def distributed_strategy(args): kappa_gen = NISGenerator( # only used to generate pixelated kappa fields kappa_fov=args.kappa_fov, src_fov=args.source_fov, pixels=args.kappa_pixels, z_source=args.z_source, z_lens=args.z_lens ) min_theta_e = 0.1 * args.image_fov if args.min_theta_e is None else args.min_theta_e max_theta_e = 0.45 * args.image_fov if args.max_theta_e is None else args.max_theta_e cosmos_files = glob.glob(os.path.join(args.cosmos_dir, "*.tfrecords")) cosmos = tf.data.TFRecordDataset(cosmos_files, compression_type=args.compression_type) cosmos = cosmos.map(decode_image).map(preprocess_image) if args.shuffle_cosmos: cosmos = cosmos.shuffle(buffer_size=args.buffer_size, reshuffle_each_iteration=True) cosmos = cosmos.batch(args.batch_size) window = tukey(args.src_pixels, alpha=args.tukey_alpha) window = np.outer(window, window) phys = PhysicalModel( image_fov=args.image_fov, kappa_fov=args.kappa_fov, src_fov=args.source_fov, pixels=args.lens_pixels, kappa_pixels=args.kappa_pixels, src_pixels=args.src_pixels, method="conv2d" ) noise_a = (args.noise_rms_min - args.noise_rms_mean) / args.noise_rms_std noise_b = (args.noise_rms_max - args.noise_rms_mean) / args.noise_rms_std psf_a = (args.psf_fwhm_min - args.psf_fwhm_mean) / args.psf_fwhm_std psf_b = (args.psf_fwhm_max - args.psf_fwhm_mean) / args.psf_fwhm_std options = tf.io.TFRecordOptions(compression_type=args.compression_type) with tf.io.TFRecordWriter(os.path.join(args.output_dir, f"data_{THIS_WORKER}.tfrecords"), options) as writer: print(f"Started worker {THIS_WORKER} at {datetime.now().strftime('%y-%m-%d_%H-%M-%S')}") for i in range((THIS_WORKER - 1) * args.batch_size, args.len_dataset, N_WORKERS * args.batch_size): for galaxies in cosmos: break galaxies = window[np.newaxis, ..., np.newaxis] * galaxies noise_rms = truncnorm.rvs(noise_a, noise_b, loc=args.noise_rms_mean, scale=args.noise_rms_std, size=args.batch_size) fwhm = truncnorm.rvs(psf_a, psf_b, loc=args.psf_fwhm_mean, scale=args.psf_fwhm_std, size=args.batch_size) psf = phys.psf_models(fwhm, cutout_size=args.psf_cutout_size) batch_size = galaxies.shape[0] _r = tf.random.uniform(shape=[batch_size, 1, 1], minval=0, maxval=args.max_shift) _theta = tf.random.uniform(shape=[batch_size, 1, 1], minval=-np.pi, maxval=np.pi) x0 = _r * tf.math.cos(_theta) y0 = _r * tf.math.sin(_theta) ellipticity = tf.random.uniform(shape=[batch_size, 1, 1], minval=0., maxval=args.max_ellipticity) phi = tf.random.uniform(shape=[batch_size, 1, 1], minval=-np.pi, maxval=np.pi) einstein_radius = tf.random.uniform(shape=[batch_size, 1, 1], minval=min_theta_e, maxval=max_theta_e) kappa = kappa_gen.kappa_field(x0, y0, ellipticity, phi, einstein_radius) lensed_images = phys.noisy_forward(galaxies, kappa, noise_rms=noise_rms, psf=psf) records = encode_examples( kappa=kappa, galaxies=galaxies, lensed_images=lensed_images, z_source=args.z_source, z_lens=args.z_lens, image_fov=phys.image_fov, kappa_fov=phys.kappa_fov, source_fov=args.source_fov, noise_rms=noise_rms, psf=psf, fwhm=fwhm ) for record in records: writer.write(record) print(f"Finished work at {datetime.now().strftime('%y-%m-%d_%H-%M-%S')}")
def test_noisy_forward_conv2(): phys = PhysicalModel(pixels=64, src_pixels=64) source = tf.random.normal([2, 64, 64, 1]) kappa = tf.math.exp(tf.random.uniform([2, 64, 64, 1])) noise_rms = 0.1 phys.noisy_forward(source, kappa, noise_rms)
def distributed_strategy(args): psf_pixels = 20 pixels = 128 model = os.path.join(os.getenv('CENSAI_PATH'), "models", args.model) ps_observation = PowerSpectrum(bins=args.observation_coherence_bins, pixels=pixels) ps_source = PowerSpectrum(bins=args.source_coherence_bins, pixels=pixels) ps_kappa = PowerSpectrum(bins=args.kappa_coherence_bins, pixels=pixels) phys = PhysicalModel( pixels=pixels, kappa_pixels=pixels, src_pixels=pixels, image_fov=7.68, kappa_fov=7.68, src_fov=3., method="fft", ) with open(os.path.join(model, "unet_hparams.json")) as f: unet_params = json.load(f) unet_params["kernel_l2_amp"] = args.l2_amp unet = Model(**unet_params) ckpt = tf.train.Checkpoint(net=unet) checkpoint_manager = tf.train.CheckpointManager(ckpt, model, 1) checkpoint_manager.checkpoint.restore( checkpoint_manager.latest_checkpoint).expect_partial() with open(os.path.join(model, "rim_hparams.json")) as f: rim_params = json.load(f) rim_params["source_link"] = "relu" rim = RIM(phys, unet, **rim_params) kvae_path = os.path.join(os.getenv('CENSAI_PATH'), "models", args.kappa_vae) with open(os.path.join(kvae_path, "model_hparams.json"), "r") as f: kappa_vae_hparams = json.load(f) kappa_vae = VAE(**kappa_vae_hparams) ckpt1 = tf.train.Checkpoint(step=tf.Variable(1), net=kappa_vae) checkpoint_manager1 = tf.train.CheckpointManager(ckpt1, kvae_path, 1) checkpoint_manager1.checkpoint.restore( checkpoint_manager1.latest_checkpoint).expect_partial() svae_path = os.path.join(os.getenv('CENSAI_PATH'), "models", args.source_vae) with open(os.path.join(svae_path, "model_hparams.json"), "r") as f: source_vae_hparams = json.load(f) source_vae = VAE(**source_vae_hparams) ckpt2 = tf.train.Checkpoint(step=tf.Variable(1), net=source_vae) checkpoint_manager2 = tf.train.CheckpointManager(ckpt2, svae_path, 1) checkpoint_manager2.checkpoint.restore( checkpoint_manager2.latest_checkpoint).expect_partial() model_name = os.path.split(model)[-1] wk = tf.keras.layers.Lambda(lambda k: tf.sqrt(k) / tf.reduce_sum( tf.sqrt(k), axis=(1, 2, 3), keepdims=True)) with h5py.File( os.path.join( os.getenv("CENSAI_PATH"), "results", args.experiment_name + "_" + model_name + f"_{THIS_WORKER:02d}.h5"), 'w') as hf: data_len = args.size // N_WORKERS hf.create_dataset(name="observation", shape=[data_len, phys.pixels, phys.pixels, 1], dtype=np.float32) hf.create_dataset(name="psf", shape=[data_len, psf_pixels, psf_pixels, 