Ejemplo n.º 1
0
def distributed_strategy(args):
    kappa_gen = NISGenerator( # only used to generate pixelated kappa fields
        kappa_fov=args.kappa_fov,
        src_fov=args.source_fov,
        pixels=args.kappa_pixels,
        z_source=args.z_source,
        z_lens=args.z_lens
    )

    min_theta_e = 0.1 * args.image_fov if args.min_theta_e is None else args.min_theta_e
    max_theta_e = 0.45 * args.image_fov if args.max_theta_e is None else args.max_theta_e

    cosmos_files = glob.glob(os.path.join(args.cosmos_dir, "*.tfrecords"))
    cosmos = tf.data.TFRecordDataset(cosmos_files, compression_type=args.compression_type)
    cosmos = cosmos.map(decode_image).map(preprocess_image)
    if args.shuffle_cosmos:
        cosmos = cosmos.shuffle(buffer_size=args.buffer_size, reshuffle_each_iteration=True)
    cosmos = cosmos.batch(args.batch_size)

    window = tukey(args.src_pixels, alpha=args.tukey_alpha)
    window = np.outer(window, window)
    phys = PhysicalModel(
        image_fov=args.image_fov,
        kappa_fov=args.kappa_fov,
        src_fov=args.source_fov,
        pixels=args.lens_pixels,
        kappa_pixels=args.kappa_pixels,
        src_pixels=args.src_pixels,
        method="conv2d"
    )
    noise_a = (args.noise_rms_min - args.noise_rms_mean) / args.noise_rms_std
    noise_b = (args.noise_rms_max - args.noise_rms_mean) / args.noise_rms_std
    psf_a = (args.psf_fwhm_min - args.psf_fwhm_mean) / args.psf_fwhm_std
    psf_b = (args.psf_fwhm_max - args.psf_fwhm_mean) / args.psf_fwhm_std

    options = tf.io.TFRecordOptions(compression_type=args.compression_type)
    with tf.io.TFRecordWriter(os.path.join(args.output_dir, f"data_{THIS_WORKER}.tfrecords"), options) as writer:
        print(f"Started worker {THIS_WORKER} at {datetime.now().strftime('%y-%m-%d_%H-%M-%S')}")
        for i in range((THIS_WORKER - 1) * args.batch_size, args.len_dataset, N_WORKERS * args.batch_size):
            for galaxies in cosmos:
                break
            galaxies = window[np.newaxis, ..., np.newaxis] * galaxies

            noise_rms = truncnorm.rvs(noise_a, noise_b, loc=args.noise_rms_mean, scale=args.noise_rms_std, size=args.batch_size)
            fwhm = truncnorm.rvs(psf_a, psf_b, loc=args.psf_fwhm_mean, scale=args.psf_fwhm_std, size=args.batch_size)
            psf = phys.psf_models(fwhm, cutout_size=args.psf_cutout_size)

            batch_size = galaxies.shape[0]
            _r = tf.random.uniform(shape=[batch_size, 1, 1], minval=0, maxval=args.max_shift)
            _theta = tf.random.uniform(shape=[batch_size, 1, 1], minval=-np.pi, maxval=np.pi)
            x0 = _r * tf.math.cos(_theta)
            y0 = _r * tf.math.sin(_theta)
            ellipticity = tf.random.uniform(shape=[batch_size, 1, 1], minval=0., maxval=args.max_ellipticity)
            phi = tf.random.uniform(shape=[batch_size, 1, 1], minval=-np.pi, maxval=np.pi)
            einstein_radius = tf.random.uniform(shape=[batch_size, 1, 1], minval=min_theta_e, maxval=max_theta_e)

            kappa = kappa_gen.kappa_field(x0, y0, ellipticity, phi, einstein_radius)

            lensed_images = phys.noisy_forward(galaxies, kappa, noise_rms=noise_rms, psf=psf)

            records = encode_examples(
                kappa=kappa,
                galaxies=galaxies,
                lensed_images=lensed_images,
                z_source=args.z_source,
                z_lens=args.z_lens,
                image_fov=phys.image_fov,
                kappa_fov=phys.kappa_fov,
                source_fov=args.source_fov,
                noise_rms=noise_rms,
                psf=psf,
                fwhm=fwhm
            )
            for record in records:
                writer.write(record)
    print(f"Finished work at {datetime.now().strftime('%y-%m-%d_%H-%M-%S')}")
Ejemplo n.º 2
0
def test_noisy_forward_conv2():
    phys = PhysicalModel(pixels=64, src_pixels=64)
    source = tf.random.normal([2, 64, 64, 1])
    kappa = tf.math.exp(tf.random.uniform([2, 64, 64, 1]))
    noise_rms = 0.1
    phys.noisy_forward(source, kappa, noise_rms)
Ejemplo n.º 3
0
def distributed_strategy(args):
    psf_pixels = 20
    pixels = 128
    model = os.path.join(os.getenv('CENSAI_PATH'), "models", args.model)

    ps_observation = PowerSpectrum(bins=args.observation_coherence_bins,
                                   pixels=pixels)
    ps_source = PowerSpectrum(bins=args.source_coherence_bins, pixels=pixels)
    ps_kappa = PowerSpectrum(bins=args.kappa_coherence_bins, pixels=pixels)

    phys = PhysicalModel(
        pixels=pixels,
        kappa_pixels=pixels,
        src_pixels=pixels,
        image_fov=7.68,
        kappa_fov=7.68,
        src_fov=3.,
        method="fft",
    )

    with open(os.path.join(model, "unet_hparams.json")) as f:
        unet_params = json.load(f)
    unet_params["kernel_l2_amp"] = args.l2_amp
    unet = Model(**unet_params)
    ckpt = tf.train.Checkpoint(net=unet)
    checkpoint_manager = tf.train.CheckpointManager(ckpt, model, 1)
    checkpoint_manager.checkpoint.restore(
        checkpoint_manager.latest_checkpoint).expect_partial()
    with open(os.path.join(model, "rim_hparams.json")) as f:
        rim_params = json.load(f)
    rim_params["source_link"] = "relu"
    rim = RIM(phys, unet, **rim_params)

    kvae_path = os.path.join(os.getenv('CENSAI_PATH'), "models",
                             args.kappa_vae)
    with open(os.path.join(kvae_path, "model_hparams.json"), "r") as f:
        kappa_vae_hparams = json.load(f)
    kappa_vae = VAE(**kappa_vae_hparams)
    ckpt1 = tf.train.Checkpoint(step=tf.Variable(1), net=kappa_vae)
    checkpoint_manager1 = tf.train.CheckpointManager(ckpt1, kvae_path, 1)
    checkpoint_manager1.checkpoint.restore(
        checkpoint_manager1.latest_checkpoint).expect_partial()

    svae_path = os.path.join(os.getenv('CENSAI_PATH'), "models",
                             args.source_vae)
    with open(os.path.join(svae_path, "model_hparams.json"), "r") as f:
        source_vae_hparams = json.load(f)
    source_vae = VAE(**source_vae_hparams)
    ckpt2 = tf.train.Checkpoint(step=tf.Variable(1), net=source_vae)
    checkpoint_manager2 = tf.train.CheckpointManager(ckpt2, svae_path, 1)
    checkpoint_manager2.checkpoint.restore(
        checkpoint_manager2.latest_checkpoint).expect_partial()

