Ejemplo n.º 1
0
def launch_acquisition(msg):
    global isAcquiring
    isAcquiring = 1
    macAddress = msg['payload']['macAddress']

    # This example will collect data for 5 sec.
    running_time = 9

    batteryThreshold = 30
    acqChannels = [0, 1, 2, 3, 4, 5]
    samplingRate = 1000
    nSamples = 10
    digitalOutput = [1, 1]

    # Connect to BITalino
    device = BITalino(macAddress)

    # Set battery threshold
    device.battery(batteryThreshold)

    # Read BITalino version
    print(device.version())

    # ON/OFF
    device.trigger([1, 1])
    device.trigger([0, 0])

    # Start Acquisition
    device.start(samplingRate, acqChannels)

    start = time.time()
    end = time.time()
    while (end - start) < running_time and isAcquiring == 1:
        # Read samples
        data = device.read(nSamples)
        print(data)
        msg['payload']['val'] = data.tolist()
        end = time.time()

    # Stop acquisition
    device.stop()

    # Close connection
    device.close()
    isAcquiring = 0
    return ("success")
Ejemplo n.º 2
0
countfeedback = 0;

print "STARTING STREAM"
while True:

    # measure the time that it takes
    start = time.time();

    # read the selected channels from the
    dat = device.read(blocksize)
    # it starts with 5 extra channels, the first is the sample number (running from 0 to 15), the next 4 seem to be binary
    dat = dat[:,5:]
    # write the data to the output buffer
    ft_output.putData(dat.astype(np.float32))

    countfeedback += blocksize

    if debug>1:
        print "streamed", blocksize, "samples in", (time.time()-start)*1000, "ms"
    elif debug>0 and countfeedback>=fsample:
        # this gets printed approximately once per second
        print "streamed", countfeedback, "samples in", (time.time()-startfeedback)*1000, "ms"
        startfeedback = time.time();
        countfeedback = 0

# Stop acquisition
device.stop()

# Close connection
device.close()
Ejemplo n.º 3
0
    def main(self):
        parser = argparse.ArgumentParser()

        parser.add_argument("--sampling_rate",
                            help="Sampling rate used for recording data",
                            type=int,
                            default=10)
        parser.add_argument("--offline",
                            help="run in offline mode",
                            action="store_true")
        parser.add_argument("--logging",
                            dest="logging",
                            help="Log the data",
                            action="store_true",
                            default=True)
        parser.add_argument("--no_logging",
                            dest='logging',
                            help="Log the data",
                            action="store_false")

        parser.add_argument("--osc_path",
                            help="the osc path prefix",
                            default="Bitalino")
        parser.add_argument("--dest_ip",
                            help="IP address of the destination",
                            default="127.0.0.1")
        parser.add_argument("--dest_port",
                            help="the port",
                            type=int,
                            default=8000)
        parser.add_argument("--mac_address", default="20:16:12:22:45:56")
        parser.add_argument("--battery_threshold", default=30)
        parser.add_argument("--analog_channels", default="0,1,2,3,4,5")
        parser.add_argument("--batch_size",
                            help="number of samples read in batch",
                            type=int,
                            default=10)
        parser.add_argument("--EDA_channel",
                            help="the analog channel inded of EXA",
                            type=int,
                            default=3)

        args = parser.parse_args()

        the_logger = log_writer(args.logging)
        the_logger.log_msg("Starting up.")

        # The channel list parsing is bit of a hack.. I'm sure there is some more pythonesque way of doing this
        anal_channels = args.analog_channels.split(',')
        channels = list(map(int, anal_channels))

        # small samping rate for testing..
        analogChannels = args.analog_channels
        samplingRate = args.sampling_rate
        nSamples = args.batch_size

        # Connect to BITalino
        device = BITalino(args.mac_address)

        # Set battery threshold
        batty = device.battery(args.battery_threshold)

        # If we are not in offline mode we start streaming to given UDP port.
        # He we just create a UDPClient for that.
        if not args.offline:
            client = udp_client.SimpleUDPClient(args.dest_ip, args.dest_port)

