, steps=lst_sections,
                                    departure_date= lst_sections[0].departure_date,
                                    arrival_date= lst_sections[-1].arrival_date,
                                    booking_link=f'https://www.trainline.fr/search/{origin_slug}/{destination_slug}/{departure_date_formated}')
        # Add category
        category_journey = list()
        for step in journey_train.steps:
            if step.type not in [constants.TYPE_TRANSFER, constants.TYPE_WAIT]:
                category_journey.append(step.type)

        journey_train.category = list(set(category_journey))
        lst_journeys.append(journey_train)

        # for journey in lst_journeys:
        #    journey.update()

    return lst_journeys
Ejemplo n.º 11
0
def blablacar_journey(df_response, departure_date, start_point, end_point):
    """
        This function takes in a DF with detailled info about all the BlaBlaCar trips
        It returns a list of TMW journey objects    """

    lst_journeys = list()
    # all itineraries :
    # print(f'nb itinerary : {df_response.id_global.nunique()}')
    _id = 0
    for trip_id in df_response.trip_id.unique():
        itinerary = df_response[df_response.trip_id == trip_id]
        # Get the arrival info on the same line
        itinerary['date_time_arrival'] = itinerary.date_time.shift(-1)
        itinerary['city_arrival'] = itinerary.city.shift(-1)
        itinerary['address_arrival'] = itinerary.address.shift(-1)
        itinerary['latitude_arrival'] = itinerary.latitude.shift(-1)
        itinerary['longitude_arrival'] = itinerary.longitude.shift(-1)

        # boolean to know whether and when there will be a transfer after the leg
        itinerary['next_departure'] = itinerary.date_time.shift(1)

        # Get rid of the "last line" for the last leg of the blablacar trip
        itinerary = itinerary[~pd.isna(itinerary.city_arrival)]

        # Divide price between legs weighted by distance and distance
        itinerary['total_distance'] = itinerary.distance_in_meters.sum()
        itinerary['price'] = float(itinerary['price'])
        itinerary['price_leg'] = itinerary.apply(
            lambda x: x.distance_in_meters / x.total_distance * x.price,
            axis=1)

        i = _id
        lst_sections = list()
        # We add a waiting period at the pick up point of 15 minutes
        #print(itinerary.date_time.get_values())
        #print(type(itinerary.date_time.get_value(0)))
        #print(type(timedelta(seconds=_BLABLACAR_WAITING_PERIOD)))
        #print(itinerary.date_time.get_value(0)-timedelta(seconds=_BLABLACAR_WAITING_PERIOD))
        step = tmw.Journey_step(
            i,
            _type=constants.TYPE_WAIT,
            label=
            f'Arrive at pick up point {format_timespan(_BLABLACAR_WAITING_PERIOD)} before departure',
            distance_m=0,
            duration_s=_BLABLACAR_WAITING_PERIOD,
            price_EUR=[0],
            gCO2=0,
            departure_point=[
                itinerary.latitude.iloc[0], itinerary.longitude.iloc[0]
            ],
            arrival_point=[
                itinerary.latitude.iloc[0], itinerary.longitude.iloc[0]
            ],
            departure_date=itinerary.date_time.iat[0] -
            timedelta(seconds=_BLABLACAR_WAITING_PERIOD),
            arrival_date=itinerary.date_time.iat[0],
            bike_friendly=True,
            geojson=[],
        )

        lst_sections.append(step)
        i = i + 1
        # Go through all steps of the journey
        for index, leg in itinerary.iterrows():
            local_distance_m = leg.distance_in_meters
            local_transportation_type = constants.TYPE_CAR
            local_emissions = co2_emissions.calculate_co2_emissions(local_transportation_type, constants.DEFAULT_CITY,
                                                                    constants.DEFAULT_FUEL, constants.DEFAULT_NB_SEATS,
                                                                    constants.DEFAULT_NB_KM) * \
                              constants.DEFAULT_NB_PASSENGERS * local_distance_m
            step = tmw.Journey_step(
                i,
                _type=constants.TYPE_CARPOOOLING,
                label=f'BlablaCar trip from {leg.city} to {leg.city_arrival}',
                distance_m=local_distance_m,
                duration_s=leg.duration_in_seconds,
                price_EUR=[leg.price_leg],
                gCO2=local_emissions,
                departure_point=[leg.latitude, leg.longitude],
                arrival_point=[leg.latitude_arrival, leg.longitude_arrival],
                departure_stop_name=leg.address + ' ' + leg.city,
                arrival_stop_name=leg.address_arrival + ' ' + leg.city_arrival,
                departure_date=leg.date_time,
                arrival_date=leg.date_time_arrival,
                trip_code='BlaBlaCar_' + str(leg.trip_id),
                bike_friendly=False,
                geojson=[],
            )
            lst_sections.append(step)
            i = i + 1
            # add transfer steps
            if not pd.isna(leg.next_departure):
                step = tmw.Journey_step(
                    i,
                    _type=constants.TYPE_TRANSFER,
                    label=f'Transfer at {leg.name_arrival_seg}',
                    distance_m=0,
                    duration_s=(leg['next_departure'] -
                                leg['arrival_date_seg']).seconds,
                    price_EUR=[0],
                    departure_point=[
                        leg.latitude_arrival, leg.longitude_arrival
                    ],
                    arrival_point=[
                        leg.latitude_arrival, leg.longitude_arrival
                    ],
                    departure_stop_name=leg.address_arrival + ' ' +
                    leg.city_arrival,
                    arrival_stop_name=leg.address_arrival + ' ' +
                    leg.city_arrival,
                    departure_date=leg.date_time_arrival,
                    arrival_date=leg.next_departure,
                    gCO2=0,
                    bike_friendly=False,
                    geojson=[],
                )
                lst_sections.append(step)
                i = i + 1
        journey_blablacar = tmw.Journey(
            _id,
            steps=lst_sections,
            departure_date=lst_sections[0].departure_date,
            arrival_date=lst_sections[-1].arrival_date,
            booking_link=leg.link)
        # Add category
        category_journey = list()
        for step in journey_blablacar.steps:
            if step.type not in [constants.TYPE_TRANSFER, constants.TYPE_WAIT]:
                category_journey.append(step.type)