    model_name = os.path.split(model)[-1]
    wk = tf.keras.layers.Lambda(lambda k: tf.sqrt(k) / tf.reduce_sum(
        tf.sqrt(k), axis=(1, 2, 3), keepdims=True))
    with h5py.File(
            os.path.join(
                os.getenv("CENSAI_PATH"), "results", args.experiment_name +
                "_" + model_name + f"_{THIS_WORKER:02d}.h5"), 'w') as hf:
        data_len = args.size // N_WORKERS
        hf.create_dataset(name="observation",
                          shape=[data_len, phys.pixels, phys.pixels, 1],
                          dtype=np.float32)
        hf.create_dataset(name="psf",
                          shape=[data_len, psf_pixels, psf_pixels, 1],
                          dtype=np.float32)
        hf.create_dataset(name="psf_fwhm", shape=[data_len], dtype=np.float32)
        hf.create_dataset(name="noise_rms", shape=[data_len], dtype=np.float32)
        hf.create_dataset(
            name="source",
            shape=[data_len, phys.src_pixels, phys.src_pixels, 1],
            dtype=np.float32)
        hf.create_dataset(
            name="kappa",
            shape=[data_len, phys.kappa_pixels, phys.kappa_pixels, 1],
            dtype=np.float32)
        hf.create_dataset(name="observation_pred",
                          shape=[data_len, phys.pixels, phys.pixels, 1],
                          dtype=np.float32)
        hf.create_dataset(name="observation_pred_reoptimized",
                          shape=[data_len, phys.pixels, phys.pixels, 1],
                          dtype=np.float32)
        hf.create_dataset(
            name="source_pred",
            shape=[data_len, rim.steps, phys.src_pixels, phys.src_pixels, 1],
            dtype=np.float32)
        hf.create_dataset(
            name="source_pred_reoptimized",
            shape=[data_len, phys.src_pixels, phys.src_pixels, 1],
            dtype=np.float32)
        hf.create_dataset(name="kappa_pred",
                          shape=[
                              data_len, rim.steps, phys.kappa_pixels,
                              phys.kappa_pixels, 1
                          ],
                          dtype=np.float32)
        hf.create_dataset(
            name="kappa_pred_reoptimized",
            shape=[data_len, phys.kappa_pixels, phys.kappa_pixels, 1],
            dtype=np.float32)
        hf.create_dataset(name="chi_squared",
                          shape=[data_len, rim.steps],
                          dtype=np.float32)
        hf.create_dataset(name="chi_squared_reoptimized",
                          shape=[data_len, rim.steps],
                          dtype=np.float32)
        hf.create_dataset(name="chi_squared_reoptimized_series",
                          shape=[data_len, rim.steps, args.re_optimize_steps],
                          dtype=np.float32)
        hf.create_dataset(name="sampled_chi_squared_reoptimized_series",
                          shape=[data_len, args.re_optimize_steps],
                          dtype=np.float32)
        hf.create_dataset(name="source_optim_mse",
                          shape=[data_len],
                          dtype=np.float32)
        hf.create_dataset(name="source_optim_mse_series",
                          shape=[data_len, args.re_optimize_steps],
                          dtype=np.float32)
        hf.create_dataset(name="sampled_source_optim_mse_series",
                          shape=[data_len, args.re_optimize_steps],
                          dtype=np.float32)
        hf.create_dataset(name="kappa_optim_mse",
                          shape=[data_len],
                          dtype=np.float32)
        hf.create_dataset(name="kappa_optim_mse_series",
                          shape=[data_len, args.re_optimize_steps],
                          dtype=np.float32)
        hf.create_dataset(name="sampled_kappa_optim_mse_series",
                          shape=[data_len, args.re_optimize_steps],
                          dtype=np.float32)
        hf.create_dataset(name="latent_kappa_gt_distance_init",
                          shape=[data_len, kappa_vae.latent_size],
                          dtype=np.float32)
        hf.create_dataset(name="latent_source_gt_distance_init",
                          shape=[data_len, source_vae.latent_size],
                          dtype=np.float32)
        hf.create_dataset(name="latent_kappa_gt_distance_end",
                          shape=[data_len, kappa_vae.latent_size],
                          dtype=np.float32)
        hf.create_dataset(name="latent_source_gt_distance_end",
                          shape=[data_len, source_vae.latent_size],
                          dtype=np.float32)
        hf.create_dataset(name="source_coherence_spectrum",
                          shape=[data_len, args.source_coherence_bins],
                          dtype=np.float32)
        hf.create_dataset(name="source_coherence_spectrum_reoptimized",
                          shape=[data_len, args.source_coherence_bins],
                          dtype=np.float32)
        hf.create_dataset(name="observation_coherence_spectrum",
                          shape=[data_len, args.observation_coherence_bins],
                          dtype=np.float32)
        hf.create_dataset(name="observation_coherence_spectrum_reoptimized",
                          shape=[data_len, args.observation_coherence_bins],
                          dtype=np.float32)
        hf.create_dataset(name="kappa_coherence_spectrum",
                          shape=[data_len, args.kappa_coherence_bins],
                          dtype=np.float32)
        hf.create_dataset(name="kappa_coherence_spectrum_reoptimized",
                          shape=[data_len, args.kappa_coherence_bins],
                          dtype=np.float32)
        hf.create_dataset(name="observation_frequencies",
                          shape=[args.observation_coherence_bins],
                          dtype=np.float32)
        hf.create_dataset(name="source_frequencies",
                          shape=[args.source_coherence_bins],
                          dtype=np.float32)
        hf.create_dataset(name="kappa_frequencies",
                          shape=[args.kappa_coherence_bins],
                          dtype=np.float32)
        hf.create_dataset(name="kappa_fov", shape=[1], dtype=np.float32)
        hf.create_dataset(name="source_fov", shape=[1], dtype=np.float32)
        hf.create_dataset(name="observation_fov", shape=[1], dtype=np.float32)
        for i in range(data_len):
            checkpoint_manager.checkpoint.restore(
                checkpoint_manager.latest_checkpoint).expect_partial(
                )  # reset model weights

            # Produce an observation
            kappa = 10**kappa_vae.sample(1)
            source = tf.nn.relu(source_vae.sample(1))
            source /= tf.reduce_max(source, axis=(1, 2, 3), keepdims=True)
            noise_rms = 10**tf.random.uniform(shape=[1],
                                              minval=-2.5,
                                              maxval=-1)
            fwhm = tf.random.uniform(shape=[1], minval=0.06, maxval=0.3)
            psf = phys.psf_models(fwhm, cutout_size=psf_pixels)
            observation = phys.noisy_forward(source, kappa, noise_rms, psf)

            # RIM predictions for kappa and source
            source_pred, kappa_pred, chi_squared = rim.predict(
                observation, noise_rms, psf)
            observation_pred = phys.forward(source_pred[-1], kappa_pred[-1],
                                            psf)
            source_o = source_pred[-1]
            kappa_o = kappa_pred[-1]

            # Latent code of model predictions
            z_source, _ = source_vae.encoder(source_o)
            z_kappa, _ = kappa_vae.encoder(log_10(kappa_o))

            # Ground truth latent code for oracle metrics
            z_source_gt, _ = source_vae.encoder(source)
            z_kappa_gt, _ = kappa_vae.encoder(log_10(kappa))

            # Re-optimize weights of the model
            STEPS = args.re_optimize_steps
            learning_rate_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
                initial_learning_rate=args.learning_rate,
                decay_rate=args.decay_rate,
                decay_steps=args.decay_steps,
                staircase=args.staircase)
            optim = tf.keras.optimizers.RMSprop(
                learning_rate=learning_rate_schedule)

            chi_squared_series = tf.TensorArray(DTYPE, size=STEPS)
            source_mse = tf.TensorArray(DTYPE, size=STEPS)
            kappa_mse = tf.TensorArray(DTYPE, size=STEPS)
            sampled_chi_squared_series = tf.TensorArray(DTYPE, size=STEPS)
            sampled_source_mse = tf.TensorArray(DTYPE, size=STEPS)
            sampled_kappa_mse = tf.TensorArray(DTYPE, size=STEPS)

            best = chi_squared
            source_best = source_pred[-1]
            kappa_best = kappa_pred[-1]
            source_mse_best = tf.reduce_mean((source_best - source)**2)
            kappa_mse_best = tf.reduce_mean((kappa_best - log_10(kappa))**2)

