Ejemplo n.º 1
0
class BotTrainer(object):
    def __init__(self, corpus_dir):
        self.graph = tf.Graph()
        with self.graph.as_default():
            tokenized_data = TokenizedData(corpus_dir=corpus_dir)

            self.hparams = tokenized_data.hparams
            self.train_batch = tokenized_data.get_training_batch()
            self.model = ModelCreator(training=True,
                                      tokenized_data=tokenized_data,
                                      batch_input=self.train_batch)

    def train(self, result_dir, target=""):
        """Train a seq2seq model."""
        # Summary writer
        summary_name = "train_log"
        summary_writer = tf.summary.FileWriter(
            os.path.join(result_dir, summary_name), self.graph)

        log_device_placement = self.hparams.log_device_placement
        num_epochs = self.hparams.num_epochs

        config_proto = tf.ConfigProto(
            log_device_placement=log_device_placement,
            allow_soft_placement=True)
        config_proto.gpu_options.allow_growth = True

        with tf.Session(target=target, config=config_proto,
                        graph=self.graph) as sess:
            sess.run(tf.global_variables_initializer())
            sess.run(tf.tables_initializer())
            global_step = self.model.global_step.eval(session=sess)

            # Initialize all of the iterators
            sess.run(self.train_batch.initializer)

            # Initialize the statistic variables
            ckpt_loss, ckpt_predict_count = 0.0, 0.0
            train_perp, last_record_perp = 2000.0, 2.0
            train_epoch = 0

            print("# Training loop started @ {}".format(
                time.strftime("%Y-%m-%d %H:%M:%S")))
            epoch_start_time = time.time()
            while train_epoch < num_epochs:
                # Each run of this while loop is a training step, multiple time/steps will trigger
                # the train_epoch to be increased.
                learning_rate = self._get_learning_rate(train_perp)

                try:
                    step_result = self.model.train_step(
                        sess, learning_rate=learning_rate)
                    (_, step_loss, step_predict_count, step_summary,
                     global_step, step_word_count, batch_size) = step_result

                    # Write step summary.
                    summary_writer.add_summary(step_summary, global_step)

                    # update statistics
                    ckpt_loss += (step_loss * batch_size)
                    ckpt_predict_count += step_predict_count
                except tf.errors.OutOfRangeError:
                    # Finished going through the training dataset. Go to next epoch.
                    train_epoch += 1

                    mean_loss = ckpt_loss / ckpt_predict_count
                    train_perp = math.exp(
                        float(mean_loss)) if mean_loss < 300 else math.inf

                    epoch_dur = time.time() - epoch_start_time
                    print(
                        "# Finished epoch {:2d} @ step {:5d} @ {}. In the epoch, learning rate = {:.6f}, "
                        "mean loss = {:.4f}, perplexity = {:8.4f}, and {:.2f} seconds elapsed."
                        .format(train_epoch, global_step,
                                time.strftime("%Y-%m-%d %H:%M:%S"),
                                learning_rate, mean_loss, train_perp,
                                round(epoch_dur, 2)))
                    epoch_start_time = time.time(
                    )  # The start time of the next epoch

                    summary = tf.Summary(value=[
                        tf.Summary.Value(tag="train_perp",
                                         simple_value=train_perp)
                    ])
                    summary_writer.add_summary(summary, global_step)

                    # Save checkpoint
                    if train_perp < 1.6 and train_perp < last_record_perp:
                        self.model.saver.save(sess,
                                              os.path.join(
                                                  result_dir, "basic"),
                                              global_step=global_step)
                        last_record_perp = train_perp

                    ckpt_loss, ckpt_predict_count = 0.0, 0.0

                    sess.run(self.model.batch_input.initializer)
                    continue

            # Done training
            self.model.saver.save(sess,
                                  os.path.join(result_dir, "basic"),
                                  global_step=global_step)
            summary_writer.close()