        journey_blablacar.category = list(set(category_journey))
        lst_journeys.append(journey_blablacar)

        # for journey in lst_journeys:
        #    journey.update()

    return lst_journeys
Ejemplo n.º 12
0
def get_ferries(date_departure, date_return, departure_point, arrival_point):
    """
    We create a ferry journey based on the ferry database we scraped
    """
    # Find relevant ports
    port_deps, port_arrs = get_ports_from_geo_locs(departure_point,
                                                   arrival_point)

    # Find journeys
    journeys = _FERRY_DATA[
        (_FERRY_DATA.port_dep.isin(port_deps.port_clean.unique()))
        & _FERRY_DATA.port_arr.isin(port_arrs.port_clean.unique())]

    journeys['date_dep'] = pd.to_datetime(journeys.date_dep)
    journeys = journeys[journeys.date_dep > date_departure]

    if len(journeys) == 0:
        logger.info(f'No ferry journey was found')
        return None

    journey_list = list()

    for index, row in journeys.iterrows():

        distance_m = row.distance_m
        local_emissions = calculate_co2_emissions(constants.TYPE_PLANE, constants.DEFAULT_CITY,
                                                  constants.DEFAULT_FUEL, constants.NB_SEATS_TEST,
                                                  constants.DEFAULT_NB_KM) * \
                          constants.DEFAULT_NB_PASSENGERS * distance_m
        journey_steps = list()
        journey_step = tmw.Journey_step(
            0,
            _type=constants.TYPE_WAIT,
            label=
            f'Arrive at the port {format_timespan(_PORT_WAITING_PERIOD)} before departure',
            distance_m=0,
            duration_s=_PORT_WAITING_PERIOD,
            price_EUR=[0],
            gCO2=0,
            departure_point=[row.lat_clean_dep, row.long_clean_dep],
            arrival_point=[row.lat_clean_dep, row.long_clean_dep],
            departure_date=row.date_dep -
            timedelta(seconds=_PORT_WAITING_PERIOD),
            arrival_date=row.date_dep,
            geojson=[],
        )
        journey_steps.append(journey_step)

        journey_step = tmw.Journey_step(
            1,
            _type=constants.TYPE_FERRY,
            label=f'Sail Ferry from {row.port_dep} to {row.port_arr}',
            distance_m=distance_m,
            duration_s=(row.date_arr - row.date_dep).seconds,
            price_EUR=[row.price_clean_ar_eur / 2],
            gCO2=local_emissions,
            departure_point=[row.lat_clean_dep, row.long_clean_dep],
            arrival_point=[row.lat_clean_arr, row.long_clean_arr],
            departure_date=row.date_dep,
            arrival_date=row.date_arr,
            geojson=[],
        )

        journey_steps.append(journey_step)

        journey = tmw.Journey(
            0,
            steps=journey_steps,
            departure_date=journey_steps[0].departure_date,
            arrival_date=journey_steps[1].arrival_date,
        )
        journey.total_gCO2 = local_emissions
        journey.category = constants.CATEGORY_FERRY_JOURNEY
        journey.booking_link = 'https://www.ferrysavers.co.uk/ferry-routes.htm'
        journey.departure_point = [row.lat_clean_dep, row.long_clean_dep]
        journey.arrival_point = [row.lat_clean_arr, row.long_clean_arr]
        journey.update()
        journey_list.append(journey)

    return journey_list