            # ===================== Optimization ==============================
            for current_step in tqdm(range(STEPS)):
                # ===================== VAE SAMPLING ==============================

                # L1 distance with ground truth in latent space -- this is changed by an user defined value when using real data
                # z_source_std = tf.abs(z_source - z_source_gt)
                # z_kappa_std = tf.abs(z_kappa - z_kappa_gt)
                z_source_std = args.source_vae_ball_size
                z_kappa_std = args.kappa_vae_ball_size

                # Sample latent code, then decode and forward
                z_s = tf.random.normal(
                    shape=[args.sample_size, source_vae.latent_size],
                    mean=z_source,
                    stddev=z_source_std)
                z_k = tf.random.normal(
                    shape=[args.sample_size, kappa_vae.latent_size],
                    mean=z_kappa,
                    stddev=z_kappa_std)
                sampled_source = tf.nn.relu(source_vae.decode(z_s))
                sampled_source /= tf.reduce_max(sampled_source,
                                                axis=(1, 2, 3),
                                                keepdims=True)
                sampled_kappa = kappa_vae.decode(z_k)  # output in log_10 space
                sampled_observation = phys.noisy_forward(
                    sampled_source, 10**sampled_kappa, noise_rms,
                    tf.tile(psf, [args.sample_size, 1, 1, 1]))
                with tf.GradientTape() as tape:
                    tape.watch(unet.trainable_variables)
                    s, k, chi_sq = rim.call(
                        sampled_observation,
                        noise_rms,
                        tf.tile(psf, [args.sample_size, 1, 1, 1]),
                        outer_tape=tape)
                    _kappa_mse = tf.reduce_sum(wk(10**sampled_kappa) *
                                               (k - sampled_kappa)**2,
                                               axis=(2, 3, 4))
                    cost = tf.reduce_mean(_kappa_mse)
                    cost += tf.reduce_mean((s - sampled_source)**2)
                    cost += tf.reduce_sum(rim.unet.losses)  # weight decay

                grads = tape.gradient(cost, unet.trainable_variables)
                optim.apply_gradients(zip(grads, unet.trainable_variables))

                # Record performance on sampled dataset
                sampled_chi_squared_series = sampled_chi_squared_series.write(
                    index=current_step,
                    value=tf.squeeze(tf.reduce_mean(chi_sq[-1])))
                sampled_source_mse = sampled_source_mse.write(
                    index=current_step,
                    value=tf.reduce_mean((s[-1] - sampled_source)**2))
                sampled_kappa_mse = sampled_kappa_mse.write(
                    index=current_step,
                    value=tf.reduce_mean((k[-1] - sampled_kappa)**2))
                # Record model prediction on data
                s, k, chi_sq = rim.call(observation, noise_rms, psf)
                chi_squared_series = chi_squared_series.write(
                    index=current_step, value=tf.squeeze(chi_sq))
                source_o = s[-1]
                kappa_o = k[-1]
                # oracle metrics, remove when using real data
                source_mse = source_mse.write(index=current_step,
                                              value=tf.reduce_mean(
                                                  (source_o - source)**2))
                kappa_mse = kappa_mse.write(index=current_step,
                                            value=tf.reduce_mean(
                                                (kappa_o - log_10(kappa))**2))

                if abs(chi_sq[-1, 0] - 1) < abs(best[-1, 0] - 1):
                    source_best = tf.nn.relu(source_o)
                    kappa_best = 10**kappa_o
                    best = chi_sq
                    source_mse_best = tf.reduce_mean((source_best - source)**2)
                    kappa_mse_best = tf.reduce_mean(
                        (kappa_best - log_10(kappa))**2)

            source_o = source_best
            kappa_o = kappa_best
            y_pred = phys.forward(source_o, kappa_o, psf)

            chi_sq_series = tf.transpose(chi_squared_series.stack())
            source_mse = source_mse.stack()
            kappa_mse = kappa_mse.stack()
            sampled_chi_squared_series = sampled_chi_squared_series.stack()
            sampled_source_mse = sampled_source_mse.stack()
            sampled_kappa_mse = sampled_kappa_mse.stack()

            # Latent code of optimized model predictions
            z_source_opt, _ = source_vae.encoder(tf.nn.relu(source_o))
            z_kappa_opt, _ = kappa_vae.encoder(log_10(kappa_o))

            # Compute Power spectrum of converged predictions
            _ps_observation = ps_observation.cross_correlation_coefficient(
                observation[..., 0], observation_pred[..., 0])
            _ps_observation2 = ps_observation.cross_correlation_coefficient(
                observation[..., 0], y_pred[..., 0])
            _ps_kappa = ps_kappa.cross_correlation_coefficient(
                log_10(kappa)[..., 0],
                log_10(kappa_pred[-1])[..., 0])
            _ps_kappa2 = ps_kappa.cross_correlation_coefficient(
                log_10(kappa)[..., 0], log_10(kappa_o[..., 0]))
            _ps_source = ps_source.cross_correlation_coefficient(
                source[..., 0], source_pred[-1][..., 0])
            _ps_source2 = ps_source.cross_correlation_coefficient(
                source[..., 0], source_o[..., 0])

            # save results
            hf["observation"][i] = observation.numpy().astype(np.float32)
            hf["psf"][i] = psf.numpy().astype(np.float32)
            hf["psf_fwhm"][i] = fwhm.numpy().astype(np.float32)
            hf["noise_rms"][i] = noise_rms.numpy().astype(np.float32)
            hf["source"][i] = source.numpy().astype(np.float32)
            hf["kappa"][i] = kappa.numpy().astype(np.float32)
            hf["observation_pred"][i] = observation_pred.numpy().astype(
                np.float32)
            hf["observation_pred_reoptimized"][i] = y_pred.numpy().astype(
                np.float32)
            hf["source_pred"][i] = tf.transpose(
                source_pred, perm=(1, 0, 2, 3, 4)).numpy().astype(np.float32)
            hf["source_pred_reoptimized"][i] = source_o.numpy().astype(
                np.float32)
            hf["kappa_pred"][i] = tf.transpose(
                kappa_pred, perm=(1, 0, 2, 3, 4)).numpy().astype(np.float32)
            hf["kappa_pred_reoptimized"][i] = kappa_o.numpy().astype(
                np.float32)
            hf["chi_squared"][i] = tf.squeeze(chi_squared).numpy().astype(
                np.float32)
            hf["chi_squared_reoptimized"][i] = tf.squeeze(best).numpy().astype(
                np.float32)
            hf["chi_squared_reoptimized_series"][i] = chi_sq_series.numpy(
            ).astype(np.float32)
            hf["sampled_chi_squared_reoptimized_series"][
                i] = 2 * sampled_chi_squared_series.numpy().astype(np.float32)
            hf["source_optim_mse"][i] = source_mse_best.numpy().astype(
                np.float32)
            hf["source_optim_mse_series"][i] = source_mse.numpy().astype(
                np.float32)
            hf["sampled_source_optim_mse_series"][
                i] = sampled_source_mse.numpy().astype(np.float32)
            hf["kappa_optim_mse"][i] = kappa_mse_best.numpy().astype(
                np.float32)
            hf["kappa_optim_mse_series"][i] = kappa_mse.numpy().astype(
                np.float32)
            hf["sampled_kappa_optim_mse_series"][i] = sampled_kappa_mse.numpy(
            ).astype(np.float32)
            hf["latent_source_gt_distance_init"][i] = tf.abs(
                z_source - z_source_gt).numpy().squeeze().astype(np.float32)
            hf["latent_kappa_gt_distance_init"][i] = tf.abs(
                z_kappa - z_kappa_gt).numpy().squeeze().astype(np.float32)
            hf["latent_source_gt_distance_end"][i] = tf.abs(
                z_source_opt - z_source_gt).numpy().squeeze().astype(
                    np.float32)
            hf["latent_kappa_gt_distance_end"][i] = tf.abs(
                z_kappa_opt - z_kappa_gt).numpy().squeeze().astype(np.float32)
            hf["observation_coherence_spectrum"][i] = _ps_observation
            hf["observation_coherence_spectrum_reoptimized"][
                i] = _ps_observation2
            hf["source_coherence_spectrum"][i] = _ps_source
            hf["source_coherence_spectrum_reoptimized"][i] = _ps_source2
            hf["kappa_coherence_spectrum"][i] = _ps_kappa
            hf["kappa_coherence_spectrum_reoptimized"][i] = _ps_kappa2