        # Start recording

        device.start(samplingRate, channels)

        while self.interrupter == False:

            # Start Acquisition
            rec_data = device.read(nSamples)

            current_time = datetime.datetime.now().timestamp()
            for sample in rec_data:
                # Delete digital channels (that contains just zeroes but that cannot be ignored)
                # maybe this delete/insert thing is inefficient, but hopefully not inefficient enough
                # to cause issues...
                sample = np.delete(sample, [0, 1, 2, 3, 4])
                sample = np.insert(sample, 0, current_time)
                the_logger.log_data(sample)
                current_time += (1.0 / samplingRate)

    #  Following code just for State of Darkness!! Does not generalize and will break if EDA is
    #  recorded from somewhere other than first channel.
            EDA_data = np.mean(rec_data, axis=0)[(4 + args.EDA_channel)]
            print("the EDA_data is:  ", EDA_data)
            osc_address = args.osc_path + "/EDA"
            msg = osc_message_builder.OscMessageBuilder(address=osc_address)
            msg.add_arg(EDA_data)
            msg = msg.build()
            if not args.offline:
                client.send(msg)

        # Stop acquisition
        device.stop()

        # Close connection
        device.close()

        return
Ejemplo n.º 4
0
countfeedback = 0

print("STARTING STREAM")
while True:

    # measure the time that it takes
    start = time.time();

    # read the selected channels from the bitalino
    dat = device.read(blocksize)
    # it starts with 5 extra channels, the first is the sample number (running from 0 to 15), the next 4 seem to be binary
    dat = dat[:,5:]
    # write the data to the output buffer
    ft_output.putData(dat.astype(np.float32))

    countfeedback += blocksize

    if debug>1:
        print("streamed", blocksize, "samples in", (time.time()-start)*1000, "ms")
    elif debug>0 and countfeedback>=fsample:
        # this gets printed approximately once per second
        print("streamed", countfeedback, "samples in", (time.time()-startfeedback)*1000, "ms")
        startfeedback = time.time();
        countfeedback = 0

# Stop acquisition
device.stop()

# Close connection
device.close()
Ejemplo n.º 5
0
class BluetoothDataReceiver():
    """ Creates a data receiver via Bitalino class object,
    a configuration and a data buffer. 

    Keyword arguments:
    receiver_configuration -- a BluetoothReceiverConfiguration object
    which contains the receiver settings from a JSON file. 
    data_buffer -- A Queue through which the received data is
    transmitted forward. 
    """
    def __init__(self, receiver_configuration, data_buffer):
        self.__data_buffer = data_buffer
        self.__receiver_configuration = receiver_configuration
        self.__communication_queue = None
        self.__receiver_thread = None
        self.__bitalino_device = BITalino(receiver_configuration.macAddress)
        self.t0 = None

    def Start(self):
        """ Starts an 'infinite loop' which will receive and transmit 
        data on a separate thread until the *Stop* method is called.
        """
        # Creates a Bitalino object using the given receiver configuration
        # and try to connect to the Bitalino device.
        self.__bitalino_device.start(
            self.__receiver_configuration.samplingRate,
            self.__receiver_configuration.acqChannels)

        if self.__receiver_thread is None:
            self.__communication_queue = queue.Queue()
            self.__receiver_thread = threading.Thread(
                target=self.__receiver_loop, args=[])
            self.__receiver_thread.start()

    def __receiver_loop(self):
        """ An 'infinite loop' which is stopped by *Stop* method. \n
        This method will get the data received through the Bitalino 
        device and send further via data buffer.
        """
        self.t0 = time.time()

        while True:
            if not self.__communication_queue.empty():
                cmd = self.__communication_queue.get()
                if isinstance(cmd, str) and cmd == 'quit':
                    break

            data = self.__bitalino_device.read(
                self.__receiver_configuration.nSamples)
            self.__data_buffer.put(
                (self.__receiver_configuration.macAddress[-5:].replace(
                    ':', ''), data[:, 5]))

    def Stop(self):
        """ Stops the 'infinite loop' thread created by *Start* call.
        """
        self.__communication_queue.put('quit')
        self.__receiver_thread.join()
        self.__bitalino_device.stop()
        self.__bitalino_device.close()
        self.__communication_queue = None
        self.__receiver_thread = None
Ejemplo n.º 6
0
def main():
    
    # OS Specific Initializations
    clearCmd = "cls||clear"

    if platform.system() == 'Windows':
        clearCmd = "cls"
        print("Using Windows default console size 80x24")
        columns = 80
        rows = 24
    else:
        clearCmd = "clear"
        rows, columns = os.popen('stty size', 'r').read().split()

    print("Connecting to BITalino...")