1], dtype=np.float32) hf.create_dataset(name="psf_fwhm", shape=[data_len], dtype=np.float32) hf.create_dataset(name="noise_rms", shape=[data_len], dtype=np.float32) hf.create_dataset( name="source", shape=[data_len, phys.src_pixels, phys.src_pixels, 1], dtype=np.float32) hf.create_dataset( name="kappa", shape=[data_len, phys.kappa_pixels, phys.kappa_pixels, 1], dtype=np.float32) hf.create_dataset(name="observation_pred", shape=[data_len, phys.pixels, phys.pixels, 1], dtype=np.float32) hf.create_dataset(name="observation_pred_reoptimized", shape=[data_len, phys.pixels, phys.pixels, 1], dtype=np.float32) hf.create_dataset( name="source_pred", shape=[data_len, rim.steps, phys.src_pixels, phys.src_pixels, 1], dtype=np.float32) hf.create_dataset( name="source_pred_reoptimized", shape=[data_len, phys.src_pixels, phys.src_pixels, 1], dtype=np.float32) hf.create_dataset(name="kappa_pred", shape=[ data_len, rim.steps, phys.kappa_pixels, phys.kappa_pixels, 1 ], dtype=np.float32) hf.create_dataset( name="kappa_pred_reoptimized", shape=[data_len, phys.kappa_pixels, phys.kappa_pixels, 1], dtype=np.float32) hf.create_dataset(name="chi_squared", shape=[data_len, rim.steps], dtype=np.float32) hf.create_dataset(name="chi_squared_reoptimized", shape=[data_len, rim.steps], dtype=np.float32) hf.create_dataset(name="chi_squared_reoptimized_series", shape=[data_len, rim.steps, args.re_optimize_steps], dtype=np.float32) hf.create_dataset(name="sampled_chi_squared_reoptimized_series", shape=[data_len, args.re_optimize_steps], dtype=np.float32) hf.create_dataset(name="source_optim_mse", shape=[data_len], dtype=np.float32) hf.create_dataset(name="source_optim_mse_series", shape=[data_len, args.re_optimize_steps], dtype=np.float32) hf.create_dataset(name="sampled_source_optim_mse_series", shape=[data_len, args.re_optimize_steps], dtype=np.float32) hf.create_dataset(name="kappa_optim_mse", shape=[data_len], dtype=np.float32) hf.create_dataset(name="kappa_optim_mse_series", shape=[data_len, args.re_optimize_steps], dtype=np.float32) hf.create_dataset(name="sampled_kappa_optim_mse_series", shape=[data_len, args.re_optimize_steps], dtype=np.float32) hf.create_dataset(name="latent_kappa_gt_distance_init", shape=[data_len, kappa_vae.latent_size], dtype=np.float32) hf.create_dataset(name="latent_source_gt_distance_init", shape=[data_len, source_vae.latent_size], dtype=np.float32) hf.create_dataset(name="latent_kappa_gt_distance_end", shape=[data_len, kappa_vae.latent_size], dtype=np.float32) hf.create_dataset(name="latent_source_gt_distance_end", shape=[data_len, source_vae.latent_size], dtype=np.float32) hf.create_dataset(name="source_coherence_spectrum", shape=[data_len, args.source_coherence_bins], dtype=np.float32) hf.create_dataset(name="source_coherence_spectrum_reoptimized", shape=[data_len, args.source_coherence_bins], dtype=np.float32) hf.create_dataset(name="observation_coherence_spectrum", shape=[data_len, args.observation_coherence_bins], dtype=np.float32) hf.create_dataset(name="observation_coherence_spectrum_reoptimized", shape=[data_len, args.observation_coherence_bins], dtype=np.float32) hf.create_dataset(name="kappa_coherence_spectrum", shape=[data_len, args.kappa_coherence_bins], dtype=np.float32) hf.create_dataset(name="kappa_coherence_spectrum_reoptimized", shape=[data_len, args.kappa_coherence_bins], dtype=np.float32) hf.create_dataset(name="observation_frequencies", shape=[args.observation_coherence_bins], dtype=np.float32) hf.create_dataset(name="source_frequencies", shape=[args.source_coherence_bins], dtype=np.float32) hf.create_dataset(name="kappa_frequencies", shape=[args.kappa_coherence_bins], dtype=np.float32) hf.create_dataset(name="kappa_fov", shape=[1], dtype=np.float32) hf.create_dataset(name="source_fov", shape=[1], dtype=np.float32) hf.create_dataset(name="observation_fov", shape=[1], dtype=np.float32) for i in range(data_len): checkpoint_manager.checkpoint.restore( checkpoint_manager.latest_checkpoint).expect_partial( ) # reset model weights # Produce an observation kappa = 10**kappa_vae.sample(1) source = tf.nn.relu(source_vae.sample(1)) source /= tf.reduce_max(source, axis=(1, 2, 3), keepdims=True) noise_rms = 10**tf.random.uniform(shape=[1], minval=-2.5, maxval=-1) fwhm = tf.random.uniform(shape=[1], minval=0.06, maxval=0.3) psf = phys.psf_models(fwhm, cutout_size=psf_pixels) observation = phys.noisy_forward(source, kappa, noise_rms, psf) # RIM predictions for kappa and source source_pred, kappa_pred, chi_squared = rim.predict( observation, noise_rms, psf) observation_pred = phys.forward(source_pred[-1], kappa_pred[-1], psf) source_o = source_pred[-1] kappa_o = kappa_pred[-1] # Latent code of model predictions z_source, _ = source_vae.encoder(source_o) z_kappa, _ = kappa_vae.encoder(log_10(kappa_o)) # Ground truth latent code for oracle metrics z_source_gt, _ = source_vae.encoder(source) z_kappa_gt, _ = kappa_vae.encoder(log_10(kappa)) # Re-optimize weights of the model STEPS = args.re_optimize_steps learning_rate_schedule = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=args.learning_rate, decay_rate=args.decay_rate, decay_steps=args.decay_steps, staircase=args.staircase) optim = tf.keras.optimizers.RMSprop( learning_rate=learning_rate_schedule) chi_squared_series = tf.TensorArray(DTYPE, size=STEPS) source_mse = tf.TensorArray(DTYPE, size=STEPS) kappa_mse = tf.TensorArray(DTYPE, size=STEPS) sampled_chi_squared_series = tf.TensorArray(DTYPE, size=STEPS) sampled_source_mse = tf.TensorArray(DTYPE, size=STEPS) sampled_kappa_mse = tf.TensorArray(DTYPE, size=STEPS) best = chi_squared source_best = source_pred[-1] kappa_best = kappa_pred[-1] source_mse_best = tf.reduce_mean((source_best - source)**2) kappa_mse_best = tf.reduce_mean((kappa_best - log_10(kappa))**2) # ===================== Optimization ============================== for current_step in tqdm(range(STEPS)): # ===================== VAE SAMPLING ============================== # L1 distance with ground truth in latent space -- this is changed by an user defined value when using real data # z_source_std = tf.abs(z_source - z_source_gt) # z_kappa_std = tf.abs(z_kappa - z_kappa_gt) z_source_std = args.source_vae_ball_size z_kappa_std = args.kappa_vae_ball_size # Sample latent code, then decode and forward z_s = tf.random.normal( shape=[args.sample_size, source_vae.latent_size], mean=z_source, stddev=z_source_std) z_k = tf.random.normal( shape=[args.sample_size, kappa_vae.latent_size], mean=z_kappa, stddev=z_kappa_std) sampled_source = tf.nn.relu(source_vae.decode(z_s)) sampled_source /= tf.reduce_max(sampled_source, axis=(1, 2, 3), keepdims=True) sampled_kappa = kappa_vae.decode(z_k) # output in log_10 space sampled_observation = phys.noisy_forward( sampled_source, 10**sampled_kappa, noise_rms, tf.tile(psf, [args.sample_size, 1, 1, 1])) with tf.GradientTape() as tape: tape.watch(unet.trainable_variables) s, k, chi_sq = rim.call( sampled_observation, noise_rms, tf.tile(psf, [args.sample_size, 1, 1, 1]), outer_tape=tape) _kappa_mse = tf.reduce_sum(wk(10**sampled_kappa) * (k - sampled_kappa)**2, axis=(2, 3, 4)) cost = tf.reduce_mean(_kappa_mse) cost += tf.reduce_mean((s - sampled_source)**2) cost += tf.reduce_sum(rim.unet.losses) # weight decay grads = tape.gradient(cost, unet.trainable_variables) optim.apply_gradients(zip(grads, unet.trainable_variables)) # Record performance on sampled dataset sampled_chi_squared_series = sampled_chi_squared_series.write( index=current_step, value=tf.squeeze(tf.reduce_mean(chi_sq[-1]))) sampled_source_mse = sampled_source_mse.write( index=current_step, value=tf.reduce_mean((s[-1] - sampled_source)**2)) sampled_kappa_mse = sampled_kappa_mse.write( index=current_step, value=tf.reduce_mean((k[-1] - sampled_kappa)**2)) # Record model prediction on data s, k, chi_sq = rim.call(observation, noise_rms, psf) chi_squared_series = chi_squared_series.write( index=current_step, value=tf.squeeze(chi_sq)) source_o = s[-1] kappa_o = k[-1] # oracle metrics, remove when using real data source_mse = source_mse.write(index=current_step, value=tf.reduce_mean( (source_o - source)**2)) kappa_mse = kappa_mse.write(index=current_step, value=tf.reduce_mean( (kappa_o - log_10(kappa))**2)) if abs(chi_sq[-1, 0] - 1) < abs(best[-1, 0] - 1): source_best = tf.nn.relu(source_o) kappa_best = 10**kappa_o best = chi_sq source_mse_best = tf.reduce_mean((source_best - source)**2) kappa_mse_best = tf.reduce_mean( (kappa_best - log_10(kappa))**2) source_o = source_best kappa_o = kappa_best y_pred = phys.forward(source_o, kappa_o, psf) chi_sq_series = tf.transpose(chi_squared_series.stack()) source_mse = source_mse.stack() kappa_mse = kappa_mse.stack() sampled_chi_squared_series = sampled_chi_squared_series.stack() sampled_source_mse = sampled_source_mse.stack() sampled_kappa_mse = sampled_kappa_mse.stack() # Latent code of optimized model predictions z_source_opt, _ = source_vae.encoder(tf.nn.relu(source_o)) z_kappa_opt, _ = kappa_vae.encoder(log_10(kappa_o)) # Compute Power spectrum of converged predictions _ps_observation = ps_observation.cross_correlation_coefficient( observation[..., 0], observation_pred[..., 0]) _ps_observation2 = ps_observation.cross_correlation_coefficient( observation[..., 0], y_pred[..., 0]) _ps_kappa = ps_kappa.cross_correlation_coefficient( log_10(kappa)[..., 0], log_10(kappa_pred[-1])[..., 0]) _ps_kappa2 = ps_kappa.cross_correlation_coefficient( log_10(kappa)[..., 0], log_10(kappa_o[..., 0])) _ps_source = ps_source.cross_correlation_coefficient( source[..., 0], source_pred[-1][..., 0]) _ps_source2 = ps_source.cross_correlation_coefficient( source[..., 0], source_o[..., 0]) # save results hf["observation"][i] = observation.numpy().astype(np.float32) hf["psf"][i] = psf.numpy().astype(np.float32) hf["psf_fwhm"][i] = fwhm.numpy().astype(np.float32) hf["noise_rms"][i] = noise_rms.numpy().astype(np.float32) hf["source"][i] = source.numpy().astype(np.float32) hf["kappa"][i] = kappa.numpy().astype(np.float32) hf["observation_pred"][i] = observation_pred.numpy().astype( np.float32) hf["observation_pred_reoptimized"][i] = y_pred.numpy().astype( np.float32) hf["source_pred"][i] = tf.transpose( source_pred, perm=(1, 0, 2, 3, 4)).numpy().astype(np.float32) hf["source_pred_reoptimized"][i] = source_o.numpy().astype( np.float32) hf["kappa_pred"][i] = tf.transpose( kappa_pred, perm=(1, 0, 2, 3, 4)).numpy().astype(np.float32) hf["kappa_pred_reoptimized"][i] = kappa_o.numpy().astype( np.float32) hf["chi_squared"][i] = tf.squeeze(chi_squared).numpy().astype( np.float32) hf["chi_squared_reoptimized"][i] = tf.squeeze(best).numpy().astype( np.float32) hf["chi_squared_reoptimized_series"][i] = chi_sq_series.numpy( ).astype(np.float32) hf["sampled_chi_squared_reoptimized_series"][ i] = 2 * sampled_chi_squared_series.numpy().astype(np.float32) hf["source_optim_mse"][i] = source_mse_best.numpy().astype( np.float32) hf["source_optim_mse_series"][i] = source_mse.numpy().astype( np.float32) hf["sampled_source_optim_mse_series"][ i] = sampled_source_mse.numpy().astype(np.float32) hf["kappa_optim_mse"][i] = kappa_mse_best.numpy().astype( np.float32) hf["kappa_optim_mse_series"][i] = kappa_mse.numpy().astype( np.float32) hf["sampled_kappa_optim_mse_series"][i] = sampled_kappa_mse.numpy( ).astype(np.float32) hf["latent_source_gt_distance_init"][i] = tf.abs( z_source - z_source_gt).numpy().squeeze().astype(np.float32) hf["latent_kappa_gt_distance_init"][i] = tf.abs( z_kappa - z_kappa_gt).numpy().squeeze().astype(np.float32) hf["latent_source_gt_distance_end"][i] = tf.abs( z_source_opt - z_source_gt).numpy().squeeze().astype( np.float32) hf["latent_kappa_gt_distance_end"][i] = tf.abs( z_kappa_opt - z_kappa_gt).numpy().squeeze().astype(np.float32) hf["observation_coherence_spectrum"][i] = _ps_observation hf["observation_coherence_spectrum_reoptimized"][ i] = _ps_observation2 hf["source_coherence_spectrum"][i] = _ps_source hf["source_coherence_spectrum_reoptimized"][i] = _ps_source2 hf["kappa_coherence_spectrum"][i] = _ps_kappa hf["kappa_coherence_spectrum_reoptimized"][i] = _ps_kappa2 if i == 0: _, f = np.histogram(np.fft.fftfreq(phys.pixels)[:phys.pixels // 2], bins=ps_observation.bins) f = (f[:-1] + f[1:]) / 2 hf["observation_frequencies"][:] = f _, f = np.histogram(np.fft.fftfreq( phys.src_pixels)[:phys.src_pixels // 2], bins=ps_source.bins) f = (f[:-1] + f[1:]) / 2 hf["source_frequencies"][:] = f _, f = np.histogram(np.fft.fftfreq( phys.kappa_pixels)[:phys.kappa_pixels // 2], bins=ps_kappa.bins) f = (f[:-1] + f[1:]) / 2 hf["kappa_frequencies"][:] = f hf["kappa_fov"][0] = phys.kappa_fov hf["source_fov"][0] = phys.src_fov
def distributed_strategy(args): tf.random.set_seed(args.seed) np.random.seed(args.seed) model = os.path.join(os.getenv('CENSAI_PATH'), "models", args.model) files = glob.glob( os.path.join(os.getenv('CENSAI_PATH'), "data", args.train_dataset, "*.tfrecords")) files = tf.data.Dataset.from_tensor_slices(files) train_dataset = files.interleave(lambda x: tf.data.TFRecordDataset( x, compression_type=args.compression_type).shuffle(len(files)), block_length=1, num_parallel_calls=tf.data.AUTOTUNE) # Read off global parameters from first example in dataset for physical_params in train_dataset.map(decode_physical_model_info): break train_dataset = train_dataset.map(decode_results).shuffle( buffer_size=args.buffer_size) files = glob.glob( os.path.join(os.getenv('CENSAI_PATH'), "data", args.val_dataset, "*.tfrecords")) files = tf.data.Dataset.from_tensor_slices(files) val_dataset = files.interleave(lambda x: tf.data.TFRecordDataset( x, compression_type=args.compression_type).shuffle(len(files)), block_length=1, num_parallel_calls=tf.data.AUTOTUNE) val_dataset = val_dataset.map(decode_results).shuffle( buffer_size=args.buffer_size) files = glob.glob( os.path.join(os.getenv('CENSAI_PATH'), "data", args.test_dataset, "*.tfrecords")) files = tf.data.Dataset.from_tensor_slices(files) test_dataset = files.interleave(lambda x: tf.data.TFRecordDataset( x, compression_type=args.compression_type).shuffle(len(files)), block_length=1, num_parallel_calls=tf.data.AUTOTUNE) test_dataset = test_dataset.map(decode_results).shuffle( buffer_size=args.buffer_size) ps_lens = PowerSpectrum(bins=args.lens_coherence_bins, pixels=physical_params["pixels"].numpy()) ps_source = PowerSpectrum(bins=args.source_coherence_bins, pixels=physical_params["src pixels"].numpy()) ps_kappa = PowerSpectrum(bins=args.kappa_coherence_bins, pixels=physical_params["kappa pixels"].numpy()) phys = PhysicalModel( pixels=physical_params["pixels"].numpy(), kappa_pixels=physical_params["kappa pixels"].numpy(), src_pixels=physical_params["src pixels"].numpy(), image_fov=physical_params["image fov"].numpy(), kappa_fov=physical_params["kappa fov"].numpy(), src_fov=physical_params["source fov"].numpy(), method="fft", ) phys_sie = AnalyticalPhysicalModel( pixels=physical_params["pixels"].numpy(), image_fov=physical_params["image fov"].numpy(), src_fov=physical_params["source fov"].numpy()) with open(os.path.join(model, "unet_hparams.json")) as f: unet_params = json.load(f) unet_params["kernel_l2_amp"] = args.l2_amp unet = Model(**unet_params) ckpt = tf.train.Checkpoint(net=unet) checkpoint_manager = tf.train.CheckpointManager(ckpt, model, 1) checkpoint_manager.checkpoint.restore( checkpoint_manager.latest_checkpoint).expect_partial() with open(os.path.join(model, "rim_hparams.json")) as f: rim_params = json.load(f) rim = RIM(phys, unet, **rim_params) dataset_names = [args.train_dataset, args.val_dataset, args.test_dataset] dataset_shapes = [args.train_size, args.val_size, args.test_size] model_name = os.path.split(model)[-1] # from censai.utils import nulltape # def call_with_mask(self, lensed_image, noise_rms, psf, mask, outer_tape=nulltape): # """ # Used in training. Return linked kappa and source maps. # """ # batch_size = lensed_image.shape[0] # source, kappa, source_grad, kappa_grad, states = self.initial_states(batch_size) # initiate all tensors to 0 # source, kappa, states = self.time_step(lensed_image, source, kappa, source_grad, kappa_grad, # states) # Use lens to make an initial guess with Unet # source_series = tf.TensorArray(DTYPE, size=self.steps) # kappa_series = tf.TensorArray(DTYPE, size=self.steps) # chi_squared_series = tf.TensorArray(DTYPE, size=self.steps) # # record initial guess # source_series = source_series.write(index=0, value=source) # kappa_series = kappa_series.write(index=0, value=kappa) # # Main optimization loop # for current_step in tf.range(self.steps - 1): # with outer_tape.stop_recording(): # with tf.GradientTape() as g: # g.watch(source) # g.watch(kappa) # y_pred = self.physical_model.forward(self.source_link(source), self.kappa_link(kappa), psf) # flux_term = tf.square( # tf.reduce_sum(y_pred, axis=(1, 2, 3)) - tf.reduce_sum(lensed_image, axis=(1, 2, 3))) # log_likelihood = 0.5 * tf.reduce_sum( # tf.square(y_pred - mask * lensed_image) / noise_rms[:, None, None, None] ** 2, axis=(1, 2, 3)) # cost = tf.reduce_mean(log_likelihood + self.flux_lagrange_multiplier * flux_term) # source_grad, kappa_grad = g.gradient(cost, [source, kappa]) # source_grad, kappa_grad = self.grad_update(source_grad, kappa_grad, current_step) # source, kappa, states = self.time_step(lensed_image, source, kappa, source_grad, kappa_grad, states) # source_series = source_series.write(index=current_step + 1, value=source) # kappa_series = kappa_series.write(index=current_step + 1, value=kappa) # chi_squared_series = chi_squared_series.write(index=current_step, # value=log_likelihood / self.pixels ** 2) # renormalize chi squared here # # last step score # log_likelihood = self.physical_model.log_likelihood(y_true=lensed_image, source=self.source_link(source), # kappa=self.kappa_link(kappa), psf=psf, noise_rms=noise_rms) # chi_squared_series = chi_squared_series.write(index=self.steps - 1, value=log_likelihood) # return source_series.stack(), kappa_series.stack(), chi_squared_series.stack() with h5py.File( os.path.join( os.getenv("CENSAI_PATH"), "results", args.experiment_name + "_" + model_name + f"_{THIS_WORKER:02d}.h5"), 'w') as hf: for i, dataset in enumerate([train_dataset, val_dataset, test_dataset]): g = hf.create_group(f'{dataset_names[i]}') data_len = dataset_shapes[i] // N_WORKERS g.create_dataset(name="lens", shape=[data_len, phys.pixels, phys.pixels, 1], dtype=np.float32) g.create_dataset(name="psf", shape=[ data_len, physical_params['psf pixels'], physical_params['psf pixels'], 1 ], dtype=np.float32) g.create_dataset(name="psf_fwhm", shape=[data_len], dtype=np.float32) g.create_dataset(name="noise_rms", shape=[data_len], dtype=np.float32) g.create_dataset( name="source", shape=[data_len, phys.src_pixels, phys.src_pixels, 1], dtype=np.float32) g.create_dataset( name="kappa", shape=[data_len, phys.kappa_pixels, phys.kappa_pixels, 1], dtype=np.float32) g.create_dataset(name="lens_pred", shape=[data_len, phys.pixels, phys.pixels, 1], dtype=np.float32) g.create_dataset(name="lens_pred_reoptimized", shape=[data_len, phys.pixels, phys.pixels, 1], dtype=np.float32) g.create_dataset(name="source_pred", shape=[ data_len, rim.steps, phys.src_pixels, phys.src_pixels, 1 ], dtype=np.float32) g.create_dataset( name="source_pred_reoptimized", shape=[data_len, phys.src_pixels, phys.src_pixels, 1]) g.create_dataset(name="kappa_pred", shape=[ data_len, rim.steps, phys.kappa_pixels, phys.kappa_pixels, 1 ], dtype=np.float32) g.create_dataset( name="kappa_pred_reoptimized", shape=[data_len, phys.kappa_pixels, phys.kappa_pixels, 1], dtype=np.float32) g.create_dataset(name="chi_squared", shape=[data_len, rim.steps], dtype=np.float32) g.create_dataset(name="chi_squared_reoptimized", shape=[data_len], dtype=np.float32) g.create_dataset(name="chi_squared_reoptimized_series", shape=[data_len, args.re_optimize_steps], dtype=np.float32) g.create_dataset(name="source_optim_mse", shape=[data_len], dtype=np.float32) g.create_dataset(name="source_optim_mse_series", shape=[data_len, args.re_optimize_steps], dtype=np.float32) g.create_dataset(name="kappa_optim_mse", shape=[data_len], dtype=np.float32) g.create_dataset(name="kappa_optim_mse_series", shape=[data_len, args.re_optimize_steps], dtype=np.float32) g.create_dataset(name="lens_coherence_spectrum", shape=[data_len, args.lens_coherence_bins], dtype=np.float32) g.create_dataset(name="source_coherence_spectrum", shape=[data_len, args.source_coherence_bins], dtype=np.float32) g.create_dataset(name="lens_coherence_spectrum2", shape=[data_len, args.lens_coherence_bins], dtype=np.float32) g.create_dataset(name="lens_coherence_spectrum_reoptimized", shape=[data_len, args.lens_coherence_bins], dtype=np.float32) g.create_dataset(name="source_coherence_spectrum2", shape=[data_len, args.source_coherence_bins], dtype=np.float32) g.create_dataset(name="source_coherence_spectrum_reoptimized", shape=[data_len, args.source_coherence_bins], dtype=np.float32) g.create_dataset(name="kappa_coherence_spectrum", shape=[data_len, args.kappa_coherence_bins], dtype=np.float32) g.create_dataset(name="kappa_coherence_spectrum_reoptimized", shape=[data_len, args.kappa_coherence_bins], dtype=np.float32) g.create_dataset(name="lens_frequencies", shape=[args.lens_coherence_bins], dtype=np.float32) g.create_dataset(name="source_frequencies", shape=[args.source_coherence_bins], dtype=np.float32) g.create_dataset(name="kappa_frequencies", shape=[args.kappa_coherence_bins], dtype=np.float32) g.create_dataset(name="kappa_fov", shape=[1], dtype=np.float32) g.create_dataset(name="source_fov", shape=[1], dtype=np.float32) g.create_dataset(name="lens_fov", shape=[1], dtype=np.float32) dataset = dataset.skip(data_len * (THIS_WORKER - 1)).take(data_len) for batch, (lens, source, kappa, noise_rms, psf, fwhm) in enumerate( dataset.batch(1).prefetch( tf.data.experimental.AUTOTUNE)): checkpoint_manager.checkpoint.restore( checkpoint_manager.latest_checkpoint).expect_partial( ) # reset model weights # Compute predictions for kappa and source source_pred, kappa_pred, chi_squared = rim.predict( lens, noise_rms, psf) lens_pred = phys.forward(source_pred[-1], kappa_pred[-1], psf) # Re-optimize weights of the model STEPS = args.re_optimize_steps learning_rate_schedule = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=args.learning_rate, decay_rate=args.decay_rate, decay_steps=args.decay_steps, staircase=args.staircase) optim = tf.keras.optimizers.RMSprop( learning_rate=learning_rate_schedule) chi_squared_series = tf.TensorArray(DTYPE, size=STEPS) source_mse = tf.TensorArray(DTYPE, size=STEPS) kappa_mse = tf.TensorArray(DTYPE, size=STEPS) best = chi_squared[-1, 0] # best = abs(2*chi_squared[-1, 0] - 1) # best_chisq = 2*chi_squared[-1, 0] source_best = source_pred[-1] kappa_best = kappa_pred[-1] # source_mean = source_pred[-1] # kappa_mean = rim.kappa_link(kappa_pred[-1]) # source_std = tf.zeros_like(source_mean) # kappa_std = tf.zeros_like(kappa_mean) # counter = 0 for current_step in tqdm(range(STEPS)): with