            if i == 0:
                _, f = np.histogram(np.fft.fftfreq(phys.pixels)[:phys.pixels //
                                                                2],
                                    bins=ps_observation.bins)
                f = (f[:-1] + f[1:]) / 2
                hf["observation_frequencies"][:] = f
                _, f = np.histogram(np.fft.fftfreq(
                    phys.src_pixels)[:phys.src_pixels // 2],
                                    bins=ps_source.bins)
                f = (f[:-1] + f[1:]) / 2
                hf["source_frequencies"][:] = f
                _, f = np.histogram(np.fft.fftfreq(
                    phys.kappa_pixels)[:phys.kappa_pixels // 2],
                                    bins=ps_kappa.bins)
                f = (f[:-1] + f[1:]) / 2
                hf["kappa_frequencies"][:] = f
                hf["kappa_fov"][0] = phys.kappa_fov
                hf["source_fov"][0] = phys.src_fov
Ejemplo n.º 4
0
def distributed_strategy(args):
    tf.random.set_seed(args.seed)
    np.random.seed(args.seed)

    model = os.path.join(os.getenv('CENSAI_PATH'), "models", args.model)
    files = glob.glob(
        os.path.join(os.getenv('CENSAI_PATH'), "data", args.train_dataset,
                     "*.tfrecords"))
    files = tf.data.Dataset.from_tensor_slices(files)
    train_dataset = files.interleave(lambda x: tf.data.TFRecordDataset(
        x, compression_type=args.compression_type).shuffle(len(files)),
                                     block_length=1,
                                     num_parallel_calls=tf.data.AUTOTUNE)
    # Read off global parameters from first example in dataset
    for physical_params in train_dataset.map(decode_physical_model_info):
        break
    train_dataset = train_dataset.map(decode_results).shuffle(
        buffer_size=args.buffer_size)

    files = glob.glob(
        os.path.join(os.getenv('CENSAI_PATH'), "data", args.val_dataset,
                     "*.tfrecords"))
    files = tf.data.Dataset.from_tensor_slices(files)
    val_dataset = files.interleave(lambda x: tf.data.TFRecordDataset(
        x, compression_type=args.compression_type).shuffle(len(files)),
                                   block_length=1,
                                   num_parallel_calls=tf.data.AUTOTUNE)
    val_dataset = val_dataset.map(decode_results).shuffle(
        buffer_size=args.buffer_size)

    files = glob.glob(
        os.path.join(os.getenv('CENSAI_PATH'), "data", args.test_dataset,
                     "*.tfrecords"))
    files = tf.data.Dataset.from_tensor_slices(files)
    test_dataset = files.interleave(lambda x: tf.data.TFRecordDataset(
        x, compression_type=args.compression_type).shuffle(len(files)),
                                    block_length=1,
                                    num_parallel_calls=tf.data.AUTOTUNE)
    test_dataset = test_dataset.map(decode_results).shuffle(
        buffer_size=args.buffer_size)

    ps_lens = PowerSpectrum(bins=args.lens_coherence_bins,
                            pixels=physical_params["pixels"].numpy())
    ps_source = PowerSpectrum(bins=args.source_coherence_bins,
                              pixels=physical_params["src pixels"].numpy())
    ps_kappa = PowerSpectrum(bins=args.kappa_coherence_bins,
                             pixels=physical_params["kappa pixels"].numpy())

    phys = PhysicalModel(
        pixels=physical_params["pixels"].numpy(),
        kappa_pixels=physical_params["kappa pixels"].numpy(),
        src_pixels=physical_params["src pixels"].numpy(),
        image_fov=physical_params["image fov"].numpy(),
        kappa_fov=physical_params["kappa fov"].numpy(),
        src_fov=physical_params["source fov"].numpy(),
        method="fft",
    )

    phys_sie = AnalyticalPhysicalModel(
        pixels=physical_params["pixels"].numpy(),
        image_fov=physical_params["image fov"].numpy(),
        src_fov=physical_params["source fov"].numpy())

    with open(os.path.join(model, "unet_hparams.json")) as f:
        unet_params = json.load(f)
    unet_params["kernel_l2_amp"] = args.l2_amp
    unet = Model(**unet_params)
    ckpt = tf.train.Checkpoint(net=unet)
    checkpoint_manager = tf.train.CheckpointManager(ckpt, model, 1)
    checkpoint_manager.checkpoint.restore(
        checkpoint_manager.latest_checkpoint).expect_partial()
    with open(os.path.join(model, "rim_hparams.json")) as f:
        rim_params = json.load(f)
    rim = RIM(phys, unet, **rim_params)

    dataset_names = [args.train_dataset, args.val_dataset, args.test_dataset]
    dataset_shapes = [args.train_size, args.val_size, args.test_size]
    model_name = os.path.split(model)[-1]

    # from censai.utils import nulltape
    # def call_with_mask(self, lensed_image, noise_rms, psf, mask, outer_tape=nulltape):
    #     """
    #     Used in training. Return linked kappa and source maps.
    #     """
    #     batch_size = lensed_image.shape[0]
    #     source, kappa, source_grad, kappa_grad, states = self.initial_states(batch_size)  # initiate all tensors to 0
    #     source, kappa, states = self.time_step(lensed_image, source, kappa, source_grad, kappa_grad,
    #                                            states)  # Use lens to make an initial guess with Unet
    #     source_series = tf.TensorArray(DTYPE, size=self.steps)
    #     kappa_series = tf.TensorArray(DTYPE, size=self.steps)
    #     chi_squared_series = tf.TensorArray(DTYPE, size=self.steps)
    #     # record initial guess
    #     source_series = source_series.write(index=0, value=source)
    #     kappa_series = kappa_series.write(index=0, value=kappa)
    #     # Main optimization loop
    #     for current_step in tf.range(self.steps - 1):
    #         with outer_tape.stop_recording():
    #             with tf.GradientTape() as g:
    #                 g.watch(source)
    #                 g.watch(kappa)
    #                 y_pred = self.physical_model.forward(self.source_link(source), self.kappa_link(kappa), psf)
    #                 flux_term = tf.square(
    #                     tf.reduce_sum(y_pred, axis=(1, 2, 3)) - tf.reduce_sum(lensed_image, axis=(1, 2, 3)))
    #                 log_likelihood = 0.5 * tf.reduce_sum(
    #                     tf.square(y_pred - mask * lensed_image) / noise_rms[:, None, None, None] ** 2, axis=(1, 2, 3))
    #                 cost = tf.reduce_mean(log_likelihood + self.flux_lagrange_multiplier * flux_term)
    #             source_grad, kappa_grad = g.gradient(cost, [source, kappa])
    #             source_grad, kappa_grad = self.grad_update(source_grad, kappa_grad, current_step)
    #         source, kappa, states = self.time_step(lensed_image, source, kappa, source_grad, kappa_grad, states)
    #         source_series = source_series.write(index=current_step + 1, value=source)
    #         kappa_series = kappa_series.write(index=current_step + 1, value=kappa)
    #         chi_squared_series = chi_squared_series.write(index=current_step,
    #                                                       value=log_likelihood / self.pixels ** 2)  # renormalize chi squared here
    #     # last step score
    #     log_likelihood = self.physical_model.log_likelihood(y_true=lensed_image, source=self.source_link(source),
    #                                                         kappa=self.kappa_link(kappa), psf=psf, noise_rms=noise_rms)
    #     chi_squared_series = chi_squared_series.write(index=self.steps - 1, value=log_likelihood)
    #     return source_series.stack(), kappa_series.stack(), chi_squared_series.stack()