    # Set MAC Address with argument
    defaultMACAddress = "20:16:12:21:98:56"

    if len(sys.argv) == 2:
        macAddress = sys.argv[1]
        print("Using address: " + macAddress)
    elif len(sys.argv) > 1:
        print("Please input only 1 argument, which is the address of the BITalino device.")
        print("Running without argument will use default MAC Address = " + defaultMACAddress)
        print("Exiting...")
        exit()
    else:
        macAddress = defaultMACAddress
        print("Using default MAC address: " + macAddress)

    # Setting other attributes
    batteryThreshold = 30
    acqChannels = [0,1]
    samplingRate = 100
    nSamples = 20
    digitalOutput = [1,1]

    # Connect to BITalino
    device = BITalino(macAddress)
    
    # Set battery threshold
    device.battery(batteryThreshold)

    # Read BITalino version
    os.system(clearCmd)
    print("Device Version:" + device.version())

    # Start Acquisition
    device.start(samplingRate, acqChannels)

    # Take baseline measurement
    p1Base = []
    p2Base = []

    start = time.time()
    end = time.time()

    samplingTime = 15

    print("Sampling for baseline...")

    while (end - start) < samplingTime:
        # Sampling for baseline
        baseSample = device.read(nSamples)
        p1Base.append(numpy.mean(baseSample[:,5]))
        p2Base.append(numpy.mean(baseSample[:,6]))
        end = time.time()

    p1B = numpy.mean(p1Base)
    p2B = numpy.mean(p2Base)

    print("\n")
    p1P = "Player 1 Baseline: " + str(p1B)
    print(p1P)
    p2P = "Player 2 Baseline: " + str(p2B)
    print(p2P)


    print("\n\n\n\n\n\n")
    print("Are you ready for the game? Type 'No' to exit".center(int(columns)," "))
    response = sys.stdin.readline().rstrip()
    if response == "No":
        sys.exit()

    print("\n")
    print("Starting Game...".center(int(columns), " "))

    time.sleep(5)


    # Start Game

    os.system(clearCmd)

    gameRunning = True

    player1Progress = 28

    while gameRunning:
        # While not reaching runningTime, read samples
        rawData = device.read(nSamples)
        portA1 = rawData[:,5]
        #print "Port A1: ", portA1
        valueA1 = numpy.mean(portA1 - p1B)
        #print "Value A1: ", valueA1
        #print ""
        portA2 = rawData[:,6]
        #print "Port A2: ", portA2
        valueA2 = numpy.mean(portA2 - p2B)
        #print "Value A2: ", valueA2
        #print "\n"
        if (valueA2 - valueA1) > 10:
            player1Progress-=1
        elif (valueA2 - valueA1) > 20:
            plater1Progress-=2
        elif (valueA1 - valueA2) > 10:
            player1Progress+=1
        elif (valueA1 - valueA2) > 20:
            player1Progress+=2

        print("\n\n")
        print("Player 1 Reading:".center(int(columns)," "))
        print("\n")
        print(str(valueA1).center(int(columns)," "))
        print("\n\n\n")

        print("*****************************I*****************************".center(int(columns)," "))
        progress = "P1 *" + ' '*player1Progress + 'O' + ' '*(56-player1Progress) + '* P2'
        print(progress.center(int(columns)," "))
        print("*****************************I*****************************".center(int(columns)," "))
        print("\n\n\n")

        print("Player 2 Reading:".center(int(columns)," "))
        print("\n")
        print(str(valueA2).center(int(columns)," "))

        time.sleep(0.2)

        os.system(clearCmd)

        if player1Progress == 0:
            print("\n\n\n\n\n")
            print("Player 1 has won".center(int(columns)," "))
            gameRunning = False
        elif player1Progress == 56:
            print("\n\n\n\n\n")
            print("Player 2 has won".center(int(columns)," "))
            gameRunning = False