    @staticmethod
    def _get_learning_rate(perplexity):
        if perplexity <= 1.48:
            return 9.6e-5
        elif perplexity <= 1.64:
            return 1e-4
        elif perplexity <= 2.0:
            return 1.2e-4
        elif perplexity <= 2.4:
            return 1.6e-4
        elif perplexity <= 3.2:
            return 2e-4
        elif perplexity <= 4.8:
            return 2.4e-4
        elif perplexity <= 8.0:
            return 3.2e-4
        elif perplexity <= 16.0:
            return 4e-4
        elif perplexity <= 32.0:
            return 6e-4
        else:
            return 8e-4
Ejemplo n.º 2
0
class BotTrainer(object):
    def __init__(self, corpus_dir):
        """
        Constructor of the BotTrainer.
        Args:
            corpus_dir: The folder to save all the training related data.
        """
        self.graph = tf.Graph()
        with self.graph.as_default():
            tokenized_data = TokenizedData(corpus_dir=corpus_dir)

            self.hparams = tokenized_data.hparams
            self.train_batch = tokenized_data.get_training_batch()
            self.model = ModelCreator(training=True, tokenized_data=tokenized_data,
                                      batch_input=self.train_batch)

    def train(self, result_dir, target="", last_end_file=None, last_end_epoch=0, last_end_lr=8e-4):
        """Train a seq2seq model."""
        # Summary writer
        summary_name = "train_log"
        summary_writer = tf.summary.FileWriter(os.path.join(result_dir, summary_name), self.graph)

        log_device_placement = self.hparams.log_device_placement
        num_epochs = self.hparams.num_epochs

        config_proto = tf.ConfigProto(log_device_placement=log_device_placement,
                                      allow_soft_placement=True)
        config_proto.gpu_options.allow_growth = True

        with tf.Session(target=target, config=config_proto, graph=self.graph) as sess:
            # This initialization is useful even when the model is restored from the last time
            # because not all variables used in the model training may be saved.
            sess.run(tf.global_variables_initializer())
            if last_end_file:  # Continue training from last time
                #print("Restoring model weights from last time ...")
                self.model.saver.restore(sess, os.path.join(result_dir, last_end_file))

            sess.run(tf.tables_initializer())
            global_step = self.model.global_step.eval(session=sess)

            # Initialize all of the iterators
            sess.run(self.train_batch.initializer)

            # Initialize the statistic variables
            ckpt_loss, ckpt_predict_count = 0.0, 0.0
            train_perp, last_record_perp = 2000.0, 200.0
            train_epoch = last_end_epoch
            learning_rate = pre_lr = last_end_lr

            #print("# Training loop started @ {}".format(time.strftime("%Y-%m-%d %H:%M:%S")))
            epoch_start_time = time.time()
            while train_epoch < num_epochs:
                # Each run of this while loop is a training step, multiple time/steps will trigger
                # the train_epoch to be increased.
                try:
                    step_result = self.model.train_step(sess, learning_rate=learning_rate)
                    (_, step_loss, step_predict_count, step_summary, global_step,
                     step_word_count, batch_size) = step_result

                    # Write step summary.
                    summary_writer.add_summary(step_summary, global_step)

                    # update statistics
                    ckpt_loss += (step_loss * batch_size)
                    ckpt_predict_count += step_predict_count
                except tf.errors.OutOfRangeError:
                    # Finished going through the training dataset. Go to next epoch.
                    train_epoch += 1

                    mean_loss = ckpt_loss / ckpt_predict_count
                    train_perp = math.exp(float(mean_loss)) if mean_loss < 300 else math.inf

                    epoch_dur = time.time() - epoch_start_time
                    #print("# Finished epoch {:2d} @ step {:5d} @ {}. In the epoch, learning rate = {:.6f}, "
                          #"mean loss = {:.4f}, perplexity = {:8.4f}, and {:.2f} seconds elapsed."
                          .format(train_epoch, global_step, time.strftime("%Y-%m-%d %H:%M:%S"),
                                  learning_rate, mean_loss, train_perp, round(epoch_dur, 2)))
                    epoch_start_time = time.time()  # The start time of the next epoch

                    summary = tf.Summary(value=[tf.Summary.Value(tag="train_perp", simple_value=train_perp)])
                    summary_writer.add_summary(summary, global_step)

                    # Save checkpoint
                    if train_perp < last_record_perp:
                        self.model.saver.save(sess, os.path.join(result_dir, "basic"), global_step=train_epoch)
                        last_record_perp = train_perp

                    ckpt_loss, ckpt_predict_count = 0.0, 0.0

                    learning_rate = self._get_learning_rate(train_perp, pre_lr, train_epoch)
                    pre_lr = learning_rate

                    sess.run(self.model.batch_input.initializer)
                    continue

            # Done training
            self.model.saver.save(sess, os.path.join(result_dir, "basic"), global_step=train_epoch)
            summary_writer.close()