    with h5py.File(
            os.path.join(
                os.getenv("CENSAI_PATH"), "results", args.experiment_name +
                "_" + model_name + f"_{THIS_WORKER:02d}.h5"), 'w') as hf:
        for i, dataset in enumerate([train_dataset, val_dataset,
                                     test_dataset]):
            g = hf.create_group(f'{dataset_names[i]}')
            data_len = dataset_shapes[i] // N_WORKERS
            g.create_dataset(name="lens",
                             shape=[data_len, phys.pixels, phys.pixels, 1],
                             dtype=np.float32)
            g.create_dataset(name="psf",
                             shape=[
                                 data_len, physical_params['psf pixels'],
                                 physical_params['psf pixels'], 1
                             ],
                             dtype=np.float32)
            g.create_dataset(name="psf_fwhm",
                             shape=[data_len],
                             dtype=np.float32)
            g.create_dataset(name="noise_rms",
                             shape=[data_len],
                             dtype=np.float32)
            g.create_dataset(
                name="source",
                shape=[data_len, phys.src_pixels, phys.src_pixels, 1],
                dtype=np.float32)
            g.create_dataset(
                name="kappa",
                shape=[data_len, phys.kappa_pixels, phys.kappa_pixels, 1],
                dtype=np.float32)
            g.create_dataset(name="lens_pred",
                             shape=[data_len, phys.pixels, phys.pixels, 1],
                             dtype=np.float32)
            g.create_dataset(name="lens_pred_reoptimized",
                             shape=[data_len, phys.pixels, phys.pixels, 1],
                             dtype=np.float32)
            g.create_dataset(name="source_pred",
                             shape=[
                                 data_len, rim.steps, phys.src_pixels,
                                 phys.src_pixels, 1
                             ],
                             dtype=np.float32)
            g.create_dataset(
                name="source_pred_reoptimized",
                shape=[data_len, phys.src_pixels, phys.src_pixels, 1])
            g.create_dataset(name="kappa_pred",
                             shape=[
                                 data_len, rim.steps, phys.kappa_pixels,
                                 phys.kappa_pixels, 1
                             ],
                             dtype=np.float32)
            g.create_dataset(
                name="kappa_pred_reoptimized",
                shape=[data_len, phys.kappa_pixels, phys.kappa_pixels, 1],
                dtype=np.float32)
            g.create_dataset(name="chi_squared",
                             shape=[data_len, rim.steps],
                             dtype=np.float32)
            g.create_dataset(name="chi_squared_reoptimized",
                             shape=[data_len],
                             dtype=np.float32)
            g.create_dataset(name="chi_squared_reoptimized_series",
                             shape=[data_len, args.re_optimize_steps],
                             dtype=np.float32)
            g.create_dataset(name="source_optim_mse",
                             shape=[data_len],
                             dtype=np.float32)
            g.create_dataset(name="source_optim_mse_series",
                             shape=[data_len, args.re_optimize_steps],
                             dtype=np.float32)
            g.create_dataset(name="kappa_optim_mse",
                             shape=[data_len],
                             dtype=np.float32)
            g.create_dataset(name="kappa_optim_mse_series",
                             shape=[data_len, args.re_optimize_steps],
                             dtype=np.float32)
            g.create_dataset(name="lens_coherence_spectrum",
                             shape=[data_len, args.lens_coherence_bins],
                             dtype=np.float32)
            g.create_dataset(name="source_coherence_spectrum",
                             shape=[data_len, args.source_coherence_bins],
                             dtype=np.float32)
            g.create_dataset(name="lens_coherence_spectrum2",
                             shape=[data_len, args.lens_coherence_bins],
                             dtype=np.float32)
            g.create_dataset(name="lens_coherence_spectrum_reoptimized",
                             shape=[data_len, args.lens_coherence_bins],
                             dtype=np.float32)
            g.create_dataset(name="source_coherence_spectrum2",
                             shape=[data_len, args.source_coherence_bins],
                             dtype=np.float32)
            g.create_dataset(name="source_coherence_spectrum_reoptimized",
                             shape=[data_len, args.source_coherence_bins],
                             dtype=np.float32)
            g.create_dataset(name="kappa_coherence_spectrum",
                             shape=[data_len, args.kappa_coherence_bins],
                             dtype=np.float32)
            g.create_dataset(name="kappa_coherence_spectrum_reoptimized",
                             shape=[data_len, args.kappa_coherence_bins],
                             dtype=np.float32)
            g.create_dataset(name="lens_frequencies",
                             shape=[args.lens_coherence_bins],
                             dtype=np.float32)
            g.create_dataset(name="source_frequencies",
                             shape=[args.source_coherence_bins],
                             dtype=np.float32)
            g.create_dataset(name="kappa_frequencies",
                             shape=[args.kappa_coherence_bins],
                             dtype=np.float32)
            g.create_dataset(name="kappa_fov", shape=[1], dtype=np.float32)
            g.create_dataset(name="source_fov", shape=[1], dtype=np.float32)
            g.create_dataset(name="lens_fov", shape=[1], dtype=np.float32)
            dataset = dataset.skip(data_len * (THIS_WORKER - 1)).take(data_len)
            for batch, (lens, source, kappa, noise_rms, psf,
                        fwhm) in enumerate(
                            dataset.batch(1).prefetch(
                                tf.data.experimental.AUTOTUNE)):
                checkpoint_manager.checkpoint.restore(
                    checkpoint_manager.latest_checkpoint).expect_partial(
                    )  # reset model weights
                # Compute predictions for kappa and source
                source_pred, kappa_pred, chi_squared = rim.predict(
                    lens, noise_rms, psf)
                lens_pred = phys.forward(source_pred[-1], kappa_pred[-1], psf)
                # Re-optimize weights of the model
                STEPS = args.re_optimize_steps
                learning_rate_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
                    initial_learning_rate=args.learning_rate,
                    decay_rate=args.decay_rate,
                    decay_steps=args.decay_steps,
                    staircase=args.staircase)
                optim = tf.keras.optimizers.RMSprop(
                    learning_rate=learning_rate_schedule)

                chi_squared_series = tf.TensorArray(DTYPE, size=STEPS)
                source_mse = tf.TensorArray(DTYPE, size=STEPS)
                kappa_mse = tf.TensorArray(DTYPE, size=STEPS)
                best = chi_squared[-1, 0]
                # best = abs(2*chi_squared[-1, 0] - 1)
                # best_chisq = 2*chi_squared[-1, 0]
                source_best = source_pred[-1]
                kappa_best = kappa_pred[-1]
                # source_mean = source_pred[-1]
                # kappa_mean = rim.kappa_link(kappa_pred[-1])
                # source_std = tf.zeros_like(source_mean)
                # kappa_std = tf.zeros_like(kappa_mean)
                # counter = 0
                for current_step in tqdm(range(STEPS)):
                    with tf.GradientTape() as tape:
                        tape.watch(unet.trainable_variables)
                        # s, k, chi_sq = call_with_mask(rim, lens, noise_rms, psf, mask, tape)
                        s, k, chi_sq = rim.call(lens,
                                                noise_rms,
                                                psf,
                                                outer_tape=tape)
                        cost = tf.reduce_mean(chi_sq)  # mean over time steps
                        cost += tf.reduce_sum(rim.unet.losses)