    # Turn BITalino LED on
    device.trigger(digitalOutput)

    # Stop acquisition
    device.stop()

    # Close connection
    device.close()
Ejemplo n.º 7
0
class Bitalino(Node):
    """BITalino driver.

    This node connects to a BITalino device and streams data at a provided rate.
    It is based on the original BITalino Python library, with some performance
    improvements and careful timestamping.

    Two output streams are provided. The default output is the data read from the
    analog and digital channels. The ``o_offsets`` output provides continuous offsets
    between the local time and the estimated device time. This enables drift correction
    to be performed during post-processing, although no significant drift has been
    observed during testing.

    Attributes:
        o (Port): BITalino data, provides DataFrame.
        o_offsets (Port): Time offsets, provide DataFrame.

    Args:
        port (string): The serial port.
            e.g. ``COM3`` on Windows;  ``/dev/tty.bitalino-DevB`` on MacOS;
            ``/dev/ttyUSB0`` on GNU/Linux.
        rate (int): The device rate in Hz.
            Possible values: ``1``, ``10``, ``100``, ``1000``. Default: ``1000``.
        channels (tupple): The analog channels to read from.
            Default: ``('A1', 'A2', 'A3', 'A4', 'A5', 'A6')``.

    Example:
        .. literalinclude:: /../examples/bitalino.yaml
           :language: yaml

    Notes:

    .. attention::

        Make sure to set your graph rate to an high-enough value, otherwise the device
        internal buffer may saturate, and data may be lost. A 30Hz graph rate is
        recommended for a 1000Hz device rate.

    """
    def __init__(self,
                 port,
                 rate=1000,
                 channels=("A1", "A2", "A3", "A4", "A5", "A6")):

        # Check port
        if not port.startswith("/dev/") and not port.startswith("COM"):
            raise ValueError(f"Invalid serial port: {port}")

        # Check rate
        if rate not in (1, 10, 100, 1000):
            raise ValueError(f"Invalid rate: {rate}")

        # Check channels
        unique_channels = set(channels)
        analog_channels = ["A1", "A2", "A3", "A4", "A5", "A6"]
        channels = []
        for channel_num, channel_name in enumerate(analog_channels):
            if channel_name in unique_channels:
                channels.append(channel_num)

        # Set column names
        # Sequence number and numeric channels are always present
        self.columns = ["SEQ", "I1", "I2", "O1", "O2"]
        # Add required analog channels
        for channel in channels:
            self.columns.append(analog_channels[channel])

        # Compute the sample size in bytes
        self.channel_count = len(channels)
        if self.channel_count <= 4:
            self.sample_size = int(
                np.ceil((12.0 + 10.0 * self.channel_count) / 8.0))
        else:
            self.sample_size = int(
                np.ceil((52.0 + 6.0 * (self.channel_count - 4)) / 8.0))

        # Connect to BITalino
        try:
            self.device = BITalino(port)
        except UnicodeDecodeError:
            # This can happen after an internal buffer overflow.
            # The solution seems to power off the device and repair.
            raise WorkerInterrupt("Unstable state. Could not connect.")
        except Exception as e:
            raise WorkerInterrupt(e)

        # Set battery threshold
        # The red led will light up at 5-10%
        self.device.battery(30)

        # Read BITalino version
        self.logger.info(self.device.version())

        # Read state and show battery level
        # http://forum.bitalino.com/viewtopic.php?t=448
        state = self.device.state()
        battery = round(
            1 + (state["battery"] - 511) * ((99 - 1) / (645 - 511)), 2)
        self.logger.info("Battery: %.2f%%", battery)