tf.GradientTape() as tape: tape.watch(unet.trainable_variables) # s, k, chi_sq = call_with_mask(rim, lens, noise_rms, psf, mask, tape) s, k, chi_sq = rim.call(lens, noise_rms, psf, outer_tape=tape) cost = tf.reduce_mean(chi_sq) # mean over time steps cost += tf.reduce_sum(rim.unet.losses) log_likelihood = chi_sq[-1] chi_squared_series = chi_squared_series.write( index=current_step, value=log_likelihood) source_o = s[-1] kappa_o = k[-1] source_mse = source_mse.write( index=current_step, value=tf.reduce_mean( (source_o - rim.source_inverse_link(source))**2)) kappa_mse = kappa_mse.write( index=current_step, value=tf.reduce_mean( (kappa_o - rim.kappa_inverse_link(kappa))**2)) if chi_sq[-1, 0] < args.converged_chisq: source_best = rim.source_link(source_o) kappa_best = rim.kappa_link(kappa_o) best = chi_sq[-1, 0] break if chi_sq[-1, 0] < best: source_best = rim.source_link(source_o) kappa_best = rim.kappa_link(kappa_o) best = chi_sq[-1, 0] source_mse_best = tf.reduce_mean( (source_best - rim.source_inverse_link(source))**2) kappa_mse_best = tf.reduce_mean( (kappa_best - rim.kappa_inverse_link(kappa))**2) # if counter > 0: # # Welford's online algorithm # # source # delta = source_o - source_mean # source_mean = (counter * source_mean + (counter + 1) * source_o)/(counter + 1) # delta2 = source_o - source_mean # source_std += delta * delta2 # # kappa # delta = rim.kappa_link(kappa_o) - kappa_mean # kappa_mean = (counter * kappa_mean + (counter + 1) * rim.kappa_link(kappa_o)) / (counter + 1) # delta2 = rim.kappa_link(kappa_o) - kappa_mean # kappa_std += delta * delta2 # if best_chisq < args.converged_chisq: # counter += 1 # if counter == args.window: # break # if 2*chi_sq[-1, 0] < best_chisq: # best_chisq = 2*chi_sq[-1, 0] # if abs(2*chi_sq[-1, 0] - 1) < best: # source_best = rim.source_link(source_o) # kappa_best = rim.kappa_link(kappa_o) # best = abs(2 * chi_squared[-1, 0] - 1) # source_mse_best = tf.reduce_mean((source_best - rim.source_inverse_link(source)) ** 2) # kappa_mse_best = tf.reduce_mean((kappa_best - rim.kappa_inverse_link(kappa)) ** 2) grads = tape.gradient(cost, unet.trainable_variables) optim.apply_gradients(zip(grads, unet.trainable_variables)) source_o = source_best kappa_o = kappa_best y_pred = phys.forward(source_o, kappa_o, psf) chi_sq_series = tf.transpose(chi_squared_series.stack(), perm=[1, 0]) source_mse = source_mse.stack()[None, ...] kappa_mse = kappa_mse.stack()[None, ...] # kappa_std /= float(args.window) # source_std /= float(args.window) # Compute Power spectrum of converged predictions _ps_lens = ps_lens.cross_correlation_coefficient( lens[..., 0], lens_pred[..., 0]) _ps_lens3 = ps_lens.cross_correlation_coefficient( lens[..., 0], y_pred[..., 0]) _ps_kappa = ps_kappa.cross_correlation_coefficient( log_10(kappa)[..., 0], log_10(kappa_pred[-1])[..., 0]) _ps_kappa2 = ps_kappa.cross_correlation_coefficient( log_10(kappa)[..., 0], log_10(kappa_o[..., 0])) _ps_source = ps_source.cross_correlation_coefficient( source[..., 0], source_pred[-1][..., 0]) _ps_source3 = ps_source.cross_correlation_coefficient( source[..., 0], source_o[..., 0]) # save results g["lens"][batch] = lens.numpy().astype(np.float32) g["psf"][batch] = psf.numpy().astype(np.float32) g["psf_fwhm"][batch] = fwhm.numpy().astype(np.float32) g["noise_rms"][batch] = noise_rms.numpy().astype(np.float32) g["source"][batch] = source.numpy().astype(np.float32) g["kappa"][batch] = kappa.numpy().astype(np.float32) g["lens_pred"][batch] = lens_pred.numpy().astype(np.float32) g["lens_pred_reoptimized"][batch] = y_pred.numpy().astype( np.float32) g["source_pred"][batch] = tf.transpose( source_pred, perm=(1, 0, 2, 3, 4)).numpy().astype(np.float32) g["source_pred_reoptimized"][batch] = source_o.numpy().astype( np.float32) g["kappa_pred"][batch] = tf.transpose( kappa_pred, perm=(1, 0, 2, 3, 4)).numpy().astype(np.float32) g["kappa_pred_reoptimized"][batch] = kappa_o.numpy().astype( np.float32) g["chi_squared"][batch] = tf.transpose( chi_squared).numpy().astype(np.float32) g["chi_squared_reoptimized"][batch] = best.numpy().astype( np.float32) g["chi_squared_reoptimized_series"][ batch] = chi_sq_series.numpy().astype(np.float32) g["source_optim_mse"][batch] = source_mse_best.numpy().astype( np.float32) g["source_optim_mse_series"][batch] = source_mse.numpy( ).astype(np.float32) g["kappa_optim_mse"][batch] = kappa_mse_best.numpy().astype( np.float32) g["kappa_optim_mse_series"][batch] = kappa_mse.numpy().astype( np.float32) g["lens_coherence_spectrum"][batch] = _ps_lens g["lens_coherence_spectrum_reoptimized"][batch] = _ps_lens3 g["source_coherence_spectrum"][batch] = _ps_source g["source_coherence_spectrum_reoptimized"][batch] = _ps_source3 g["lens_coherence_spectrum"][batch] = _ps_lens g["lens_coherence_spectrum"][batch] = _ps_lens g["kappa_coherence_spectrum"][batch] = _ps_kappa g["kappa_coherence_spectrum_reoptimized"][batch] = _ps_kappa2 if batch == 0: _, f = np.histogram(np.fft.fftfreq( phys.pixels)[:phys.pixels // 2], bins=ps_lens.bins) f = (f[:-1] + f[1:]) / 2 g["lens_frequencies"][:] = f _, f = np.histogram(np.fft.fftfreq( phys.src_pixels)[:phys.src_pixels // 2], bins=ps_source.bins) f = (f[:-1] + f[1:]) / 2 g["source_frequencies"][:] = f _, f = np.histogram(np.fft.fftfreq( phys.kappa_pixels)[:phys.kappa_pixels // 2], bins=ps_kappa.bins) f = (f[:-1] + f[1:]) / 2 g["kappa_frequencies"][:] = f g["kappa_fov"][0] = phys.kappa_fov g["source_fov"][0] = phys.src_fov # Create SIE test g = hf.create_group(f'SIE_test') data_len = args.sie_size // N_WORKERS sie_dataset = test_dataset.skip(data_len * (THIS_WORKER - 1)).take(data_len) g.create_dataset(name="lens", shape=[data_len, phys.pixels, phys.pixels, 1], dtype=np.float32) g.create_dataset(name="psf", shape=[ data_len, physical_params['psf pixels'], physical_params['psf pixels'], 1 ], dtype=np.float32) g.create_dataset(name="psf_fwhm", shape=[data_len], dtype=np.float32) g.create_dataset(name="noise_rms", shape=[data_len], dtype=np.float32) g.create_dataset(name="source", shape=[data_len, phys.src_pixels, phys.src_pixels, 1], dtype=np.float32) g.create_dataset( name="kappa", shape=[data_len, phys.kappa_pixels, phys.kappa_pixels, 1], dtype=np.float32) g.create_dataset(name="lens_pred", shape=[data_len, phys.pixels, phys.pixels, 1], dtype=np.float32) g.create_dataset(name="lens_pred2", shape=[data_len, phys.pixels, phys.pixels, 1], dtype=np.float32) g.create_dataset( name="source_pred", shape=[data_len, rim.steps, phys.src_pixels, phys.src_pixels, 1], dtype=np.float32) g.create_dataset(name="kappa_pred", shape=[ data_len, rim.steps, phys.kappa_pixels, phys.kappa_pixels, 1 ], dtype=np.float32) g.create_dataset(name="chi_squared", shape=[data_len, rim.steps], dtype=np.float32) g.create_dataset(name="lens_coherence_spectrum", shape=[data_len, args.lens_coherence_bins], dtype=np.float32) g.create_dataset(name="source_coherence_spectrum", shape=[data_len, args.source_coherence_bins], dtype=np.float32) g.create_dataset(name="lens_coherence_spectrum2", shape=[data_len, args.lens_coherence_bins], dtype=np.float32) g.create_dataset(name="source_coherence_spectrum2", shape=[data_len, args.source_coherence_bins], dtype=np.float32) g.create_dataset(name="kappa_coherence_spectrum", shape=[data_len, args.kappa_coherence_bins], dtype=np.float32) g.create_dataset(name="lens_frequencies", shape=[args.lens_coherence_bins], dtype=np.float32) g.create_dataset(name="source_frequencies", shape=[args.source_coherence_bins], dtype=np.float32) g.create_dataset(name="kappa_frequencies", shape=[args.kappa_coherence_bins], dtype=np.float32) g.create_dataset(name="einstein_radius", shape=[data_len], dtype=np.float32) g.create_dataset(name="position", shape=[data_len, 2], dtype=np.float32) g.create_dataset(name="orientation", shape=[data_len], dtype=np.float32) g.create_dataset(name="ellipticity", shape=[data_len], dtype=np.float32) g.create_dataset(name="kappa_fov", shape=[1], dtype=np.float32) g.create_dataset(name="source_fov", shape=[1], dtype=np.float32) g.create_dataset(name="lens_fov", shape=[1], dtype=np.float32) for batch, (_, source, _, noise_rms, psf, fwhm) in enumerate( sie_dataset.take(data_len).batch(args.batch_size).prefetch( tf.data.experimental.AUTOTUNE)): batch_size = source.shape[0] # Create some SIE kappa maps _r = tf.random.uniform(shape=[batch_size, 1, 1, 1], minval=0, maxval=args.max_shift) _theta = tf.random.uniform(shape=[batch_size, 1, 1, 1], minval=-np.pi, maxval=np.pi) x0 = _r * tf.math.cos(_theta) y0 = _r * tf.math.sin(_theta) ellipticity = tf.random.uniform(shape=[batch_size, 1, 1, 1], minval=0., maxval=args.max_ellipticity) phi = tf.random.uniform(shape=[batch_size, 1, 1, 1], minval=-np.pi, maxval=np.pi) einstein_radius = tf.random.uniform(shape=[batch_size, 1, 1, 1], minval=args.min_theta_e, maxval=args.max_theta_e) kappa = phys_sie.kappa_field(x0=x0, y0=y0, e=ellipticity, phi=phi, r_ein=einstein_radius) lens = phys.noisy_forward(source, kappa, noise_rms=noise_rms, psf=psf) # Compute predictions for kappa and source source_pred, kappa_pred, chi_squared = rim.predict( lens, noise_rms, psf) lens_pred = phys.forward(source_pred[-1], kappa_pred[-1], psf) # Compute Power spectrum of converged predictions _ps_lens = ps_lens.cross_correlation_coefficient( lens[..., 0], lens_pred[..., 0]) _ps_kappa = ps_kappa.cross_correlation_coefficient( log_10(kappa)[..., 0], log_10(kappa_pred[-1])[..., 0]) _ps_source = ps_source.cross_correlation_coefficient( source[..., 0], source_pred[-1][..., 0]) # save results i_begin = batch * args.batch_size i_end = i_begin + batch_size g["lens"][i_begin:i_end] = lens.numpy().astype(np.float32) g["psf"][i_begin:i_end] = psf.numpy().astype(np.float32) g["psf_fwhm"][i_begin:i_end] = fwhm.numpy().astype(np.float32) g["noise_rms"][i_begin:i_end] = noise_rms.numpy().astype( np.float32) g["source"][i_begin:i_end] = source.numpy().astype(np.float32) g["kappa"][i_begin:i_end] = kappa.numpy().astype(np.float32) g["lens_pred"][i_begin:i_end] = lens_pred.numpy().astype( np.float32) g["source_pred"][i_begin:i_end] = tf.transpose( source_pred, perm=(1, 0, 2, 3, 4)).numpy().astype(np.float32) g["kappa_pred"][i_begin:i_end] = tf.transpose( kappa_pred, perm=(1, 0, 2, 3, 4)).numpy().astype(np.float32) g["chi_squared"][i_begin:i_end] = 2 * tf.transpose( chi_squared).numpy().astype(np.float32) g["lens_coherence_spectrum"][i_begin:i_end] = _ps_lens.numpy( ).astype(np.float32) g["source_coherence_spectrum"][i_begin:i_end] = _ps_source.numpy( ).astype(np.float32) g["kappa_coherence_spectrum"][i_begin:i_end] = _ps_kappa.numpy( ).astype(np.float32) g["einstein_radius"][ i_begin:i_end] = einstein_radius[:, 0, 0, 0].numpy().astype(np.float32) g["position"][i_begin:i_end] = tf.stack( [x0[:, 0, 0, 0], y0[:, 0, 0, 0]], axis=1).numpy().astype(np.float32) g["ellipticity"][i_begin:i_end] = ellipticity[:, 0, 0, 0].numpy().astype( np.float32) g["orientation"][i_begin:i_end] = phi[:, 0, 0, 0].numpy().astype(np.float32) if batch == 0: _, f = np.histogram(np.fft.fftfreq(phys.pixels)[:phys.pixels // 2], bins=ps_lens.bins) f = (f[:-1] + f[1:]) / 2 g["lens_frequencies"][:] = f _, f = np.histogram(np.fft.fftfreq( phys.src_pixels)[:phys.src_pixels // 2], bins=ps_source.bins) f = (f[:-1] + f[1:]) / 2 g["source_frequencies"][:] = f _, f = np.histogram(np.fft.fftfreq( phys.kappa_pixels)[:phys.kappa_pixels // 2], bins=ps_kappa.bins) f = (f[:-1] + f[1:]) / 2 g["kappa_frequencies"][:] = f g["kappa_fov"][0] = phys.kappa_fov g["source_fov"][0] = phys.src_fov