                    log_likelihood = chi_sq[-1]
                    chi_squared_series = chi_squared_series.write(
                        index=current_step, value=log_likelihood)
                    source_o = s[-1]
                    kappa_o = k[-1]
                    source_mse = source_mse.write(
                        index=current_step,
                        value=tf.reduce_mean(
                            (source_o - rim.source_inverse_link(source))**2))
                    kappa_mse = kappa_mse.write(
                        index=current_step,
                        value=tf.reduce_mean(
                            (kappa_o - rim.kappa_inverse_link(kappa))**2))
                    if chi_sq[-1, 0] < args.converged_chisq:
                        source_best = rim.source_link(source_o)
                        kappa_best = rim.kappa_link(kappa_o)
                        best = chi_sq[-1, 0]
                        break
                    if chi_sq[-1, 0] < best:
                        source_best = rim.source_link(source_o)
                        kappa_best = rim.kappa_link(kappa_o)
                        best = chi_sq[-1, 0]
                        source_mse_best = tf.reduce_mean(
                            (source_best - rim.source_inverse_link(source))**2)
                        kappa_mse_best = tf.reduce_mean(
                            (kappa_best - rim.kappa_inverse_link(kappa))**2)
                    # if counter > 0:
                    #     # Welford's online algorithm
                    #     # source
                    #     delta = source_o - source_mean
                    #     source_mean = (counter * source_mean + (counter + 1) * source_o)/(counter + 1)
                    #     delta2 = source_o - source_mean
                    #     source_std += delta * delta2
                    #     # kappa
                    #     delta = rim.kappa_link(kappa_o) - kappa_mean
                    #     kappa_mean = (counter * kappa_mean + (counter + 1) * rim.kappa_link(kappa_o)) / (counter + 1)
                    #     delta2 = rim.kappa_link(kappa_o) - kappa_mean
                    #     kappa_std += delta * delta2
                    # if best_chisq < args.converged_chisq:
                    #     counter += 1
                    #     if counter == args.window:
                    #         break
                    # if 2*chi_sq[-1, 0] < best_chisq:
                    #     best_chisq = 2*chi_sq[-1, 0]
                    # if abs(2*chi_sq[-1, 0] - 1) < best:
                    #     source_best = rim.source_link(source_o)
                    #     kappa_best = rim.kappa_link(kappa_o)
                    #     best = abs(2 * chi_squared[-1, 0] - 1)
                    #     source_mse_best = tf.reduce_mean((source_best - rim.source_inverse_link(source)) ** 2)
                    #     kappa_mse_best = tf.reduce_mean((kappa_best - rim.kappa_inverse_link(kappa)) ** 2)

                    grads = tape.gradient(cost, unet.trainable_variables)
                    optim.apply_gradients(zip(grads, unet.trainable_variables))

                source_o = source_best
                kappa_o = kappa_best
                y_pred = phys.forward(source_o, kappa_o, psf)
                chi_sq_series = tf.transpose(chi_squared_series.stack(),
                                             perm=[1, 0])
                source_mse = source_mse.stack()[None, ...]
                kappa_mse = kappa_mse.stack()[None, ...]
                # kappa_std /= float(args.window)
                # source_std /= float(args.window)

                # Compute Power spectrum of converged predictions
                _ps_lens = ps_lens.cross_correlation_coefficient(
                    lens[..., 0], lens_pred[..., 0])
                _ps_lens3 = ps_lens.cross_correlation_coefficient(
                    lens[..., 0], y_pred[..., 0])
                _ps_kappa = ps_kappa.cross_correlation_coefficient(
                    log_10(kappa)[..., 0],
                    log_10(kappa_pred[-1])[..., 0])
                _ps_kappa2 = ps_kappa.cross_correlation_coefficient(
                    log_10(kappa)[..., 0], log_10(kappa_o[..., 0]))
                _ps_source = ps_source.cross_correlation_coefficient(
                    source[..., 0], source_pred[-1][..., 0])
                _ps_source3 = ps_source.cross_correlation_coefficient(
                    source[..., 0], source_o[..., 0])

                # save results
                g["lens"][batch] = lens.numpy().astype(np.float32)
                g["psf"][batch] = psf.numpy().astype(np.float32)
                g["psf_fwhm"][batch] = fwhm.numpy().astype(np.float32)
                g["noise_rms"][batch] = noise_rms.numpy().astype(np.float32)
                g["source"][batch] = source.numpy().astype(np.float32)
                g["kappa"][batch] = kappa.numpy().astype(np.float32)
                g["lens_pred"][batch] = lens_pred.numpy().astype(np.float32)
                g["lens_pred_reoptimized"][batch] = y_pred.numpy().astype(
                    np.float32)
                g["source_pred"][batch] = tf.transpose(
                    source_pred,
                    perm=(1, 0, 2, 3, 4)).numpy().astype(np.float32)
                g["source_pred_reoptimized"][batch] = source_o.numpy().astype(
                    np.float32)
                g["kappa_pred"][batch] = tf.transpose(
                    kappa_pred,
                    perm=(1, 0, 2, 3, 4)).numpy().astype(np.float32)
                g["kappa_pred_reoptimized"][batch] = kappa_o.numpy().astype(
                    np.float32)
                g["chi_squared"][batch] = tf.transpose(
                    chi_squared).numpy().astype(np.float32)
                g["chi_squared_reoptimized"][batch] = best.numpy().astype(
                    np.float32)
                g["chi_squared_reoptimized_series"][
                    batch] = chi_sq_series.numpy().astype(np.float32)
                g["source_optim_mse"][batch] = source_mse_best.numpy().astype(
                    np.float32)
                g["source_optim_mse_series"][batch] = source_mse.numpy(
                ).astype(np.float32)
                g["kappa_optim_mse"][batch] = kappa_mse_best.numpy().astype(
                    np.float32)
                g["kappa_optim_mse_series"][batch] = kappa_mse.numpy().astype(
                    np.float32)
                g["lens_coherence_spectrum"][batch] = _ps_lens
                g["lens_coherence_spectrum_reoptimized"][batch] = _ps_lens3
                g["source_coherence_spectrum"][batch] = _ps_source
                g["source_coherence_spectrum_reoptimized"][batch] = _ps_source3
                g["lens_coherence_spectrum"][batch] = _ps_lens
                g["lens_coherence_spectrum"][batch] = _ps_lens
                g["kappa_coherence_spectrum"][batch] = _ps_kappa
                g["kappa_coherence_spectrum_reoptimized"][batch] = _ps_kappa2

                if batch == 0:
                    _, f = np.histogram(np.fft.fftfreq(
                        phys.pixels)[:phys.pixels // 2],
                                        bins=ps_lens.bins)
                    f = (f[:-1] + f[1:]) / 2
                    g["lens_frequencies"][:] = f
                    _, f = np.histogram(np.fft.fftfreq(
                        phys.src_pixels)[:phys.src_pixels // 2],
                                        bins=ps_source.bins)
                    f = (f[:-1] + f[1:]) / 2
                    g["source_frequencies"][:] = f
                    _, f = np.histogram(np.fft.fftfreq(
                        phys.kappa_pixels)[:phys.kappa_pixels // 2],
                                        bins=ps_kappa.bins)
                    f = (f[:-1] + f[1:]) / 2
                    g["kappa_frequencies"][:] = f
                    g["kappa_fov"][0] = phys.kappa_fov
                    g["source_fov"][0] = phys.src_fov