        # Start Acquisition
        self.device.start(rate, channels)

        # Initialize counters for timestamp indices and continuity checks
        self.last_sample_counter = 15
        self.time_device = np.datetime64(int(time.time() * 1e6), "us")
        self.time_local = self.time_device
        self.time_delta = np.timedelta64(int(1000 / rate), "ms")

        # Set meta
        self.meta = {"rate": rate}

    def update(self):
        # Send BITalino data
        data, timestamps = self._read_all()
        self.o.set(data, timestamps, self.columns, self.meta)
        # Send time offsets
        if len(timestamps) > 0:
            offset = (self.time_local - self.time_device).astype(int)
            self.o_offsets.set(
                [[self.time_device, offset]],
                [self.time_local],
                ["time_device", "time_offset"],
            )

    def _read_all(self):
        """Read all available data"""

        # Make sure the device is in aquisition mode
        if not self.device.started:
            raise Exception(ExceptionCode.DEVICE_NOT_IN_ACQUISITION)

        # We only support serial connections
        if not self.device.serial:
            raise Exception("Device must be opened in serial mode.")

        # Check buffer size and limits
        buffer_size = self.device.socket.in_waiting
        if buffer_size == 1020:
            # The device buffer can hold up to 1020 bytes
            self.logger.warn(
                "OS serial buffer saturated. Increase graph rate or decrease device rate."
            )

        # Compute the maximum number of samples we can get
        sample_count = int(buffer_size / self.sample_size)

        # Infer timestamps from sample count and rate
        # Will fail dramatically if too much packets are lost
        # Tests show that there is no significant drift during a 2-hour session
        start = self.time_device
        stop = start + self.time_delta * sample_count
        self.time_device = stop
        timestamps = np.arange(start, stop, self.time_delta)
        self.time_local = np.datetime64(int(time.time() * 1e6), "us")

        # Infer timestamps from local time and rate
        # /!\ Not monotonic
        # stop = np.datetime64(int(time.time() * 1e6), 'us')
        # start = stop - (sample_count * self.time_delta)
        # timestamps = np.arange(start, stop, self.time_delta)

        # Read raw samples from device
        raw = self.device.socket.read(sample_count * self.sample_size)

        # Initialize the output matrix
        data = np.full((sample_count, 5 + self.channel_count), np.nan)

        # Parse the raw data
        # http://bitalino.com/datasheets/REVOLUTION_MCU_Block_Datasheet.pdf
        for sample_number in range(sample_count):

            # Extract sample
            start = sample_number * self.sample_size
            stop = start + self.sample_size
            sample = list(
                struct.unpack(self.sample_size * "B ", raw[start:stop]))

            # Is the sample corrupted?
            crc = sample[-1] & 0x0F
            sample[-1] = sample[-1] & 0xF0
            x = 0
            for i in range(self.sample_size):
                for bit in range(7, -1, -1):
                    x = x << 1
                    if x & 0x10:
                        x = x ^ 0x03
                    x = x ^ ((sample[i] >> bit) & 0x01)
            if crc != x & 0x0F:
                self.logger.warn("Checksum failed.")
                continue

            # Parse sample
            data[sample_number, 0] = sample[-1] >> 4
            data[sample_number, 1] = sample[-2] >> 7 & 0x01
            data[sample_number, 2] = sample[-2] >> 6 & 0x01
            data[sample_number, 3] = sample[-2] >> 5 & 0x01
            data[sample_number, 4] = sample[-2] >> 4 & 0x01
            if self.channel_count > 0:
                data[sample_number,
                     5] = ((sample[-2] & 0x0F) << 6) | (sample[-3] >> 2)
            if self.channel_count > 1:
                data[sample_number,
                     6] = ((sample[-3] & 0x03) << 8) | sample[-4]
            if self.channel_count > 2:
                data[sample_number, 7] = (sample[-5] << 2) | (sample[-6] >> 6)
            if self.channel_count > 3:
                data[sample_number,
                     8] = ((sample[-6] & 0x3F) << 4) | (sample[-7] >> 4)
            if self.channel_count > 4:
                data[sample_number,
                     9] = ((sample[-7] & 0x0F) << 2) | (sample[-8] >> 6)
            if self.channel_count > 5:
                data[sample_number, 10] = sample[-8] & 0x3F