def distributed_strategy(args): kappa_datasets = [] for path in args.kappa_datasets: files = glob.glob(os.path.join(path, "*.tfrecords")) files = tf.data.Dataset.from_tensor_slices(files).shuffle( len(files), reshuffle_each_iteration=True) dataset = files.interleave(lambda x: tf.data.TFRecordDataset( x, compression_type=args.compression_type), block_length=args.block_length, num_parallel_calls=tf.data.AUTOTUNE) kappa_datasets.append( dataset.shuffle(args.buffer_size, reshuffle_each_iteration=True)) kappa_dataset = tf.data.experimental.sample_from_datasets( kappa_datasets, weights=args.kappa_datasets_weights) # Read off global parameters from first example in dataset for example in kappa_dataset.map(decode_kappa_info): kappa_fov = example["kappa fov"].numpy() kappa_pixels = example["kappa pixels"].numpy() break kappa_dataset = kappa_dataset.map(decode_kappa).batch(args.batch_size) cosmos_datasets = [] for path in args.cosmos_datasets: files = glob.glob(os.path.join(path, "*.tfrecords")) files = tf.data.Dataset.from_tensor_slices(files).shuffle( len(files), reshuffle_each_iteration=True) dataset = files.interleave(lambda x: tf.data.TFRecordDataset( x, compression_type=args.compression_type), block_length=args.block_length, num_parallel_calls=tf.data.AUTOTUNE) cosmos_datasets.append( dataset.shuffle(args.buffer_size, reshuffle_each_iteration=True)) cosmos_dataset = tf.data.experimental.sample_from_datasets( cosmos_datasets, weights=args.cosmos_datasets_weights) # Read off global parameters from first example in dataset for src_pixels in cosmos_dataset.map(decode_cosmos_info): src_pixels = src_pixels.numpy() break cosmos_dataset = cosmos_dataset.map(decode_cosmos).map( preprocess_cosmos).batch(args.batch_size) window = tukey(src_pixels, alpha=args.tukey_alpha) window = np.outer(window, window)[np.newaxis, ..., np.newaxis] window = tf.constant(window, dtype=DTYPE) phys = PhysicalModel(image_fov=kappa_fov, src_fov=args.source_fov, pixels=args.lens_pixels, kappa_pixels=kappa_pixels, src_pixels=src_pixels, kappa_fov=kappa_fov, method="conv2d") noise_a = (args.noise_rms_min - args.noise_rms_mean) / args.noise_rms_std noise_b = (args.noise_rms_max - args.noise_rms_mean) / args.noise_rms_std psf_a = (args.psf_fwhm_min - args.psf_fwhm_mean) / args.psf_fwhm_std psf_b = (args.psf_fwhm_max - args.psf_fwhm_mean) / args.psf_fwhm_std options = tf.io.TFRecordOptions(compression_type=args.compression_type) with tf.io.TFRecordWriter( os.path.join(args.output_dir, f"data_{THIS_WORKER}.tfrecords"), options) as writer: print( f"Started worker {THIS_WORKER} at {datetime.now().strftime('%y-%m-%d_%H-%M-%S')}" ) for i in range((THIS_WORKER - 1) * args.batch_size, args.len_dataset, N_WORKERS * args.batch_size): for galaxies in cosmos_dataset: # select a random batch from our dataset that is reshuffled each iterations break for kappa in kappa_dataset: break galaxies = window * galaxies noise_rms = truncnorm.rvs(noise_a, noise_b, loc=args.noise_rms_mean, scale=args.noise_rms_std, size=args.batch_size) fwhm = truncnorm.rvs(psf_a, psf_b, loc=args.psf_fwhm_mean, scale=args.psf_fwhm_std, size=args.batch_size) psf = phys.psf_models(fwhm, cutout_size=args.psf_cutout_size) lensed_images = phys.noisy_forward(galaxies, kappa, noise_rms=noise_rms, psf=psf) records = encode_examples(kappa=kappa, galaxies=galaxies, lensed_images=lensed_images, z_source=args.z_source, z_lens=args.z_lens, image_fov=phys.image_fov, kappa_fov=phys.kappa_fov, source_fov=args.source_fov, noise_rms=noise_rms, psf=psf, fwhm=fwhm) for record in records: writer.write(record) print(f"Finished work at {datetime.now().strftime('%y-%m-%d_%H-%M-%S')}")
def __init__(self, observation, noise_rms, psf, phys: PhysicalModel, rim: RIM, source_vae: VAE, kappa_vae: VAE, n_samples=100, sigma_source=0.5, sigma_kappa=0.5): """ Make a copy of initial parameters \varphi^{(0)} and compute the Fisher diagonal F_{ii} """ wk = tf.keras.layers.Lambda(lambda k: tf.sqrt(k) / tf.reduce_sum( tf.sqrt(k), axis=(1, 2, 3), keepdims=True)) # Baseline prediction from observation source_pred, kappa_pred, chi_squared = rim.predict( observation, noise_rms, psf) # Latent code of model predictions z_source, _ = source_vae.encoder(source_pred[-1]) z_kappa, _ = kappa_vae.encoder(log_10(kappa_pred[-1])) # Deepcopy of the initial parameters self.initial_params = [ deepcopy(w) for w in rim.unet.trainable_variables ] self.fisher_diagonal = [tf.zeros_like(w) for w in self.initial_params] for n in range(n_samples): # Sample latent code around the prediction mean z_s = tf.random.normal(shape=[1, source_vae.latent_size], mean=z_source, stddev=sigma_source) z_k = tf.random.normal(shape=[1, kappa_vae.latent_size], mean=z_kappa, stddev=sigma_kappa) # Decode sampled_source = tf.nn.relu(source_vae.decode(z_s)) sampled_source /= tf.reduce_max(sampled_source, axis=(1, 2, 3), keepdims=True) sampled_kappa = kappa_vae.decode(z_k) # output in log_10 space # Simulate observation sampled_observation = phys.noisy_forward(sampled_source, 10**sampled_kappa, noise_rms, psf) # Compute the gradient of the MSE with tf.GradientTape() as tape: tape.watch(rim.unet.trainable_variables) s, k, chi_squared = rim.call(sampled_observation, noise_rms, psf) # Remove the temperature from the loss when computing the Fisher: sum instead of mean, and weighted sum is renormalized by number of pixels _kappa_mse = phys.kappa_pixels**2 * tf.reduce_sum( wk(10**sampled_kappa) * (k - sampled_kappa)**2, axis=(2, 3, 4)) cost = tf.reduce_sum(_kappa_mse) cost += tf.reduce_sum((s - sampled_source)**2) grad = tape.gradient(cost, rim.unet.trainable_variables) # Square the derivative relative to initial parameters and add to total self.fisher_diagonal = [ F + g**2 / n_samples for F, g in zip(self.fisher_diagonal, grad) ]