        # Create SIE test
        g = hf.create_group(f'SIE_test')
        data_len = args.sie_size // N_WORKERS
        sie_dataset = test_dataset.skip(data_len *
                                        (THIS_WORKER - 1)).take(data_len)
        g.create_dataset(name="lens",
                         shape=[data_len, phys.pixels, phys.pixels, 1],
                         dtype=np.float32)
        g.create_dataset(name="psf",
                         shape=[
                             data_len, physical_params['psf pixels'],
                             physical_params['psf pixels'], 1
                         ],
                         dtype=np.float32)
        g.create_dataset(name="psf_fwhm", shape=[data_len], dtype=np.float32)
        g.create_dataset(name="noise_rms", shape=[data_len], dtype=np.float32)
        g.create_dataset(name="source",
                         shape=[data_len, phys.src_pixels, phys.src_pixels, 1],
                         dtype=np.float32)
        g.create_dataset(
            name="kappa",
            shape=[data_len, phys.kappa_pixels, phys.kappa_pixels, 1],
            dtype=np.float32)
        g.create_dataset(name="lens_pred",
                         shape=[data_len, phys.pixels, phys.pixels, 1],
                         dtype=np.float32)
        g.create_dataset(name="lens_pred2",
                         shape=[data_len, phys.pixels, phys.pixels, 1],
                         dtype=np.float32)
        g.create_dataset(
            name="source_pred",
            shape=[data_len, rim.steps, phys.src_pixels, phys.src_pixels, 1],
            dtype=np.float32)
        g.create_dataset(name="kappa_pred",
                         shape=[
                             data_len, rim.steps, phys.kappa_pixels,
                             phys.kappa_pixels, 1
                         ],
                         dtype=np.float32)
        g.create_dataset(name="chi_squared",
                         shape=[data_len, rim.steps],
                         dtype=np.float32)
        g.create_dataset(name="lens_coherence_spectrum",
                         shape=[data_len, args.lens_coherence_bins],
                         dtype=np.float32)
        g.create_dataset(name="source_coherence_spectrum",
                         shape=[data_len, args.source_coherence_bins],
                         dtype=np.float32)
        g.create_dataset(name="lens_coherence_spectrum2",
                         shape=[data_len, args.lens_coherence_bins],
                         dtype=np.float32)
        g.create_dataset(name="source_coherence_spectrum2",
                         shape=[data_len, args.source_coherence_bins],
                         dtype=np.float32)
        g.create_dataset(name="kappa_coherence_spectrum",
                         shape=[data_len, args.kappa_coherence_bins],
                         dtype=np.float32)
        g.create_dataset(name="lens_frequencies",
                         shape=[args.lens_coherence_bins],
                         dtype=np.float32)
        g.create_dataset(name="source_frequencies",
                         shape=[args.source_coherence_bins],
                         dtype=np.float32)
        g.create_dataset(name="kappa_frequencies",
                         shape=[args.kappa_coherence_bins],
                         dtype=np.float32)
        g.create_dataset(name="einstein_radius",
                         shape=[data_len],
                         dtype=np.float32)
        g.create_dataset(name="position",
                         shape=[data_len, 2],
                         dtype=np.float32)
        g.create_dataset(name="orientation",
                         shape=[data_len],
                         dtype=np.float32)
        g.create_dataset(name="ellipticity",
                         shape=[data_len],
                         dtype=np.float32)
        g.create_dataset(name="kappa_fov", shape=[1], dtype=np.float32)
        g.create_dataset(name="source_fov", shape=[1], dtype=np.float32)
        g.create_dataset(name="lens_fov", shape=[1], dtype=np.float32)

        for batch, (_, source, _, noise_rms, psf, fwhm) in enumerate(
                sie_dataset.take(data_len).batch(args.batch_size).prefetch(
                    tf.data.experimental.AUTOTUNE)):
            batch_size = source.shape[0]
            # Create some SIE kappa maps
            _r = tf.random.uniform(shape=[batch_size, 1, 1, 1],
                                   minval=0,
                                   maxval=args.max_shift)
            _theta = tf.random.uniform(shape=[batch_size, 1, 1, 1],
                                       minval=-np.pi,
                                       maxval=np.pi)
            x0 = _r * tf.math.cos(_theta)
            y0 = _r * tf.math.sin(_theta)
            ellipticity = tf.random.uniform(shape=[batch_size, 1, 1, 1],
                                            minval=0.,
                                            maxval=args.max_ellipticity)
            phi = tf.random.uniform(shape=[batch_size, 1, 1, 1],
                                    minval=-np.pi,
                                    maxval=np.pi)
            einstein_radius = tf.random.uniform(shape=[batch_size, 1, 1, 1],
                                                minval=args.min_theta_e,
                                                maxval=args.max_theta_e)
            kappa = phys_sie.kappa_field(x0=x0,
                                         y0=y0,
                                         e=ellipticity,
                                         phi=phi,
                                         r_ein=einstein_radius)
            lens = phys.noisy_forward(source,
                                      kappa,
                                      noise_rms=noise_rms,
                                      psf=psf)

            # Compute predictions for kappa and source
            source_pred, kappa_pred, chi_squared = rim.predict(
                lens, noise_rms, psf)
            lens_pred = phys.forward(source_pred[-1], kappa_pred[-1], psf)
            # Compute Power spectrum of converged predictions
            _ps_lens = ps_lens.cross_correlation_coefficient(
                lens[..., 0], lens_pred[..., 0])
            _ps_kappa = ps_kappa.cross_correlation_coefficient(
                log_10(kappa)[..., 0],
                log_10(kappa_pred[-1])[..., 0])
            _ps_source = ps_source.cross_correlation_coefficient(
                source[..., 0], source_pred[-1][..., 0])

            # save results
            i_begin = batch * args.batch_size
            i_end = i_begin + batch_size
            g["lens"][i_begin:i_end] = lens.numpy().astype(np.float32)
            g["psf"][i_begin:i_end] = psf.numpy().astype(np.float32)
            g["psf_fwhm"][i_begin:i_end] = fwhm.numpy().astype(np.float32)
            g["noise_rms"][i_begin:i_end] = noise_rms.numpy().astype(
                np.float32)
            g["source"][i_begin:i_end] = source.numpy().astype(np.float32)
            g["kappa"][i_begin:i_end] = kappa.numpy().astype(np.float32)
            g["lens_pred"][i_begin:i_end] = lens_pred.numpy().astype(
                np.float32)
            g["source_pred"][i_begin:i_end] = tf.transpose(
                source_pred, perm=(1, 0, 2, 3, 4)).numpy().astype(np.float32)
            g["kappa_pred"][i_begin:i_end] = tf.transpose(
                kappa_pred, perm=(1, 0, 2, 3, 4)).numpy().astype(np.float32)
            g["chi_squared"][i_begin:i_end] = 2 * tf.transpose(
                chi_squared).numpy().astype(np.float32)
            g["lens_coherence_spectrum"][i_begin:i_end] = _ps_lens.numpy(
            ).astype(np.float32)
            g["source_coherence_spectrum"][i_begin:i_end] = _ps_source.numpy(
            ).astype(np.float32)
            g["kappa_coherence_spectrum"][i_begin:i_end] = _ps_kappa.numpy(
            ).astype(np.float32)
            g["einstein_radius"][
                i_begin:i_end] = einstein_radius[:, 0, 0,
                                                 0].numpy().astype(np.float32)
            g["position"][i_begin:i_end] = tf.stack(
                [x0[:, 0, 0, 0], y0[:, 0, 0, 0]],
                axis=1).numpy().astype(np.float32)
            g["ellipticity"][i_begin:i_end] = ellipticity[:, 0, 0,
                                                          0].numpy().astype(
                                                              np.float32)
            g["orientation"][i_begin:i_end] = phi[:, 0, 0,
                                                  0].numpy().astype(np.float32)