            # Did we miss any sample?
            # Check for discontinuity in the internal sample counter, encoded to 4 bits.
            sample_counter = data[sample_number, 0]
            if sample_counter == self.last_sample_counter + 1:
                pass
            elif sample_counter == 0 and self.last_sample_counter == 15:
                pass
            else:
                self.logger.warn("Missed sample.")
            self.last_sample_counter = sample_counter

        return data, timestamps

    def terminate(self):
        self.device.stop()
        self.device.close()
Ejemplo n.º 8
0
class BITalinoProcess(Process):
    """
    BITalino acquisition process.
    """
    def __init__(self,
                 outQueue,
                 goFlag,
                 acqFlag,
                 mac=None,
                 channels=[0],
                 step=100,
                 SamplingRate=1000,
                 timeout=5,
                 bitCls=None):
        # run parent __init__
        super(BITalinoProcess, self).__init__()

        # synchronization inputs
        self.queue = outQueue
        self.go = goFlag
        self.acq = acqFlag

        # BITalino settings
        self.mac = mac
        self.channels = channels
        self.step = step
        self.SamplingRate = int(SamplingRate)
        if bitCls is None:
            self.device = BITalino()
        else:
            self.device = bitCls()

        # trigger stuff
        c1, c2 = Pipe()
        self._outerPipe = c1
        self._innerPipe = c2
        self._trigout = 2 * self.step / float(self.SamplingRate)

        # timeout
        self.timeout = timeout

    @classmethod
    def instaStart(cls, *args, **kwargs):
        # do some class method magic here to instantiate and start the process

        outQueue = Queue()
        goFlag = Event()
        goFlag.set()
        acqFlag = Event()

        p = cls(outQueue, goFlag, acqFlag, *args, **kwargs)
        p.start()

        return p, outQueue, goFlag, acqFlag

    def _checkTrigger(self):
        # check if there is a trigger to act on

        if self._innerPipe.poll():
            data = self._innerPipe.recv()

            try:
                mask = data['Mask']
            except KeyError:
                # report failure
                self._innerPipe.send({'Ack': False})
            else:
                # trigger
                self.device.trigger(mask)

                # report success
                self._innerPipe.send({'Ack': True})

    def trigger(self, data=[0, 0, 0, 0]):
        # act on digital outputs

        if not self.acq.is_set():
            return False

        # send mask
        self._outerPipe.send({'Mask': data})

        # wait for ack

        if self._outerPipe.poll(self._trigout):
            out = self._outerPipe.recv()
            return out['Ack']
        else:
            return False

    def connect(self):
        # connect to BITalino

        if self.device.open(self.mac, self.SamplingRate):
            time.sleep(1.5)
            print "successful"
            return True
        else:
            print "failed"
            return False

    def setup(self):
        # setup bitalino

        print "connecting to %s: " % self.mac

        while self.go.is_set():
            if self.connect():
                return True
            time.sleep(1.5)

        return False

    def on_start(self):
        # run immediately after acquisition starts

        pass

    def exit(self):
        # exit process

        self.acq.clear()
        self.go.clear()

    def processData(self, data):
        # process received data

        # send data
        self.queue.put(data)

    def on_stop(self):
        # run immediately before acquisition stops

        pass

    def run(self):
        # main loop

        # connect to device, proceed if successful
        if self.setup():
            while self.go.is_set():
                # wait for acquisition flag
                print "Waiting"
                self.acq.wait(timeout=self.timeout)

                if self.acq.is_set():
                    # start acquisition
                    self.device.start(self.channels)
                    # time.sleep(1)
                    print "acquiring"

                    self.on_start()

                    while self.acq.is_set():
                        # read data
                        data = self.device.read(self.step)

                        # process data
                        self.processData(data)

                        # check trigger
                        self._checkTrigger()

                    # clean up
                    self.on_stop()
                    self.queue.put('')

                    # stop acquisition
                    self.device.stop()
                    # print "blocked"
                    print "acquisition stopped"

            # disconnect device
            self.device.close()
            print "disconnected"