            if batch == 0:
                _, f = np.histogram(np.fft.fftfreq(phys.pixels)[:phys.pixels //
                                                                2],
                                    bins=ps_lens.bins)
                f = (f[:-1] + f[1:]) / 2
                g["lens_frequencies"][:] = f
                _, f = np.histogram(np.fft.fftfreq(
                    phys.src_pixels)[:phys.src_pixels // 2],
                                    bins=ps_source.bins)
                f = (f[:-1] + f[1:]) / 2
                g["source_frequencies"][:] = f
                _, f = np.histogram(np.fft.fftfreq(
                    phys.kappa_pixels)[:phys.kappa_pixels // 2],
                                    bins=ps_kappa.bins)
                f = (f[:-1] + f[1:]) / 2
                g["kappa_frequencies"][:] = f
                g["kappa_fov"][0] = phys.kappa_fov
                g["source_fov"][0] = phys.src_fov
Ejemplo n.º 5
0
def distributed_strategy(args):
    kappa_datasets = []
    for path in args.kappa_datasets:
        files = glob.glob(os.path.join(path, "*.tfrecords"))
        files = tf.data.Dataset.from_tensor_slices(files).shuffle(
            len(files), reshuffle_each_iteration=True)
        dataset = files.interleave(lambda x: tf.data.TFRecordDataset(
            x, compression_type=args.compression_type),
                                   block_length=args.block_length,
                                   num_parallel_calls=tf.data.AUTOTUNE)
        kappa_datasets.append(
            dataset.shuffle(args.buffer_size, reshuffle_each_iteration=True))
    kappa_dataset = tf.data.experimental.sample_from_datasets(
        kappa_datasets, weights=args.kappa_datasets_weights)
    # Read off global parameters from first example in dataset
    for example in kappa_dataset.map(decode_kappa_info):
        kappa_fov = example["kappa fov"].numpy()
        kappa_pixels = example["kappa pixels"].numpy()
        break
    kappa_dataset = kappa_dataset.map(decode_kappa).batch(args.batch_size)

    cosmos_datasets = []
    for path in args.cosmos_datasets:
        files = glob.glob(os.path.join(path, "*.tfrecords"))
        files = tf.data.Dataset.from_tensor_slices(files).shuffle(
            len(files), reshuffle_each_iteration=True)
        dataset = files.interleave(lambda x: tf.data.TFRecordDataset(
            x, compression_type=args.compression_type),
                                   block_length=args.block_length,
                                   num_parallel_calls=tf.data.AUTOTUNE)
        cosmos_datasets.append(
            dataset.shuffle(args.buffer_size, reshuffle_each_iteration=True))
    cosmos_dataset = tf.data.experimental.sample_from_datasets(
        cosmos_datasets, weights=args.cosmos_datasets_weights)
    # Read off global parameters from first example in dataset
    for src_pixels in cosmos_dataset.map(decode_cosmos_info):
        src_pixels = src_pixels.numpy()
        break
    cosmos_dataset = cosmos_dataset.map(decode_cosmos).map(
        preprocess_cosmos).batch(args.batch_size)

    window = tukey(src_pixels, alpha=args.tukey_alpha)
    window = np.outer(window, window)[np.newaxis, ..., np.newaxis]
    window = tf.constant(window, dtype=DTYPE)

    phys = PhysicalModel(image_fov=kappa_fov,
                         src_fov=args.source_fov,
                         pixels=args.lens_pixels,
                         kappa_pixels=kappa_pixels,
                         src_pixels=src_pixels,
                         kappa_fov=kappa_fov,
                         method="conv2d")

    noise_a = (args.noise_rms_min - args.noise_rms_mean) / args.noise_rms_std
    noise_b = (args.noise_rms_max - args.noise_rms_mean) / args.noise_rms_std
    psf_a = (args.psf_fwhm_min - args.psf_fwhm_mean) / args.psf_fwhm_std
    psf_b = (args.psf_fwhm_max - args.psf_fwhm_mean) / args.psf_fwhm_std

    options = tf.io.TFRecordOptions(compression_type=args.compression_type)
    with tf.io.TFRecordWriter(
            os.path.join(args.output_dir, f"data_{THIS_WORKER}.tfrecords"),
            options) as writer:
        print(
            f"Started worker {THIS_WORKER} at {datetime.now().strftime('%y-%m-%d_%H-%M-%S')}"
        )
        for i in range((THIS_WORKER - 1) * args.batch_size, args.len_dataset,
                       N_WORKERS * args.batch_size):
            for galaxies in cosmos_dataset:  # select a random batch from our dataset that is reshuffled each iterations
                break
            for kappa in kappa_dataset:
                break
            galaxies = window * galaxies
            noise_rms = truncnorm.rvs(noise_a,
                                      noise_b,
                                      loc=args.noise_rms_mean,
                                      scale=args.noise_rms_std,
                                      size=args.batch_size)
            fwhm = truncnorm.rvs(psf_a,
                                 psf_b,
                                 loc=args.psf_fwhm_mean,
                                 scale=args.psf_fwhm_std,
                                 size=args.batch_size)
            psf = phys.psf_models(fwhm, cutout_size=args.psf_cutout_size)
            lensed_images = phys.noisy_forward(galaxies,
                                               kappa,
                                               noise_rms=noise_rms,
                                               psf=psf)
            records = encode_examples(kappa=kappa,
                                      galaxies=galaxies,
                                      lensed_images=lensed_images,
                                      z_source=args.z_source,
                                      z_lens=args.z_lens,
                                      image_fov=phys.image_fov,
                                      kappa_fov=phys.kappa_fov,
                                      source_fov=args.source_fov,
                                      noise_rms=noise_rms,
                                      psf=psf,
                                      fwhm=fwhm)
            for record in records:
                writer.write(record)
    print(f"Finished work at {datetime.now().strftime('%y-%m-%d_%H-%M-%S')}")
Ejemplo n.º 6
0
 def __init__(self,
              observation,
              noise_rms,
              psf,
              phys: PhysicalModel,
              rim: RIM,
              source_vae: VAE,
              kappa_vae: VAE,
              n_samples=100,
              sigma_source=0.5,
              sigma_kappa=0.5):
     """
     Make a copy of initial parameters \varphi^{(0)} and compute the Fisher diagonal F_{ii}
     """
     wk = tf.keras.layers.Lambda(lambda k: tf.sqrt(k) / tf.reduce_sum(
         tf.sqrt(k), axis=(1, 2, 3), keepdims=True))
     # Baseline prediction from observation
     source_pred, kappa_pred, chi_squared = rim.predict(
         observation, noise_rms, psf)
     # Latent code of model predictions
     z_source, _ = source_vae.encoder(source_pred[-1])
     z_kappa, _ = kappa_vae.encoder(log_10(kappa_pred[-1]))
     # Deepcopy of the initial parameters
     self.initial_params = [
         deepcopy(w) for w in rim.unet.trainable_variables
     ]
     self.fisher_diagonal = [tf.zeros_like(w) for w in self.initial_params]
     for n in range(n_samples):
         # Sample latent code around the prediction mean
         z_s = tf.random.normal(shape=[1, source_vae.latent_size],
                                mean=z_source,
                                stddev=sigma_source)
         z_k = tf.random.normal(shape=[1, kappa_vae.latent_size],
                                mean=z_kappa,
                                stddev=sigma_kappa)
         # Decode
         sampled_source = tf.nn.relu(source_vae.decode(z_s))
         sampled_source /= tf.reduce_max(sampled_source,
                                         axis=(1, 2, 3),
                                         keepdims=True)
         sampled_kappa = kappa_vae.decode(z_k)  # output in log_10 space
         # Simulate observation
         sampled_observation = phys.noisy_forward(sampled_source,
                                                  10**sampled_kappa,
                                                  noise_rms, psf)
         # Compute the gradient of the MSE
         with tf.GradientTape() as tape:
             tape.watch(rim.unet.trainable_variables)
             s, k, chi_squared = rim.call(sampled_observation, noise_rms,
                                          psf)
             # Remove the temperature from the loss when computing the Fisher: sum instead of mean, and weighted sum is renormalized by number of pixels
             _kappa_mse = phys.kappa_pixels**2 * tf.reduce_sum(
                 wk(10**sampled_kappa) * (k - sampled_kappa)**2,
                 axis=(2, 3, 4))
             cost = tf.reduce_sum(_kappa_mse)
             cost += tf.reduce_sum((s - sampled_source)**2)
         grad = tape.gradient(cost, rim.unet.trainable_variables)
         # Square the derivative relative to initial parameters and add to total
         self.fisher_diagonal = [
             F + g**2 / n_samples
             for F, g in zip(self.fisher_diagonal, grad)
         ]